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Assessment of an LPG mPOF for Strain Sensing

Gaizka Durana, Javier Gomez, Gotzon Aldabaldetreku, Joseba Zubia, Ander Montero, and Idurre Saez de Ocariz

Abstract— We demonstrate the feasibility of long-period
gratings (LPGs) written in microstructured polymer optical
fibers (mPOFs) for detecting and measuring the strain rate and
magnitude of engineering structures. We validate and compare
the results of our experimental tests to a commercial fiber Bragg
grating sensor. The encouraging results open the way to the use of
LPG mPOF sensors in structural health monitoring applications.

Index Terms— Microstructured optical fibers, plastic optical
fibers (POFs), strain sensing, structural health monitoring.

I. INTRODUCTION

REAT research and development effort has been made

in the field of optical fiber sensors during the last
15 years. This is due to the attractive properties of optical
fibers such as electromagnetic interference immunity, being
intrinsically safe, lightweight and able to provide continuous
real-time analysis [1], [2]. More specifically, structural health
monitoring (SHM) has attracted significant attention in a
variety of disciplines including aerospace, civil, military and
marine [3]. SHM is aimed at monitoring the damage caused
to structures and their evolution by means of structurally-
integrated sensors in order to get an early warning and avoid
the structure to collapse.

To date, several optical fiber sensors have been proposed
for SHM applications. Some of the most prominent solutions
for SHM include intensity-based and interferometry-based
optical fiber sensors, and fiber Bragg gratings [4]-[7]. The
former, intensity-based sensors, represent one of the most
direct and basic solutions used for SHM applications [8],
[9]. These types of sensors rely on monitoring the signal
intensity which is modulated in response to the measured
quantity. Although intensity-based sensors suffer drawbacks
such as intensity fluctuations of the light source or long-term
intensity drifts, in applications where precise intensity level
is not required they offer excellent performance monitoring
oscillatory response under dynamic loading conditions [10].
The latter, fiber Bragg gratings (FBGs), which are com-
monly UV written in conventional single-mode silica fibers,
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have recently been demonstrated in polymer optical fibers
(POFs) [11]-[15]. Some of those POF-based FBG sensors
offer ease of handling, higher strain sensitivity and higher
strain limit than silica-based FBGs. Although further research
is required to improve and understand the grating writting
process in POFs, the potential of POF-based FBG sensors for
SHM applications is clear [16], [17].

Recently microstructured POFs (mPOFs) have attracted
significant attention as a new type of fiber for sensing applica-
tions [18], [19]. A pattern of air holes running along the entire
length of the fiber provides unique optical properties which
may be tailored to a wide variety of sensing applications. Such
optical properties include single-mode operation obtained from
a single matrix material with guiding properties controlled by
the photonic bandgap effect. Long period gratings (LPGs) have
become an alternative to FBGs written in mPOFs as localized
sensors. LPGs are easier to fabricate than Bragg gratings and
the periodic structure is imprinted on the outer cladding of the
mPOF. Therefore, LPGs written in single-mode mPOFs [20]
offer an attractive approach to strain measurements [21]-[24].

In this paper, we demonstrate the suitability of LPG mPOFs
for monitoring the strain level of a steel plate. For that purpose,
we explain first the principles upon which the sensor is based.
Afterwards, experimental details related to the preparation of
the specimen and the experimental programme are explicated.
Then, the most representative results are shown and dis-
cussed. Finally, the main conclusions drawn from the work are
presented.

A. Sensor Principles

The mPOF used in the experimental programme is a single-
mode microstructured design made of polymethyl methacry-
late (PMMA) with a long period grating written in it [20]. The
microstructure of the mPOF, depicted in Fig. 1(a), constains a
hexagonal lattice of small holes defining the cladding region.
The distance between holes is of A = 5.15 ym, along with
a hole diameter of d = 2.80 um. The size of the core is of
D = 7.0 ym with an external fiber diameter of 335 ym. LPGs
are deterministic perturbations to the fiber which have been
created using template imprinting upon a heated fiber [25],
[26]. The transmission spectra of long period gratings show
loss features at the resonant wavelengths where the core mode
couples to a cladding mode. This wavelength is given by [25]

mi = (ncore(/l) - nlc](l)) ArLpG (@))

where Appg is the pitch of the grating, m is the order of the
interaction, and n¢gre and nil are, respectively, the effective
indices of the core mode and the ith cladding mode. The
wavelength of the loss feature depends strongly on the strain
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Fig. 1. Single-mode mPOF used in the experimental program. (a) Schematic
representation of the microstructure showing the most important dimensions
of the mPOF. (b) Transmission spectrum of one of the LPGs used in the tests.
Loss feature wavelength corresponding to the strain-free case.

applied to the fiber. The amount of wavelength shift with axial
strain € is obtained by expanding Equation 1 and re-arranging
to yield

di o4 (dncore ~ dn;,) ¢ Aec

= 2
de  O(Anefr) de de @

where Aneff = Tcore — nil, the dependence 04/0(Anefr) is
obtained from differentiating Equation 1 and solving Appg
from the obtained result, and we have used the definition of the
dimensionless quantity Ae = AA/A, i.e. d¢ = 6 ALpg/ALPG-
Both terms on the right hand side of the equation are the
contributions to the grating strain sensitivity due to the change
in the differential effective index (Amnegr) and the grating
periodicity (Arpg), usually referred to as the material and
waveguide effects, respectively. The latter is usually the most
significant effect and it is a function of the slope d1/0 ALpg
for a particular cladding mode, which can have either sign
depending on the grating period [27]. In the case of the LPG
used in this work, 81/8 ALpg turns out to be negative so that
any increase in the strain applied to the LPG implies a decrease
in the resonant wavelength [20]. In contrast, in the case of
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Fig. 2. Photograph showing the steel specimen with the LPG mPOF sensor
(top surface) and the silica-based FBG sensor (bottom surface) fixed to it.
The gauge length of the LPG was approximately 60 mm.

FBGs the amount of Bragg wavelength shift Alg with axial
strain € is positive and given by [28]

Alg
B

where p. is a coefficient dependent on the photoelastic coef-
ficients of the grating material.

An example of a transmission spectrum of the LPG mPOF
is shown in Fig. 1(b), where several loss features can be
observed. Those are the result of the LPG imprinting process,
which causes coupling from the core mode to different
cladding modes. However, only the loss feature located at
around 620 nm-wavelength is sensitive to strain.

Therefore, the sensing capability of the mPOF-based optical
sensor relies on coupling white light into the fiber and on
recording the change of the resonant wavelength 1 with the
strain applied to the fiber €.

= (1 — pe)e 3)

II. EXPERIMENTAL DETAILS
A. Specimen Preparation

In this experimental programme we have considered two
different scenarios to test the response of the sensor. In the
first one, the long period grating was held between two rubber
attachment clamps, with one of the ends fixed to a motorised
linear stage of high precision. The rubber clamps were used to
avoid fiber slippage. The linear stage applied uniform strain
to the fiber in completely reproducible conditions. The loss
feature was located at a wavelength of 596 nm with no applied
strain, and the length of the mPOF was of 1 m.

In the second experimental scenario the LPG mPOF was
surface-bonded to a rectangular steel plate of dimensions 1 mx
0.2mx0.01 m. After having tested different bonding materials,
the most suitable solution consisted in applying a 2-part acrylic
adhesive for plastics which does not require pre-treatment of
the surface. However, we first polished the bonding surface
with sandpaper, and then cleaned it with alcohol thoroughly
before bonding the LPG all along its length to the surface.
Figure 2 shows a picture of the steel proof specimen with
the LPG surface bonded to it. A silica-based FBG was also
attached to the opposite surface on the steel specimen as a
reference. In this case, the FBG was fixed to the specimen
following the instructions and bonding materials provided by
the fiber manufacturer. Regarding the fiber location, both the
mPOF and the FBG were fixed longitudinally at the centre
of the specimen, the mPOF on one side and the FBG on
the other side of the plate. The loss feature of the mPOF
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Fig. 3. Experimental setup for (a) optomechanical response of the LPG and
(b) quasi-static loading of the proof specimen.

used in the second scenario was located at a wavelength of
620nm (without any applied strain) and the overall mPOF
length was of 3m. It is worthy of mention that the resonant
wavelength did not coincide with the value provided by the
manufacturer so that it evidenced the influence of the bonding
material on the state of stress of the LPG, and consequently
on its resonant wavelength. Regarding the non-coincidence
between the loss feature wavelengths used in the first and
second scenarios, there is no special reason for doing that; the
different values are the result of the manufacturing process
of the LPGs which does not have full control over the exact
position of the resonant wavelength.

B. Experimental Programme

1) Instrumentation: As already explained in Sec. II-A (first
scenario), these experiments were carried out on an LPG
without embedding it in any bonding material. In order to
evaluate the functionality of the mPOF sensor, different tests
consisting of ramp-like and cyclical movements of the linear
stage were carried out.

Regarding the experimental set-up used in these tests,
white light from a halogen light bulb was launched into
the fiber by means of a 20x microscope objective. The
output spectrum was monitored using the USB4000 miniature
fiber optic spectrometer from Ocean Optics with an spectral
resolution of 1.28 nm at 550nm. The tests were completely
automated: a custom-built LabVIEW program controlled the
precise movement of the linear stage and the wavelength of
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Fig. 4. Traction—compression machine used in the low cycle loading of the
proof specimen.

the loss feature was determined from the output spectrum of
the LPG mPOF. A schematic drawing of the experimental set-
up is shown in Fig. 3(a).

2) Quasi-Static Loading of the Proof Specimen: Several
quasi-static loading tests (at frequencies of 0.2 Hz and 0.05 Hz)
were conducted on the surface-bonded LPG to evaluate the
response of the sensor and compare it with that of the FBG
acting as a reference sensor (the latter being attached to the
opposite surface of the plate). Additionally, these tests also
served to compare the response of the surface-bonded LPG
with that of the bare LPG (used in the first scenario). In
this second scenario the plate was subjected to sinus- and
ramp-tensile loadings by means of a traction/compression
machine MTS 810 servo-hydraulic equipment which was able
to apply scheduled stresses or strains through four hydraulic
actuators at a maximum force of S00kN. A picture of the
machine installed at CTA facilities is shown in Fig. 4.

With respect to the experimental set-up, both the launching
and the spectra acquisition systems were the same as those
used in the first scenario. The loading programme applied to
the proof specimen was controlled by means of proprietary
software, and a custom-built LabVIEW program recorded the
time response of the LPG, namely the shift in the wavelength
of the loss feature due to the applied strain as a function of
time. The data acquisition was made at a sampling frequency
of 10/3 Hz (1 sample every 300 ms), which was sufficient for
the different type of quasi-static loadings applied to the proof
specimen. On the other hand, the response of the FBG used as
a reference sensor was measured with the SM130-200 optical
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Fig. 5. Typical experimental results obtained in the first scenario. In both

cases, the relationship between strain and the wavelength of the loss feature
is shown. (a) Typical response of the sensor to the ramp-like loading of the
LPG mPOF. Step size: 37.5 um (0.07). (b) Typical response of the sensor to
the ramp-like cyclical loading of the LPG mPOF. Number of repetitions: 15.
Step size: 37.5 um (0.07).

sensing interrogator from MicronOptics. In this case, the data
adquisition (reflected wavelength as a function of time) was
made at a sampling rate of 100Hz (1 sample every 10 ms).
The experimental set-up of this second scenario is shown in
Fig. 3(b).

The strain, defined as the ratio of elongation (L'— L)
to the original length (L), has been determined from the
measurement of L’ and L. In the case of the first scenario, L’ is
the distance between clamps when the LPG is stretched, and L
the distance between clamps when the LPG is not stretched but
taut (reference position, € = 0). On the other hand, in the case
of the second scenario, L’ is the length of the proof specimen
when the actuators are applying traction force to it, whereas
L is the original length of the proof specimen (L = 1 m).

III. RESULTS AND DISCUSSION

Figures 5(a) and 5(b) show typical results obtained in the
first scenario for ramp-like and cyclical movements. In both
cases the maximum applied strain was of 4 % with a step size
of the linear stage of 37.5 um (0.07 %).

2671

In the first case (ramp-like loading, Fig. 5(a)) the measure-
ments were repeated three times, and the mean value and its
least mean squared curve-fit were calculated. It is clear from
the mean value (blue dotted curve) that the sensor exhibits
a high degree of strain linearity, a fact assessed by the very
close to unity value of the R* coefficient derived from the
fitting process (which is indeed R> = 0.998). This best fit is
represented by the red line superimposed onto the blue dotted
curve. However, for small strain values between 0 and 0.2 %
a non-linear behavior can be observed. This may be attributed
to the elastic properties of the rubber used to hold the LPG,
which absorbed part of the stress applied by the linear stage
and stored it in the form of strain energy.

In the context of this first scenario, a series of cyclical
loading tests were also carried out to assess the repeatability
of the response of the LPG mPOF sensor. Figure 5(b) shows
a typical response over fifteen triangular-like loading cycles.
The red curves correspond to the first half of the cycle where
the LPG stretches from 0% to 4 % strain, whereas the black
curves correspond to the second half of the cycle, where the
LPG recovers back to its starting position (0% strain). First
of all, it is worthy of mention that the reference position
(0% strain) has been redefined so that the initial non-linear
response of the LPG mPOF has been removed. It can be clearly
observed that, if each half-cycle is considered separately, there
is a high degree of overlapping of the data points, thus
ensuring a high repeatability in the response of the sensor.
The asymmetric response between both half-cycles, with a
curve-shape reminiscence of hysteresis, is mainly related to
the characteristic elastic hysteresis of rubber, which in one
sense makes the rubber harder to stretch when it is being
loaded than when it is being unloaded [29]. Additionally, the
recovery behavior of the fibers after each decrease of strain and
the subsequent relaxation processes occurring in the polymer
contribute to the hysteresis curve to a lesser extend [21].

It is also worth mentioning that the strain sensitivity of the
sensor, obtained from the slope of any of the curves shown in
Fig. 5, is limited by the LPG itself and not by the resolution
of the spectrometer. Therefore, even though it is possible to
decrease the uncertainty in the measurements of the sensor
using the same LPG but an improved interrogation system, we
can still make use of the present sensor configuration in a large
number of applications where structural integrity represents an
attractive avenue. In our measurements, the strain sensitivity of
the bare sensor turned out to be of approximately 5.40 nm per
elongation unit (expressed in %) or 0.54 pm/ e (compare with
the 1.48 pm/ue for the PMMA FBG and to the 1.15pm/ue
for the silica FBG) [16].

Figure 6 shows typical results obtained in the second
scenario for a triangular-like tension cycling. The upper curve
corresponds to the response of the LPG mPOF sensor and the
lower curve to the response of the FBG reference sensor. First
of all, we can observe that the raw signals provided by both
sensors are out of phase 180° (that is, when the upper curve
is maximum the lower one is minimum and vice versa). The
reason for this lies in the opposite polarity of the slope d1/de
between the LPG mPOF used in the tests and silica-based
FBGs (dA/de < 0 for LPGs in contrast to dA/de > 0 in silica-
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Fig. 6. Responses of the surface-bonded LPG mPOF (upper curve) and the
surface-bonded FBG used as a reference sensor (lower curve) during a quasi-
static triangular-like loading program of the proof specimen. Maximum strain
applied: 0.5 %. Traction frequency: 0.2Hz (1 cycle every 5 s).

based FBGs). In the case of the LPG mPOF sensor, the curve
starts at a minimum of approximately 621 nm (corresponding
to the maximum strain of 0.5 % applied to the plate by the
stretching machine), and ramps up linearly to a maximum
value of approximately 623.5 nm (corresponding to the strain-
free position, 0 % strain, of the plate). It is also worthy of
mention that this linear behavior between the strain values
of 0% and 0.5 % is not observed in the first scenario (see
Fig. 5), where a rather poor response dominates. The reason
for this is founded on the shift experienced by the resonant
wavelength of the LPG used in the second scenario due to
the bonding material. The response to strain now becomes
linear, and consequently the cyclical loading applied to the
plate modulates the resonant wavelength linearly, as shown in
the upper curve of Fig. 6. The fluctuations observed are due to
the limited resolution of the spectrometer which, according to
the manufacturer, amounts to 1.28 nm at 550 nm. Additionally,
it can also be observed that there are small differences in
the wavelength values obtained at both extremes (minima
and maxima), which is attributable to the fact that the data
acquisition sampling frequency and the traction frequency are
not related by an integer (10/3Hz vs 0.2 or 0.05Hz). Both
artefacts can be partially overcome by filtering conveniently
the curve. Although there exist many filtering schemes, a
simple and efficient approach to filtering such a response is
smoothing using nearest neighbours. The result of doing so
is the red solid line shown in the upper curve of Fig. 6.
None the less, and in spite of those inconveniences, it still can
be concluded that the LPG mPOF sensor shows an excellent
behavior for monitoring the strain level of the proof specimen.

The plate was also subjected to a sinus-like loading to assess
the repeatability of the optical response under different loading
conditions. In this case the maximum strain value applied was
of 0.3%. The typical response during three loading cycles
is shown in Fig. 7. The upper curve corresponds to the LPG
mPOF sensor and the lower curve to the FBG reference sensor.
First of all, it is worth mentioning that, in the same way
as in the triangular-like loading of the plate, both responses
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Fig. 7. Responses of the surface-bonded LPG mPOF (upper curve) and the
surface-bonded FBG used as a reference sensor (lower curve) during a quasi-
static sinus-like loading program of the proof specimen. Maximum strain
applied: 0.3 %. Traction frequency: 0.05Hz (1 cycle every 20 s).

are out of phase 180°. As to the fluctuations shown by the
response of the LPG mPOF sensor, these are more noticeable
than those observed in the triangular-like loading of the plate
(upper curve in Fig. 6). The reason for this lies again in the
limited resolution of the spectrometer that has a stronger effect
on the response of the sensor at those time intervals where the
strain gradient is smaller. This way, these sinus-like curves are
more affected than the previous triangular-like ones.

IV. CONCLUSION

In this paper, we have assessed the feasibility of using
mechanically imprinted LPGs in single-mode mPOFs for
strain sensing. A series of quasi-static loading tests consisting
of ramp-like and cyclical movements were applied to a steel
proof specimen in order to evaluate the performance of the
surface-bonded LPG mPOF and compare it with the response
of an FBG used as a reference sensor. The results show clearly
the high sensitivity and elastic limit of the LPG mPOF sensor,
exhibiting a high degree of signal repeatability and linearity
as well. The oscillations of the optical response of the LPG
mPOF, which account for the uncertainty, are due to the lim-
ited resolution of the spectrometer. Therefore, these test results
do not impose any fundamental limitation to the resolution
of the LPG itself. The preliminary results of the surface-
bonded LPG mPOFs on a steel plate show encouraging results
towards its implementation in SHM applications. Nevertheless,
additional studies will be required to further characterize the
functionality of the sensor and assess its suitability as an
embedded sensor in a variety of structures.
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