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Abstract: Four different dye-doped polymer optical fibers (POFs) have been fabricated following
a two-step fabrication process of preform extrusion and fiber drawing, using poly-(methyl methacrylate)
(PMMA) as host material and dye derivatives from perylene and naphtalimide as active dopants. The side
illumination technique (SIT) has been employed in order to determine some optical properties of the
fabricated fibers, such as the side illumination coupling efficiency, optical loss coefficients, and their
performance under solar simulator excitation. The aim of this work is to investigate the performance
of the manufactured fibers for fluorescent lighting applications, specially targeting on fluorescent
fiber based solar concentrators.

Keywords: polymer optical fiber; fiber fabrication; fluorescent materials; lumogen; fluorescent fiber
solar concentrator

1. Introduction

POFs are well known in the field of short-range data transmission links and in a wide variety of
sensing applications, due to their photo-mechanical properties. They are lightweight, thin, and flexible,
which permits easy manipulation by the user [1,2]. Moreover, the waveguide structure provides
several advantages in comparison to bulk material, such as optical confinement in the core, easy
coupling to fiber-optic communication links and symmetric output of the beam profile. The possibility
of embedding dopant molecules with large absorption and emission cross-sections into polymer hosts,
such as PMMA and polystyrene (PS), makes doped POFs ideal for the generation and amplification
of intense light, and therefore, suitable for achieving efficient fluorescent lighting applications in the
visible region [3–7]. Recently, nanoscale polymeric fibers, with diameters comparable or even smaller
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than the wavelength of light, are being studied for novel application in the field of nanophotonics.
These nanofibers, manufactured using fabrication techniques such as electrospinning, have been
gaining great attention due to their potential as reduced photonic structures [8–15].

In recent years, the need for collecting sunlight in an efficient and, especially, economical way
has become one of the main goals of the photovoltaic-energy research field. Recent studies showed
that the concentration of light using layers of transparent medium containing luminescent species
could possibly be a good approach [16]. However, the main drawback of the conventional planar
luminescent solar concentrators (LSC) lies in the limitation in the coupling between the fluorescent
layer and the solar cells, and in the difficulty in wiring for light transportation. In order to overcome
these disadvantages, a new concept of LSC based on fluorescent doped-POFs appears to be a competent
solution: fluorescent fiber solar concentrator (FFSC). The cylindrical geometry of the fibers permits
an easy coupling to solar cells or to other passive fibers for light guiding, which allows spatial
separation between the light harvesting system and the final light-to-electricity conversion system.
Theoretical studies have been carried out involving comparisons between cylindrical and planar
LSCs [17–19]. Doped polymeric nanofibers are also employed in order to improve the efficiency of the
organic photovoltaic cells [20].

In order to achieve high light concentration efficiencies, some criteria should be met regarding
the dopant material: broad absorption and emission bands with minimum reabsorption losses, near
unity quantum yields (QY), and long-term stability [21]. Some organic dyes, such as derivatives
from perylene dye, exhibit near unity QY and have been demonstrated to be long-term stable in
PMMA [22–24]. However, few studies in fibers with different dopants have been carried out yet [25,26].

Motivated by the aforementioned scenarios, this paper provides an overview of the fabrication
process of four polymer optical fibers doped with perylene and naphtalimide derivatives,
and a characterization of the optical properties of the manufactured fibers, focusing on their possible
fluorescent light applications, with especial attention to their potential as FFSC. In this work,
the materials and methods employed for the fiber fabrication are presented in detail, from the
preform fabrication to the fiber drawing process, and an analysis of the optical properties of the
fabricated four dye-doped fibers is shown. It has been demonstrated that half of the light that reaches
the fiber sideway is coupled into it, leading to side illumination coupling efficiencies of around 50%.
The optical attenuation curves have also been measured, obtaining values of 0.05 cm−1 for one of
the samples, being comparable to those previously reported in dye-doped fibers. Finally, a study
of the power-saturation fiber length and of the photo-stability of the fibers has been carried out,
demonstrating interesting results for FFSC applications.

2. Materials and Methods

Commercial PMMA, obtained from Atochem, was used for the fabrication of the preforms.
PMMA is an appropriate material for the fabrication of polymer preforms since it has very low oxygen
permeability, and, thus, it is suitable for avoiding photochemical degradation. The PMMA sample was
purified using tetrahydrofuran (THF, Scharlau, Barcelona, Spain) as solvent and water as precipitating
agent. After that, it was washed in methanol and dried under vacuum pressure at 40 ◦C for 48 h.
THF was distilled under nitrogen, with aluminum lithium hydride (Sigma-Aldrich, Madrid, Spain) to
remove peroxides immediately before use.

The molecular weight distribution was measured by size exclusion chromatography (SEC) using
a chromatographic system (515 Waters Division, Milford, MA, USA) equipped with a Waters Model
410 refractive index detector. THF was used as eluent at a flow rate of 1 mL/min operated at 35 ◦C.
Styragel packed columns—HR1, HR3, HR4E, and HR5E (Waters Division)—were employed. PMMA
standards (Waters Division) in a range between 3 × 103 g/mol and 1.4 × 106 g/mol were used to
calibrate the columns. For measuring the glass transition temperature (Tg), a differential scanning
calorimeter (DSC) was employed. About 11 mg of PMMA sample was placed on an aluminum pan
and put on a hot plate (170 ◦C, N2) where it was maintained for 10 min to erase previous thermal
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history; it was then cooled to 50 ◦C at a fast rate (40 ◦C/min) and performed a heating DSC run from
50 ◦C to 170 ◦C at 10 ◦C/min. The values of the molecular Tg, Mn, Mw, and polydispersity (PDI) are
gathered in Table 1.

Table 1. Glass transition temperature, number average molecular weight, weight average molecular
weight, and polydispersity values of the PMMA sample.

Sample Tg (◦C) Mn (g/mol) Mw (g/mol) PDI

PMMA 93.5 44,900 77,677 1.73

Four different active dyes, three derivatives of perylene, and one derivative of naphtalimide
were physically incorporated into the previously prepared fully polymerized PMMA matrix, namely,
Lumogen F Violet 570 (LV), Lumogen F Yellow 083 (LY), Lumogen F Orange 240 (LO), and Lumogen
F Red 305 (LR) (Figure 1). The dyes were obtained from BASF and the concentration was 0.003 wt %
in all cases. The preforms were produced by an extrusion process, where the doped material is fed
into the reaction chamber of a homemade extruder (see Figure 2a). There, it is melted at 165 ◦C and,
then, directed to the screw extruder. The material is pushed through a small nozzle, and, finally, the
preform is generated with a diameter value of 11 mm. The performs were annealed over 14 days
in a C-70/200 climate temperature system before drawing to 1 mm diameter only-core fibers using
our POF-drawing-tower at a maximum furnace-temperature of 185 ◦C. The fiber-preform, precisely
centered, was continuously fed into a circular resistive furnace at a fixed speed of 2 mm/min, with a
resultant tension of 70 g. This process yielded homogeneous fiber at the output. The diameter of the
resultant fiber was measured and monitored by the control unit of the drawing tower. The maximum
diameter deviation kept below 7%. The fiber samples were cut into pieces of 20 cm–25 cm, and their
ends were carefully hand-polished using polishing papers. In Figure 2, a schematic of the extrusion
process, two photographs of the preform in the drawing tower, and a photograph of the four dye-doped
fibers are shown.
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Figure 2. (a) Schematic of the extrusion process; (b) Top: two photographs of the LO preform in the
drawing tower; bottom: photograph of the final dye-doped 1 mm fibers (LV, LY, LR, and LO from top
to bottom).

Throughout all the experiments carried during the characterization of the fibers, the samples
have been transversally pumped using the SIT. This technique is a non-destructive method that
allows a wide range of measurements such as optical loss measurements and a characterization of the
propagation distance effects. A tunable ultrafast femtosecond laser (Mai Tai HP, wavelength range
690 nm–1040 nm, 80 MHz repetition rate and 1.2 mm of spot diameter) (Spectra Physics, Santa Clara,
CA, USA) with a frequency doubler (Inspire Blue, Radiantis, Spectra Physicis) was used for exciting the
samples. The emitted output spectra were recorded using a fiber-optic spectrometer (USB4000, optical
resolution of 1.5 nm of full width at half maximum) (Ocean Optics, Dunedin, FL, USA). A broadband
(190 nm–2100 nm) laser-driven light source (EQ-99-FC LDLS, Energetiq, Woburn, MA, USA) was
employed for side illumination coupling efficiency measurements. For measuring the output power
value at one of the fiber ends, a silicon photodetector (818-SL/DB, Newport, Irvine, CA, USA) was
used. The values were corrected, employing its responsivity curve. The absorption spectra were
measured at room temperature employing a Cary 50 UV–Vis spectrometer (Agilent, Santa Clara,
CA, USA) equipped with a fiber optic accessory. A schematic of the experimental set-up of the side
illumination excitation is shown in Figure 3.
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Figure 3. (a) Schematic of the experimental set up when the fiber is pumped sideway. LS: Light source;
I: Iris; VF: Variable filters; POF: polymer optical fiber; XY: Micro positioner; D: Detection; (b) Zooming
of the side illumination technique. ze: Illuminated fiber length; zne: non-excited propagation length of
the fiber up to the detector.
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In order to characterize the sample response under sunlight, a halogen lamp (Haloline Eco,
Osram, Munich, Germany) was used as excitation source, providing a spectrum corresponding to
a black body temperature of 2950 ◦C. The sample is placed perpendicularly at a distance of 36 cm
that ensures uniformity at an area larger than 20 × 20 cm2. In the 400 nm–1100 nm range, the sample
receives a power density of 0.38 kW/m2, which is similar to one half of a standard one-sun AM1.5d
illumination in that region.

3. Results and Discussion

3.1. Absorption and Emission Bands

In Figure 4, the absorption and emission spectra of the four fibers are shown. The absorption
spectra were measured by employing fiber samples of around 1 cm in length so that the absorption
bands of the dopants embedded in the fiber could be detected. On the other hand, the emission
spectra were recorded exciting each of the fibers at their maximum absorption wavelength, except
for the LR sample, which was excited at 520 nm due to the wavelength range limitation of the light
source. The main absorption peaks for LV, LY, LO, and LR are located at 392 nm, 472 nm, 524 nm,
and 575 nm respectively, and the emission peaks are shown at 423 nm, 515 nm, 571 nm, and 613 nm.
A small absorption band at around 900 nm should be noted, which is due to the PMMA matrix.
These lumogen-doped fibers present broad absorption bands, making a wide wavelength range
suitable to be converted to higher wavelengths. Also, they exhibit broad emission bands, therefore
they enable high conversion power values. These two features are of great interest for some fluorescent
applications, such as FFSC. The main drawback of using these organic dyes lies in the strong
overlap between the absorption and emission spectra, as can be seen from Figure 4. Because of
this overlap, successive re-absorption events can occur, and, consequently, non-radiative emissions
increase. This overlap will cause a red-shift of the emission spectrum and transmission losses when
the fiber length is increased.
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Figure 4. Normalized absorption (a) and emission (b) spectra of the four dye-doped fibers (ze = 1.2 mm
and zne = 3.3 cm).

3.2. Side Illumination Coupling Efficiency

For applications such as FFSC, the amount of light that is absorbed sideways is an important
feature. For characterizing the side illumination coupling efficiencies, the samples were transversally
pumped employing a broadband laser-driven light source, with an excitation length of 1 mm.
The absorbed power, Pabs, is calculated by the subtraction of the source-power, Ppump, and the
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power transmitted just in the opposite side of the fiber. The side illumination coupling efficiency is
calculated as

ηSIC =
Pabs

Ppump
·100 (%), (1)

Figure 5 shows the power absorbed by each fiber as a function of the pump power. As can be
seen, the absorbed power increases linearly with the pump power for all fibers, leading to ηSIC values
of 51.7%, 48.5%, 54.3%, and 47.6% for LO, LR, LY, and LV samples respectively. This means that around
50% of the light coming sideways is absorbed by the fiber. However, not all of the absorbed light will
reach the fiber end, where, in the case of the FFSC applications, the solar cells are attached. There are
multiple energy-loss mechanisms that may occur all along the fiber length, such as, non-radiative
processes; reabsorption processes; light-scattering by impurities of the host material, both into the
fiber core and on its surface; and losses caused by rays with angles sharper than the critical angle,
which will leak out when reaching the fiber surface [27,28]. These losses have been characterized and
the results will be presented in the next subsection.
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Figure 5. Power absorbed sideways by each of the samples as a function of the pump power,
for ze = 1 mm.

3.3. Optical Losses

In this subsection, the effects of varying the total propagation length of the fiber, zne, are analyzed.
The samples were excited at their maximum absorption wavelengths, except for LR, that was excited
at 520 nm. When the excitation point is moved further from the detector, the output intensity decreases
due to the transmission losses, and the emission spectrum is shifted towards longer wavelengths,
as a consequence of the aforementioned reabsorption and reemission effects. Figure 6a shows the
evolution of the total output intensity as a function of the propagation distance, zne. The fiber with
the lower intensity attenuation appears to be the LR sample, whereas the other three samples show
similar transmission losses. In Figure 6b the dependence of the average emission wavelength with zne

can be seen. All the samples undergo similar red-shifts on their emission spectra, which have been
calculated by linearly fitting the experimental points. The higher red-shift has been measured for the
LV fiber, with a value of 2.2 nm/cm. This fiber corresponds to the sample with the strongest overlap
between the absorption and emission bands.
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Figure 6. Evolutions of the total output intensity (a) and of the average emission wavelength (b) for
all fibers, as a function of the propagation length, for a ze = 1.2 mm, and a pumping irradiance of
52 W/m2.

To conclude this subsection, the attenuation of all fibers has been calculated. This characterization
of the optical attenuation is essential for applications such as FFSC to minimize losses when the
light propagates through the fiber. The optical loss coefficients have been calculated by measuring
the decrease of the output fluorescent spectra at a certain wavelength as the propagation length is
increased, with a constant excitation length, ze, of 1.2 mm. If we assume that the illuminated length
behaves as a plane-wave source, the output light decreases exponentially for each of the emission
wavelengths in the region where the absorption and emission bands overlap. This decay is expressed as

I(λ, zne) = Io· exp(−α(λ)·zne), (2)

where, Io corresponds to the output irradiance at a propagation length zne = 0, and α(λ) corresponds
to the optical loss coefficient at wavelength λ. The results obtained by fitting the experimental
curves to Equation (2) are shown in Figure 7. As can be seen, LV, LY, and LO samples undergo
similar attenuation values of around 0.15 cm−1 in the flat region where the dopant absorption should
be negligible. These values appear to be slightly higher than those documented for dye-doped
fibers [29,30]. However, the attenuation measured for the LR doped fiber, with a value of 0.05 cm−1,
is in good agreement with previously reported numbers for dye-doped POFs and also for conjugated
polymers-doped POFs [31]. In applications where the output power represents a critical factor, such as
FFSCs, one of the main goals of the fabrication process would be to reduce the transmission losses as
much as possible, by controlling the fabrication parameters from the preform fabrication to the last
step of fiber drawing, and by controlling the optimum dopant concentration to avoid saturation and
extra reabsorption effects.

Fibers 2017, 5, 28  7 of 11 

(a) (b) 

Figure 6. Evolutions of the total output intensity (a) and of the average emission wavelength (b) for 

all fibers, as a function of the propagation length, for a ze = 1.2 mm, and a pumping irradiance of 52 

W/m2. 

To conclude this subsection, the attenuation of all fibers has been calculated. This 

characterization of the optical attenuation is essential for applications such as FFSC to minimize losses 

when the light propagates through the fiber. The optical loss coefficients have been calculated by 

measuring the decrease of the output fluorescent spectra at a certain wavelength as the propagation 

length is increased, with a constant excitation length, ze, of 1.2 mm. If we assume that the illuminated 

length behaves as a plane-wave source, the output light decreases exponentially for each of the 

emission wavelengths in the region where the absorption and emission bands overlap. This decay is 

expressed as 

𝐼(, zne) = 𝐼𝑜 · exp(−𝛼() · zne), (2) 

where, Io corresponds to the output irradiance at a propagation length zne = 0, and α(λ) corresponds 

to the optical loss coefficient at wavelength λ. The results obtained by fitting the experimental curves 

to Equation (2) are shown in Figure 7. As can be seen, LV, LY, and LO samples undergo similar 

attenuation values of around 0.15 cm−1 in the flat region where the dopant absorption should be 

negligible. These values appear to be slightly higher than those documented for dye-doped fibers 

[29,30]. However, the attenuation measured for the LR doped fiber, with a value of 0.05 cm−1, is in 

good agreement with previously reported numbers for dye-doped POFs and also for conjugated 

polymers-doped POFs [31]. In applications where the output power represents a critical factor, such 

as FFSCs, one of the main goals of the fabrication process would be to reduce the transmission losses 

as much as possible, by controlling the fabrication parameters from the preform fabrication to the last 

step of fiber drawing, and by controlling the optimum dopant concentration to avoid saturation and 

extra reabsorption effects. 

 

Figure 7. Optical loss coefficient curves for the four fibers. 

3.4. Analysis under Solar Simulator 

Firstly, a study of the evolution of the output power as a function of the illuminated sample 

length has been carried out. In order to achieve this, only a variable portion ze of the fiber has been 

illuminated. The results obtained are shown in Figure 8. It can be observed that, for short lengths, the 

output power increases, but, afterwards, it tends to saturate. This evolution of the output power can 

be expressed as 

𝑃(ze) =
𝐶

𝛼∗
· (1 − exp(−ze · 𝛼∗)), (3) 

where, C is a parameter related to the spontaneous emission [5,29], and α* is the average loss 

coefficient corresponding to all emission wavelengths. From the fittings of Equation (3) to the 

400 450 500 550 600 650 700

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 LO

 LR

 LY

 LV


 (

c
m

-1
)

Wavelength (nm)

Figure 7. Optical loss coefficient curves for the four fibers.



Fibers 2017, 5, 28 8 of 11

3.4. Analysis under Solar Simulator

Firstly, a study of the evolution of the output power as a function of the illuminated sample
length has been carried out. In order to achieve this, only a variable portion ze of the fiber has been
illuminated. The results obtained are shown in Figure 8. It can be observed that, for short lengths,
the output power increases, but, afterwards, it tends to saturate. This evolution of the output power
can be expressed as

P(ze) =
C
α∗

·(1 − exp(−ze·α∗)), (3)

where, C is a parameter related to the spontaneous emission [5,29], and α* is the average loss coefficient
corresponding to all emission wavelengths. From the fittings of Equation (3) to the experimental
data the α* can be determined. Moreover, the power-saturation level has also been calculated.
This saturation level corresponds to the fiber length, Lsat, where the variation of the output power is
less than 0.4%. In Table 2 the values of α*, the coefficient of determination (R2) of the fittings and the
saturation length, Lsat, of the fibers are gathered. As we expected, the best result is obtained for the
lumogen red doped fiber, which is the sample with the lowest optical loss coefficient and the longest
saturation length. The value of 76 cm obtained for our LR sample agrees with previous experimental
values measured for lumogen red doped fibers with the same diameter (1 mm) [32]. It can be noticed
that the average loss coefficient values are in agreement with the values obtained in Section 3.3 from
the flat part of the optical loss coefficient curves.
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Figure 8. Output power as a function of the illuminated length on the fiber for the four samples
under sun-simulator lamp exposure; the solid-lines correspond to the fittings of Equation (3) to the
experimental points.

Table 2. Average loss coefficients, coefficients of determination of the fittings, and saturation length
values for the four samples

Fiber α* (cm−1) R2 Lsat (cm)

LO 0.10 0.997 53
LR 0.07 0.997 76
LY 0.24 0.996 25
LV 0.20 0.993 20

Finally, the photo-stability of the fibers during a 10-h exposure period have been analyzed,
recording the time evolution of the total output power and the emission spectra. The output power
has been measured at one of the fiber ends, taking into account both the spectral distribution of the
outgoing radiation and the responsivity curve of the photodetector as well as correcting for the small
fluctuations of the light source. The evolution of the temperature of the fiber has also been measured,



Fibers 2017, 5, 28 9 of 11

showing that it slowly increases during the first few hours and then stabilizes more than 20 ◦C above
the initial temperature, reaching saturation at near 45 ◦C. Figure 9 shows the evolutions of the output
power and of the fiber temperature along 10 h of exposure. It can be seen that the output power of all
samples is rather stable for this period of time, which agrees with previous works that demonstrated
that dyes derived from perylene exhibit long-term stability in PMMA hosts [23]. It is also in agreement
with previously reported thermal analysis on different dyes derived from perylene, where high thermal
stability has been demonstrated [24,33]. It has to be noted that the spectrum of the solar simulator is
red-shifted compared with the AM1.5d radiation, having its maximum at around 700 nm, which would
cause an overheating in the fiber surface and, therefore, an increase in the photo-degradation. However,
the output power under these conditions remains constant, which reinforces the high thermal stability
of these lumogen-doped fibers. Although, in this study, no dependence of the output power with the
increase on the temperature has been observed, longer-term outdoor measurements should be carried
out in future works to determine the fiber lifetimes and the effects of real irradiation conditions on their
stability. Even if the measured power values are in the order of 103 times smaller than the pump power,
these values could be easily improved by employing higher dopant concentrations, by optimizing the
fiber fabrication parameters, and by producing fiber arrays with a certain fiber length improving the
performance of a single fiber system and leading to higher power conversion values.
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Figure 9. Evolutions of the output power and of the fiber temperature of the four samples during 10 h
of sun-simulator exposure.

4. Conclusions

In this work, we have fabricated four different lumogen-doped polymer optical fibers, employing
a two-step fabrication process of preform extrusion and fiber drawing, targeting applications in the
field of fluorescent fiber solar concentrators. An analysis of the optical properties of the four samples
has been carried out employing the side illumination technique. We have demonstrated that half of the
light that comes sideways is coupled into the fiber, with values of side illumination coupling efficiencies
of around 50% for all the samples. Moreover, we have seen that all fibers undergo similar red-shifts
on their emission spectra when the non-excited length of the fiber is increased, due to reabsorption
events. We have also seen that three of the samples show moderate attenuation coefficients, but for the
lumogen red sample, the optical loss coefficient values are comparable to those previously reported for
dye-doped fibers. Finally, a study of the power-saturation fiber length and of the photo-stability has
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been carried out under a sun-simulator lamp. Lumogen red sample has been found as the fiber that
leads to highest output power values, with a maximum fiber length of 76 cm before reaching saturation.
No variations on the output power have been detected after 10 h of continuous light exposure in all
fibers, demonstrating the high stability of the dyes. Improvements of the fabrication parameters are
the goal for future work.
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