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An accurate procedure for the determination of second harmonic generation (SHG) efficiency from

powder crystal monolayers is proposed. The method is based on the analysis of the dependence of

the SHG output on the powder particle size. Unlike with conventional powder methods, the amount of

material required is very small, and the scattering of the primary beam by the powder particles is

negligible, allowing for an accurate analysis of the collected data. The experimental results

demonstrate that the proposed method can provide reliable values for the nonlinear optical

coefficients, particularly in the case of phase-matchable uniaxial materials, for which simple analytical

expressions can be derived. VC 2011 American Institute of Physics. [doi:10.1063/1.3592964]

I. INTRODUCTION

Second-order nonlinear optical susceptibilities1–4 dij are

usually determined by measuring the second-harmonic gen-

eration (SHG) efficiencies on single crystals.5,6 Many times,

however, good crystals are not available. In those cases, the

powder method developed by Kurtz and Perry7 is commonly

used. The technique gives an estimate of an effective nonlin-

ear coefficient together with an idea of the possibility of

attaining the phase matching (PM) condition. The last point

requires SHG measurements of various powder samples with

different particle sizes.

The Kurtz and Perry method is extremely popular for

evaluating or surveying new nonlinear optical materials.8–17

In fact, it can be verified18 that the number of citations in the

literature has been growing with time during past years (due

to the increasing activity in the synthesis of new materials

for nonlinear optical applications), and the total amount of

citations is close to 2000! However, it is also known that

problems can arise with the method when quantitative infor-

mation about the dij coefficients is looked for. Care should

be taken with regard to the conclusions drawn for the meas-

ured materials, because in most cases nothing more than a

rough idea of the nonlinear efficiencies can be obtained. In

this respect, it is interesting to point out that it is not unusual

to find differences of one order of magnitude between the dij

values determined with this method and those found with

single crystal techniques.1,8,19 One fundamental reason for

that is that the semiquantitative model of Kurtz and Perry7

disregards the scattering by the powder particles of the sam-

ple. Even when the powder is mixed with a liquid with

approximately the same index of refraction as the crystal, the

length of the sample is usually long enough to ignore the

effect of light scattering. In this article, we show that a slight

modification of the Kurtz and Perry technique, together with

a careful evaluation of the particle size of the crystalline

powder, can yield reliable quantitative data for the dij coeffi-

cients. The method is based on the analysis of the SHG out-

put of a powder crystal monolayer.

SHG by powder crystal monolayers has been scarcely

studied.20–22 The works published on this subject have been

essentially experimental20–22 and have been focused on the

analysis of the dependence of the SHG signal on the powder

particle size. According to these works,20,21 in the case of

phase-matchable materials, the SHG signal depends linearly

on the powder particle size, whereas in non-phase-matchable

materials the SHG output is independent of the particle size.

This result would allow for a simple classification of a non-

linear optical material during a survey. Nevertheless, no the-

oretical analysis of the data was carried out in these works.

Our first aim was to develop a model that could quantita-

tively describe those experimental results.

II. THEORETICAL MODEL

We assume that the incoming beam is a plane wave and

that the particles are immersed in an index matching liq-

uid20,21 in order to reduce the scattering as much as possible.

In addition, it is supposed that the powder particles are ran-

domly oriented and that the spot size on the sample is large

enough so that the incident beam impinges on particles ori-

ented along all possible crystal directions. Under these

hypotheses, the SHG of the sample will be equal to that

obtained from a single particle after averaging over all crys-

tal directions. Moreover, as the light scattering is negligible,

it is expected that the SHG field will be sensitive to the

polarization of the incident beam. Thus, in order to analyze
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its influence on the SHG signal, we have assumed in our

model that the sample is placed between two linear polar-

izers. For each crystal direction, all different types of wave

interactions2–4 (oo ! o, oe ! o,…) have to be considered

before averaging. Here, o and e stand for ordinary and extra-

ordinary waves, respectively.

In the case of non-phase-matchable materials, the nu-

merical calculations show that the SHG signal oscillates as

the powder particle size is varied, with a period equal to two

times the average coherence length.3 If the dispersion in the

particle sizes is greater than this amount, the SHG output

will be essentially independent of the powder particle size,

as is often observed in practice.20,21 As an example, Fig. 1(a)

shows the theoretical results obtained for crystalline quartz

powder. The fundamental wavelength is 1.064 lm, and the

values of the quantities required for the simulation

(no,e(k1,k2)) were taken from Ref. 23. It can be seen that the

signal oscillates with a period of about 40 lm (approxi-

mately twice the average of the coherence length3). How-

ever, as the particle size scatters in practice, the oscillation

amplitude is greatly diminished (squares). If the dispersion is

larger than 40 lm, the SHG intensity will be roughly inde-

pendent of r. From that average intensity, the value of an

effective nonlinear coefficient of the material can be

obtained. The analysis of the SHG intensity is, however,

complicated because all different types of wave interactions

(oo ! o, oe ! o,…) have to be considered and, usually, all

nonzero dij coefficients contribute to the SHG signal. There-

fore, the data process has to be carried out numerically.

In contrast, the analysis of the SHG intensity generated

by a phase-matchable material is much simpler. If the parti-

cle size is greater than about 10 lm, the light intensity gener-

ated by the wave interaction for which the PM occurs

prevails over the rest. In this case, a simple analytical expres-

sion for the SHG signal can be obtained. Let us analyze, for

example, the case of a negative uniaxial material (no> ne)

with a PM of type I (oo ! e). The SHG intensity produced

by an incident beam of intensity I1 and a wavelength k1 prop-

agating through a powder particle along a crystal direction

characterized by the polar and azimuthal angles ðh;uÞ is

I2 r; h;u; a; bð Þ ¼ bg a; bð Þ d
2
eoo h;uð Þ
n2e hð Þ f r; hð Þ; (1)

where

b � 8p2

eock2
1

I2
1

n2
1o

; (2)

g a; bð Þ � cos4 a sin2 aþ bð Þ; (3)

f r; hð Þ � r2sinc2 Dkeoo hð Þr
2

� �
; (4)

Dkeoo hð Þ � k2x
e hð Þ � 2kx

o : (5)

Here, a represents the angle between the axis of the first po-

larizer and the eigen-axis of the fundamental ordinary wave,

and b is the angle between the axes of the linear polarizers.

DkeooðhÞ and deooðh;uÞ are, respectively, the wave-number

mismatch and the effective nonlinear coefficient for the

interaction (oo! e) considered. n1o;e and n2o;e represent the

material refractive indices for the fundamental and the sec-

ond harmonic waves, respectively, and r is the particle size.

The SHG intensity produced by the sample can be obtained

by averaging Eq. (1) over all crystal directions ðh;uÞ and all

relative orientations ðaÞ of the polarization plane of the inci-

dent wave. The average over h is mainly determined by the

function f ðr; hÞ. This function has a large peak centered at

the PM angle hI (DkeooðhIÞ ¼ 0) and successive secondary

maxima with decreasing values. The peak value of the

central maximum is r2, and its angular halfwidth Dh is given

by DkeooðhI þ DhÞ ¼ 2pr�1. Thus, if the particle size r
increases, the central peak grows sharply and narrows.

FIG. 1. (Color online) (a) Theoretical SHG intensity as a function of particle

size of crystalline quartz powder for crossed polarizers (continuous line).

Squares indicate the theoretical prediction assuming that the powder samples

have a dispersion of particle sizes of 30 lm. The dashed line represents the

SHG signal averaged over all thicknesses. (b) Theoretical SHG intensity as

a function of particle size of KDP powder for crossed polarizers and

k1¼ 1.064 lm (continuous line). Both oe! e and oo! e wave interactions

have been considered separately.
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Therefore, for a large enough particle size (typically

r � 10 lm), f ðr; hÞ will have significant values only for h
close to hI. Within that narrow angular interval, the values of

the other functions of h that appear in Eq. (1) do not appreci-

ably change, so that in the process of averaging over h they

can be substituted by their values at hI. In addition, in that

angular interval, the function DkeooðhÞ can be approximated

by

Dkeoo hI þ nð Þ � dDkeoo

dh

����
hI

n � 2cn; (6)

so that

ðp=2

0

f r; hð Þdh �
ð1
�1

r2sinc2 crnð Þdn ¼ r2 p
cj jr ¼

p
cj j r: (7)

The SHG intensity produced by the sample will be therefore

given by

I2 r; bð Þ ¼ I2 r; h;u; a; bð Þh iu;h;a

¼ b g a; bð Þh ia
d2

eoo hI;uð Þ
� �

u

n2e hIð Þ
sin hI

p
cj j r

¼ p2

4eock1

I2
1 3� 2 cos 2bð Þ

� 1

cos hIn6
1o 1=n2

2e

� �
� 1=n2

2o

� �	 
 d2
eff hIð Þr;

(8)

where

d2
eff hIð Þ � d2

eoo hI;uð Þ
� �

u¼
1

2p

ð2p

0

d2
eoo hI;uð Þdu: (9)

Proceeding in the same way, one can obtain simple analyti-

cal formulas similar to Eq. (8) for all kinds of phase-match-

able uniaxial materials. In the case of a negative uniaxial

material (no> ne) with a PM of type II (oe ! e), for exam-

ple, the SHG intensity produced by the sample will be given

by

I2 ¼
2p2

eock1

I2
1

1

cos hIIn2e hIIð Þn1e hIIð Þn1o 2n3
2e hIIð Þ 1=n2

2e � 1=n2
2o

� �
� n3

1e hIIð Þ 1=n2
1e � 1=n2

1o

� �	 
 d2
eff hIIð Þr; (10)

where hII represents the PM angle. It should be remarked

that d2
eff ðhPMÞ depends not only on the point group symmetry

of the material but also on the type of PM. For example, in

the case of the compound KH2PO4 (KDP) (negative uniaxial,

point group �42m), for type I PM,

d2
eff hIð Þ ¼

d2
14

2
sin2 hI; (11)

and for type II,

d2
eff hIIð Þ ¼

d2
14

2
sin2 2hII: (12)

It can be observed that in all phase-matchable uniaxial mate-

rials, the SHG output depends linearly on the powder particle

size r. At first glance this result might seem surprising,

because it is well known that the SHG signal produced along

the PM direction grows as r2.2–4 Nevertheless, as we have

seen, the angular width around the PM direction for which

the SH is significantly emitted varies as r�1, so that the SHG

intensity obtained after averaging over all crystal directions

depends linearly on r (see Eq. (7)). This result has been veri-

fied by numerical calculations (see Fig. 1(b)). The second

harmonic intensity generated along directions ðh;uÞ differ-

ent from that of the PM ðhPM;uÞ will result in a non-null

intercept of the I2(r) curve not considered in the analytical

derivation carried out above. Numerical calculations con-

firm, however, that the slope of the real I2(r) curve is cor-

rectly given by Eqs. (8) and (10). In the case of biaxial

materials, the SHG signal also depends linearly on r, but

now analytical expressions like Eqs. (8) and (10) cannot be

generally derived, and the analysis must be done numeri-

cally. The linear dependence I2 versus r found in phase-

matchable materials is particularly useful in practice,

because the slope of the SHG curve can then be used for the

experimental determination of d2
eff ðhPMÞ with high accuracy

(d14 for the �42m point group; see Eqs. (11) and (12)). In addi-

tion, the straight lines defined by Eq. (8) or (10) never

become blurred by the dispersion of the particle sizes, pro-

vided that we plot I2 versus the average particle size <r>.

The method is therefore insensitive to the degree of disper-

sion of the particle sizes in the sample.

III. EXPERIMENTAL RESULTS

In order to check the validity of these results, we carried

out SHG experiments in powder crystal monolayers. We will

present one example for a non-phase-matchable material

(quartz) and another one for a phase-matchable material

(KDP). The optical setup is described in detail in Ref. 24. A

Nd:YAG laser was the fundamental light source, and the

intensities generated by the different powder samples were

normalized to the maximum of the first Maker fringe gener-

ated by a quartz y-cut single crystal for an oo ! o conver-

sion. The latter intensity is given by

I2 SiO2ð Þ ¼ 2

eoc
I2
1

1

n2on2
1o n2o � n1oð Þ2

d2
11 SiO2ð Þ: (13)

Using this normalization procedure, one gets experimental

access to the absolute value of the SHG signals, and, thus,

deff values can be readily obtained from the normalized SHG

curves.

Powders were graded using standard sieves to the

desired range of particle sizes. The powder particles were
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immersed in an index matching liquid and placed between

two glass plates. It is important to have a reliable method to

measure the grain size of the crystalline powder. Here, it is

worth mentioning that, contrary to the usual belief, one can-

not take r in Eq. (8) or (10) as the average value of the (con-

secutive) sieve sizes that permit the separation of a particular

range of crystal sizes. If we model these particles in the

shape of small parallelepipeds of sides a< b< c, then it is

easy to see that the referred average value corresponds

approximately to the intermediate dimension b (see Fig.

2(a)). In contrast, in the case of a monolayer, we would

rather have <r>�a, simply because the parallelepipeds tend

to lay on the face with the largest surface, at least in most

cases. It will be shown that in practice there can exist a big

difference between <r> and the value deduced from the

sieve spacings. A misidentification of this parameter can

give rise to an important error in the determination of the

nonlinear optical coefficients.

We carried out the measurement of <r> in the follow-

ing way. First, we selected particles from two particular

sieves. Supposedly, b will be similar to the average value of

the sieve sizes, but this is irrelevant for our purposes. The

<r> value was deduced from the measurement of the area

occupied by the crystal particles (obtained from a photo-

graph using Adobe Photoshop software) and the volume of

the particles deposited on a specific substrate area (deter-

mined from the weight of the sample and the density of the

material; see Fig. 2(b) for the meaning of <r> in an actual

sample). The powder was deposited on a glass substrate with

a circular mask of an area of about 0.5 cm2. A vibrator was

used to spread the powder uniformly. Figure 2(c) shows a

photograph of a KDP sample with particles that were

selected to be smaller than 62 lm. The value deduced for

<r> was 9 lm, which is rather far from the intermediate

dimension of 31 lm. Figure 2(d) shows some <r> values of

different KDP powders as a function of b. It can be seen that

in all cases, <r> is smaller than b. Also, it is interesting to

point out that in no case do we make any assumption about

the r distribution or about the shape of the particles, but we

obtain <r> operationally each time. In addition, it can be

understood that the measurement of <r> is rather accurate,

with the accuracy being limited mainly by the measurement

of the percentage of occupied area on the photograph (error

typically< 5%). Finally, to normalize the SHG signal with

that of the reference single crystal, the intensity of each pow-

der sample must be linearly extrapolated to that of a sample

with a 100% occupation fraction.

FIG. 2. (Color online) (a) Schematic diagram of the sieve process for crystal

particles. For simplicity, the particles are assumed to be orthogonal paralle-

lepipeds of dimensions a< b< c. If the particle is selected between two

sieves of mesh spacings r2 and r1 (r2> r1), this means that r2> b> a and

r1< b< c. However, it is not known whether r2<c or r2> c, or whether

r1> a or r1< a. Thus we can deduce that, approximately, b � (r2þ r1)/2,

i.e., the intermediate dimension is the one that can be selected in advance

during the sieve operation. (b) Schematic view of the powder particles in an

actual sample (arbitrary grain shapes are possible). <r> is the thickness of

the parallelepipeds of the simplified sample that correspond to the correct

volume of the actual sample. In both cases, the area occupied by the grains

is the same. (c) Photomicrograph of a KDP powder sample obtained by

using a single sieve with a spacing of 62 lm. The area occupied by the crys-

tal is 18%, and the average thickness of the sample is <r>¼ 9 lm. In order

to compare the SHG signal with that of the single crystal of quartz, the inten-

sity must be extrapolated to 100%. Image width: 1.4 mm. (d) Particle size

<r> as a function of the average of the consecutive sieve spacings for KDP

powders.

FIG. 3. (Color online) SHG intensity measured in crystalline quartz powder

as a function of particle size for crossed polarizers (dots), and the theoretical

prediction (squares) assuming d11¼ 0.30 pm/V and a dispersion of particle

sizes of 30 lm. The dashed line represents the theoretical SHG signal aver-

aged over all thicknesses. The vertical scale is normalized with respect to

the maximum of the SHG intensity (Maker fringe) of a quartz single crystal

that undergoes an oo! o SHG conversion.
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The dots in Fig. 3 represent the experimental data for

quartz powder, and the squares represent the theoretical pre-

diction, assuming d11¼ 0.30 pm/V and a dispersion of particle

sizes of 30 lm. All intensities were normalized to the SHG

value of a single crystal of quartz using Eq. (13), as explained

above. As can be seen, the data are almost independent of

<r>, as should correspond to a material showing no PM if the

width of the particle-size distribution is comparable to twice

the coherence length (in our case, we estimate a distribution

width of at least 30 lm, from the difference of the consecutive

sieve sizes). From the average value of the experimental data,

we obtained d11¼ 0.28 6 0.02 pm/V for the quartz powder,

assuming a reference25 d11(SiO2)¼ 0.30 pm/V.

The results obtained with the KDP powders are shown

in Fig. 4. At the fundamental wavelength used in the experi-

ment, both types of PM coexist,6,25 so the total SHG inten-

sity will be described by the sum of Eqs. (8) and (10).

Because the term of type I depends on the angle between

polarizers b and the term of type II does not, it is possible to

separate out the contribution of each term to the total inten-

sity by changing the angle b. In Figs. 4(a) and 4(b), the ex-

perimental data obtained with parallel (b¼ 0�) and crossed

(b¼ 90�) polarizers, respectively, are displayed. From the

values of the refractive indices for k1,2 and the slope of

the line that best fits the experimental points, the value of the

d14(KDP) coefficient can be determined using Eqs. (8) and

(10). Thus, assuming25 d11(SiO2)¼ 0.30 pm/V, we obtain

d14(KDP)¼ 0.43 6 0.03 pm/V from the data of Fig. 4(a), and

d14(KDP)¼ 0.40 6 0.02 pm/V from those of Fig. 4(b). Both

values are in excellent agreement with that reported in the

literature.6,25,26 The model developed can correctly describe

not only the slope of the fitting lines but also the value of the

SHG intensity itself (squares in Fig. 4). However, for this

purpose the SHG intensity must be obtained numerically.

IV. CONCLUSION

In summary, an accurate procedure for determining the

dij coefficients from powder crystal monolayers is proposed.

The method overcomes some major limitations of the con-

ventional powder method proposed by Kurtz and Perry,7 par-

ticularly those related to the light scattering inherent in a

thick sample. It has been demonstrated that this method can

provide reliable and accurate values of the coefficients of

both phase-matchable and non-phase-matchable materials.

In the case of phase-matchable uniaxial materials, the analy-

sis is particularly straightforward, because the SHG intensity

is well described by simple analytical formulas. In addition,

in this case, the deff measurement is not affected by the

unavoidable dispersion of the particle size in actual samples.

Therefore, the method constitutes a real alternative to the

single crystal techniques in those cases where it is difficult to

grow large crystals.
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