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Abstract: The authors have analysed how 
bending, torsion and tensile stresses affect the 
dispersion and polarisation in a plastic optical 
fibre. This respectively becomes locally uniaxial 
and inhomogeneous, biaxial and inhomogeneous, 
and uniaxial and homogeneous, with little 
variation in the dispersion, The polarisation 
changes rapidly and the induced anisotropy is of 
the order of that produced in the manufacturing 
process. 

1 Introduction 

Although, until a few years ago, most of the studies 
were focused on conventional glass optical fibres, the 
recently discovered plastic optical fibre (POF) has 
attracted a lot of attention. Despite its higher attenua- 
tion, a POF is easier to handle and cheaper than a 
glass fibre [l-31, serving for small distance links, even 
at very high data rates, with the new graded-index 
POFs [4] 

For these reasons, many efforts have been devoted to 
the study of properties of POFs. However, some minor 
aspects as, for example, the photoelastic or stress-opti- 
cal effect, still require a systematic study. This paper 
analyses the effects of different stresses on the disper- 
sion and is based on our previous work on the torsion 
induced optical effect [5 ] .  

2 Theoretical background 

The theoretical analysis in this Section is based on 
some essential assumptions about the structure and 
properties of a POF. We suppose that an undisturbed 
POF is an isotropic, transparent and homogeneous 
medium, so we do not consider the cladding. It is obvi- 
ous that the production process induces anisotropy [6], 
as we show later, with some minor differences between 
the optical behaviour along the axis of the fibre and 
that along the axis perpendicular to it. However, these 
differences are neglected at this stage. 

As is well known, the stress can be characterised by a 
symmetric second-rank tensor [o] with six independent 
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components o, ( i  = 1, ..., 6). We use the common con- 
tracted notation [7] to number the elements of [o]. The 
photoelastic or stress-optical effect is then described, up 
to first order in the stresses, by the relation: 

where ABL (i = 1, ..., 6) is a symmetric second-rank ten- 
sor that represents the changes of coefficients in the 
optical indicatrix or index ellipsoid under the action of 
applied stresses. The stress-optical tensor, qV, is a 
fourth-rank tensor with 36 components (i, j = 1, ..., 6).  

When the symmetry of an isotropic medium such as 
a POF is taken into account, the number of independ- 
ent elements in the tensor qV is finally reduced to two 
different ones, ql l  and q12, arranged as: 

AB, = %,a, (1) 
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Fig. 1 
the geometry anAeference system for a POF subjected to a tensile stress 

Zigzag ath within the core of a step-profile POF, together with 

In the following Sections, we calculate the change in 
the modal dispersion originated by each type of stress. 
Modal dispersion is defined as the difference between 
the maximum and minimum ray transit times, which, 
in Fig. 1, are the times corresponding to the ray 
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making an angle 0, with the fibre axis and to the ray 
parallel to the axis. The complementary critical angle 0, 
is given by t3, = cos1 (nC$zCo), where nCl and n,, are the 
cladding and core refractive indices, respectively. 

2. I Effect of a uniaxial stress 
First, we analyse the effect of a tensile stress applied 
parallel to the fibre axis. As a consequence, the indices 
of refraction increase by [5]:  

an, = An, = - n : , q l a c ~ 3 / 2  an, = - n z o q l l a 3 / 2  

(3) 
which means that the POF becomes birefringent, with 
the principal axes located parallel and perpendicular to 
the direction of the tensile stress (Fig. 1). As this tensile 
stress is usually present in any POF-production proc- 
ess, POFs are slightly birefringent, with a preferred 
direction (the optic axis) along the fibre axis. Even if 
tensile stresses were absent, the temperature changes 
along the fibre in the production process would give 
rise to a similar effect [6]. 

light 
polarising 

microscope 

ordinary index 
U 

.__. _.. ..... . .___....__... .- 

d ( s g : i I d m a r y  index 
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Fig.2 Geometry of sample used to measure birefringence 
d = 316nn 
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Fig. 3 
ture 

Dilation of POF along radial direction as a function of tempera- 

The birefringence of a commercial PMMA POF 
(Eska Extra from Mitsubishi Rayon) was determined 
experimentally. For this purpose, a small section of 
POF was cut and polished isotropically in the axial 
direction to obtain a perfect parallelogram, as is shown 
in Fig. 2. The sample was introduced in a Mettler hot 
stage to control the temperature, and the hot stage was 
placed between crossed polarisers in an Olympus polar- 
ising microscope. To measure the birefringence we used 
a Berek compensator. This procedure allows us to 
obtain the variation of the product And with tempera- 
ture. d stands for the sample thickness. To deduce the 
behaviour of the birefringence, we also measured the 
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dilation of the POF in the transverse direction by 
means of a Perkin-Elmer thermomechanical analyser 
TMA 500. The increase in length along the radial 
direction Ad(T) is shown in Fig. 3 and the resulting 
birefringence in Fig. 4. The drop observed in the dila- 
tion curve is caused by the changes that the polymer 
experiences close to the glass transition point. The bire- 
fringence was measured for several POF slabs to ascer- 
tain that the anisotropy was intrinsic and not due to 
the polishing process. No noticeable differences in the 
birefringence values were obtained. It is seen that the 
induced birefringence is negative, i.e. no > ne, and 
decreases monotonicaly as we approach the glass tran- 
sition temperature. At 393 K the birefringence was very 
small. The reason for this behaviour lies in the growing 
disorder, which leads to an increasing symmetry, and 
so to a reduced birefringence. In our experiments, the 
size of the light spot was around lmm2, which means 
that the measured birefringence represents an average 
value. 

300 320 340 360 380 400 
temperature, K 

Fig.4 Average birefringence as a function of temperature 

To calculate the effect of a uniaxial stress on the dis- 
persion, we consider the change in the maximum and 
minimum meridional ray transit times. The transit time 
for a ray travelling parallel to the fibre axis is minimum 
and is modified by a uniaxial stress according to the 
expression At$in = A(Ln,,)/c, as follows: 

at;,,, = A(Ln,,)/c 
= n,,AL/c + LAn,,/c 
= LnC,a3/cE - Ln2,ql2as/2c (4) 

L being the total fibre length and E being Young's 
modulus. This expression is independent of the ray 
polarisation. 

The transit time for a ray propagating at an angle 0, 
with the fibre axis is maximum and varies in a similar 
way. However, contrary to what happens with isotropic 
fibres, the refractive index depends on the concrete ray 
direction. The ordinary ray propagates with an index 
of refraction equal to nou = nCo(l ~ n , , 2 ~ ~ , 4 ~ ~ / 2 ) ,  inde- 
pendently of the angle 6,. For the extraordinary ray, 
the index of refraction can be inferred from the follow- 
ing well known formula [8]: 

1 - cos2 oc 
.:2(Qc) [nco ( l  - n : , ~ 3 q 1 2 / 2 ) ] 2  

- 
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which, to a good approximation, yields 

nz = ncO[l - n:,a3(q11 sin2 8, + 412 cos2 0 , ) / 2 ]  (7 )  
Then, the correction to the maximum ray transit time 
turns out to be [9]: 

At:,,,, = A(Ln, secO,)/c 
= n, sec B,AL/c + L sec8,An,/c + Ln,A sec O,/c 

( 8 )  
where n, stands for both the ordinary and extraordi- 
nary refractive indices, and 

AsecO, = cosOC(2ArcoTe tan8, - ALtan20,)/L 

where rcore stands for the core radius and (T for the 
Poisson ratio and AY,,,, = - r,,,,oALlL. 

(9) 

An, = -n;,o3q12/2 

An,, = -n%,as(qll sin2 e, + q12 cos2 e,)/2 

Introducing eqns. 9 and 10 into eqn. 8, we obtain: 

and 

(10) 

atk,,,o = ~n , ,~3 [ sec8 , (1 -  ~n:,q12/2) 
- sin8,(2rc0,,a/L + tanO,)]/cE (11) 

At;,,,, = Lncoo3 
x [secOc(1-En~,(q1l sin2 Qc+q12 cos' e,)/2) 
- s inQ,(2rcore~/L + tanQ,)]/cE (12) 

All this allows us to calculate the dispersion. This will 
be At,",, I - At;,,, where the subindex i accounts for 
the polarisation direction, which yields: 

At: = Lnc,g3[(secO, - 1)(1- ~ n Z , q l 2 / 2 )  

- sin8,(2rCoTea/L + tan8,)]/cE (13) 

At: = L,ncoo3 

x [secB,(1 - Enz,(qll sin2 8, + q12 cos2 8 , ) / 2 )  
-- sin 8,(2rCo,,a/L + tan 0,) 

-- 1 + En~ ,q1~ /2 ] / cE  (14) 

2.2 Effect of fibre bending 
In this Section, we calculate the new refractive indices 
and the principal axes of the index ellipsoid when a 
fibre is bent in the XY-plane, as shown in Fig. 5 .  Con- 
trary to what is observed in single-mode fibres, bending 
a POF produces a birefringence that varies linearly 
with the distance to the neutral line [lo]. 

2.2.1 Principal refractive indices in a bent 
POF: Fig. 5 shows the reference system chosen for our 
analysis of circular bends. Owing to the symmetry of 
our problem, the stress tensor is calculated in cylindri- 
cal co-ordinates (i.e. (p, 9, z)) ,  and the only nonzero 
component turns out to be ov [ll]. If R denotes the 

bend radius, this stress component can be written as 

Changing to Cartesian co-ordinates in order to use 
eqn. 1, the new indicatrix is found to be: 

0, = E(p  - R ) / R  (15) 

1 + q12o, sin2 cp + 4110, cos2 cp 

+2zy(q11-q12)o, cospsincp=1 

(16) 
The next step is finding the directions and magnitudes 
of the principal axes of the index ellipsoid. Table 1 
shows the results. From the eigenvalues of the matrix 
[B], we can write the corrections to the index of refrac- 
tion as Ani = ~ ncO3ABil2. 

Y 

f t  

Fig. 5 Geometry and reference system for U bent POF, together with the 
section ofthe index ellipsoid on the plune of the bend 
fstands for the direction of the ray under consideration. np and nm are the 
refractive indices along the polar directions p^ and 4. 

2.2.2 Index of refraction along an arbitrary 
direction in the plane of the bend: In this Sec- 
tion, we consider the propagation of rays along some 
arbitrary direction in the fibre. For this purpose, we 
make use of the index ellipsoid referred to its principal 
axes. Let us analyse a ray 2 propagating at an angle 8 
with the optic axis $I (Fig. 5). There are two allowed 
polarisation directions, with different refractive indices. 
The first of these two waves, which is polarised along 

Table 1: Principal axis vectors of index ellipsoid and corresponding 
indices of refraction for POF subjected to bending stress 

Eigenvectors VI 

~ 

cp is the angle with the polar axis and oq is the bending stress 
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the z-direction, is the ordinary wave and has an index 
of refraction nbo: 

n: = nz = nm(1 - ~:,412CJ,/2) (17) 
The refractive index of the extraordinary ray, nbe, var- 
ies with 0 according to the expression: 

cos2 Q sin2 Q +- - - -  - 
1 

.!"(e) n2p n; 
nt (0) z nco (1 - n20~v  (412 cos2 8 + 411 sin2 0 ) / 2 )  

In the last two equations, we have supposed that the 
correctioiis are much less than unity. Depending on the 
sign of oq, the ordinary and extraordinary rays will 
travel faster or slower than in the case of an undis- 
turbed fibre. This effect becomes more important as we 
withdraw from the neutral line. 

(18) 

1 a 

b 
Fig.6 Geometry of a bent opticalfibre 
a Meridional ray entering the bend tangentially to the fibre axis 
b Meridional ray at an angle 0, with the outer surface 

2.2.3 Correction to the dispersion when bend- 
ing a POF: A rigorous analysis would involve the cal- 
culation of an expression for the transit time of skew 
rays, which generally depends on the invariants pand 1 
[12]. However, if the bend radius is not too small, tran- 
sit times of skew rays are expected to be identical to 
those of meridional rays. Consequently, to calculate the 
dispersion, we will compare two rays in the plane of 
the bend: that entering the bend along the fibre axis 
and that making an initial angle 6, with the fibre axis, 
as shown in Fig. 6. The correction to the time spread 
can be calculated as: 

1 at: = 2a * c [qll t a n a  (1 - =) 
- (412 - y )  Intan ('+ 2) 
+(412 - 4l&I (20) 

The procedure to reach this result can be summarised 
as follows: 

First, we calculate the transit times for the ordinary 
and extraordinary rays initially parallel to the fibre 
axis. To do so, we must integrate to obtain the ray 
transit time t2i between two reflection points: 

Then, we repeat the method for the corresponding rays 
entering the bend at an angle 0,. From Fig. 6, it is easy 
to see that cos x = rBhA cosfie. If R >> ?"B - ?"A, cos x = 
cos 8,. In such a case, we can consider the angle 
between the ray tand the principal axis q? of the index 
ellipsoid as constant and equal to 0,. With all these 
assumptions, we can compute the extraordinary ray 
transit time between two consecutive reflections: 

TB 
1 

t 2 i e  = -1 ne(ec)ds 
C 

T A  

(22) 
For the ordinary ray, we proceed in a similar way. The 
stress has no effect on that ray transit time. 

Fig.7 Torsion of POF when pure shear forces are applied at both ends 
of the fibre 
The arrows indicate the directions of the forces applied to the POF. In the Fig- 
ure, the reference system used in the text is also shown. 

2.3 Effect of fibre torsion 
The geometry of the problem is illustrated in Fig. 7. 
Shear forces are applied at both ends of the fibre 
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Table 2: Principal axis vectors of index ellipsoid and corresponding 
indices of refraction for POF subjected to torsion stress 

Eigenvectors V, VZ 

Components (cosfi,sin I?, 0) (1/1/2)(sint~-cos1?,1) ( I / . ~ ~ ) ( s ~ ~ I ? , - ~ o s I ? , - I )  
Refractive index nco nco (l-n2,,(qll-ql2)p~r/2) nco (1 +n2,,(qll-q~2)p~r/2) 

rand  8 stand for the usual polar co-ordinates: r = (xz + ?)li2 and 8 = tan-l(y/x) 

Table 3: Summary of results of corrections to the time spread originated by 
different stresses 

Stress 

Uniaxial 

Ordinary 

Extraordinary At:= Ln,,o3~~sec8,~l-En,,2~qllsin28,+qlzcos28,~/2~-sin8,~2r,o,,o/L+tan8,~-1+LEn,,2q,2/2l/cE 
Bending 

Ordinary At$= ~ELn~ql2/2ca~~tana(l-1/2cosa)-(1/2)lntan(o1/2+.rr/4)1 

Extraordinary At:= ~ f L n ~ / 2 c a ~ ~ q l l t a n a ~ l - 1 / 2 c o s a ~ - ~ ~ l z - ~ q l l / 2 ~ l n t a n  (a/2+.rr/4)+(q1,-qll)c1 

Torsion 

Ordinary (-) AT! = (-n& L. q44p~rcoretan 19d4cl 

Extraordinary (+) AT: = (+n~L.q44p~r,o,tanI?~4c) 

For each type of stress, two different corrections, corresponding to different polarisation directions, have 
been calculated 

Correction to  the time spread 

At: = Ln,,03[ (sece,-l ) ( 1 -E n,,2qlZ/2 )-si n 8,(2 r,,,,o/L+ta n 8,)l/cE 

section, to produce a torsion on it. In this situation, the 
components of the stress tensor will be [ 1 11: 

g1 = g 2  = g 3  = g 6  = 0 
f f 4  = p r x  

0 5  = - p q  (23 )  
where z is the torsion angle, defined as z = dq/dz, and 
p is the stiffness constant. Introducing these compo- 
nents in eqn. 1, we find that the refractive index 
depends both on the position and on the ray polarisa- 
tion. The eigenvectors and their corresponding eigen- 
values are given in Table 2. It can be seen that the z- 
direction is no longer an optic axis of the medium. 
However, along the fibre axis r = 0, the index ellipsoid 
is spherical and independent of polarisation, which 
means that the minimum ray transit time, t2in, is not 
affected by the torsion. This result is a consequence of 
the fact that the stress on the fibre axis is null (q = 0). 
As the anisotropy for any other direction, say t is not 
null, we have to calculate the corresponding refractive 
index, n,, by means of Fresnel’s ray-equation: 

For the ray propagating at an angle 0, shown in 
Fig. 1, in the reference system formed by the principal 
eigenvectors (2 = (sinzYc, 1/42 C O S I ~ ~ ,  1/42 cos0,)) and 
choosing the eigenvector V1 to be in the plane of the 
meridional ray, eqn. 24 yields: 

sin2 0, ; cos2  8, $ cos2 8, + + = o  
nz - nZ0 n? - nz,(l - f ) 2  n: - nz,(l + f ) 2  

(25) 
where f = n&(qll - q l2 )p~v /2 .  From this equation, we 
can deduce the value of n,: 

nt = n,, z/i f 2f sin 0, (26) 
neglecting second-order corrections in the anisotropy 
and considering that the energy propagates in the 
direction of the wave normal. Now, if we calculate the 
radius rlp at which each ray would touch the turning- 

point caustic, we can see that rtp is typically much 
larger than the core radius (remembering that, for a 
typical POF, n,, = 1.492, nCI = 1.417 and r,,,, = 0.5 
10-3m), so ray trajectories can be considered as 
straight: 

The difference between the maximum and minimum 
ray transit times gives the time spread. As we have 
already pointed out, L,”~, = n,,L/c. On the other hand, 
t;,, can be inferred as follows. The time between two 
reflections will be: 

(28) 
This is the time that a ray takes to travel a distance z = 
rC,,,/tanOc, so for a distance L we have (q44 = qll  - qlJ:  

(29) 
Hence, the time spread is 

- 

At; = n 2l.- L (1 f n ~ o q 4 4 p r ~ , o T e  sin 8,/4 
C cos 8, 

(30) 
The double sign corresponds to two different polarisa- 
tion directions (Table 3 ) .  
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3 Discussion 

Stresses affect both the refractive index and the disper- 
sion. With regard to uniaxial or tensile stress, one effect 
is the appearance of a linear birefringence. This is given 
by: 

Anu = n: - n: = -n~,03 (412 cos2 0 + 411 sin2 O ) / 2  
(31) 

It is, therefore, independent of the point considered 
and directly proportional to the magnitude of the 
stress. 

Calculating the birefringence induced by a moderate 
stress in a fibre of length L, we know that the induced 
anisotropy is maximum for a ray propagating at an 
angle 0, with the fibre axis, and the corresponding opti- 
cal phase shift is 

( 3 2 )  
-7r&03 (412 cos2 8, + 411 sin2 0,) 

x cos 0, 
6 9  = 

This means that the polarisation state will repeat itself 
for each beat length L;, defined as 

This is of the order of 10-3m for typical values of these 
parameters (Table 4), so uniaxial stresses have a great 
influence on the polarisation state. As we approach the 
glass transition temperature TE, this effect is expected 
to be more important [13, 141. As a moderate tensile 
stress is also applied in any POF production process, 
we measured the intrinsic optical anisotropy of a com- 
mercial POF to obtain a rough estimation of‘ the bire- 
fringence. When the measured optical anisotropy 
(Fig. 4) is used to calculate L; the same order of mag- 
nitude is obtained. 

Regarding the variation of the time spread, a tensile 
stress originates a decrease in the ray transit times, to a 
greater extent as the angle with the optical-fibre axis 
increases. Each point of the curve in Fig. 8 represents 
the correction that has to be applied to each original 
ray transit time, which is given by the x co-ordinate, 
assuming that we begin to count the time when the first 
ray arrives. The corrections are of the order of the dis- 
persion in a graded-index POF (78ps in 25ns) [4, 151. 
To calculate this curve, we have neglected random var- 
iations in the fibre diameter during the manufacturing 
process [13]. Although the effect of a tensile stress on 
the dispersion is negligible, the same does not occur 
with the polarisation direction, which changes very rap- 
idly. 

A bending stress makes the POF locally uniaxial, 
with the revolution axis orientated tangentially to the 
fibre symmetry axis. The directions of the principal 

axes depend on the polar angle, but not on the co-ordi- 
nates p or z .  The induced anisotropy, which is directly 
proportional to the distance to the neutral line and 
inversely proportional to the bend radius R, is given 
by: 

h Anh = n! - no 

- 4 0  
- y o y ( 9 1 2  - 411) sin2 0 

This behaviour is opposite to that observed in single 
mode fibres, in which the bending birefringence varies 
as the square of rCorelR [lo]. 

A torsion stress makes the POF slightly biaxial. The 
correction term for the refractive indices along two of 
the principal axes of the index ellipsoid, given by 
ncO3(qll ~ qI2),uz~/2, is much less than unity (lo4 - lou5) 
and only depends on the radial co-ordinate. Along the 
fibre axis ( r  = 0), the index ellipsoid becomes a sphere, 
so this direction will be isotropic. Going far away from 
the fibre axis, the index ellipsoid becomes more and 
more asymmetric and the fibre more birefringent. 
When the wavelength is of the order of the pitch of the 
twist, a torsion stress leads to a circular birefringence 
proportional to the twist [lo]. In our case, however, the 
pitch considered in our calculation (one turn per metre) 
is much greater than the light source wavelength. 
Therefore, circularly polarised waves are not normal 
modes of the twisted fibre. 

0 5 10 15 20 25 30 
ns 

Fig.8 Correction that has to be applied to each ray transit time, to take 
into account the birefringence induced by a tensile stress, against the ray 
transit time in the absence of stresses 

The beat length resultant with each stress is very 
small, especially with bending stresses (Table 4), which 

Table 4: Expression of beat length, its value and magnitude of correction to 
dispersion with tensile, bending and torsion stresses 

The values of the correction to the dispersion have been calculated for the ordinary ray per 100 m, using the 
following typical parameters: o3 = IO’ N/m2, h = 600 nm, nco = 1.492, qI1 = g,, = q,, = m2/N, R = 10.’ m, 

rcore = 0.5 m, p = 1.1 IO9 N/m2, o = 0.4, T = 2n rad/m, E =  3.2 IO9 N/m2 and, finally, Bc = 18.24” = 0.318 rad 
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shows that the polarisation state changes rapidly. The 
same does not happen with the dispersion correction 
term, which is negligible in all cases (Table 4, Figs. 8 
and 9). Fig. 9 is the counterpart to Fig. 8 for bending 
and torsion stresses. In this case, as in Fig. 8, the ordi- 
nary and extraordinary rays both give rise to the same 
curve, as we have considered qI1  = qI2. The corrections 
to the time spread for bending and torsion stresses are 
even smaller than that for tensile stresses. 

L 7  
0 5 10 15 20 25 30 35 40 45 

ns 
Fig.9 Correction that has to be applied to each ray transit time, to take 
into account the birefringence induced by bending and torsion stresses, 
against the ray transit time in the absence of stresses 

%ith the above results and the value of Young’s 
modulus, we can infer indirectly the approximate val- 
ues of the photoelastic coefficients qll  and q12 by meas- 
uring L: and Li. The approximation is good, because 
the change 6 in the polarisation state is much more 
than that provoked by the reflections at the core-clad- 
ding interface along the same length of fibre or 
10-3m). 6 is given by [SI: 

6 sino,Jcos20, - nP1 

2 cos2 8, (35)  z t a n -  = 

which yields a phase change of only 0.1 degrees for the 
most tilted bound rays, for which the distance between 
two total-internal-reflection points can be calculated as 
2rCor,ltan~, = 6.1 x 10-3m. 

To some extent, another factor that could hide these 
results is the intrinsic anisotropy of the refractive index. 
POFs are manufactured by means of a melt spinning 
process. At the final step of the production process, 
POFs are drawn out from the nozzle at a controlled 
diameter, by regulating the polymer temperature, the 
drawing velocity and other factors [l]. The magnitude 
of the intrinsic anisotropy induced at this stage turns 
out to be around ~ [13, 151, which is of the 
order of the stress-induced anisotropy. This value coin- 
cides with our measurements. 

Finally, we note that the results obtained here do not 
vary significantly when the mechanical properties of 
the cladding and jacket are taken into account. When 
doing so, their effect is expected to change the value of 
E and p, but not the qualitative dependence of the dis- 
persion and beat length on these parameters [5]. 

4 Conclusions 

We have analysed the optical effects induced by three 
different types of stresses. A uniaxial stress makes the 
isotropic POF uniaxial with its optic axis parallel to the 
fibre axis. On the other hand, bending and torsion 
stresses convert the fibre into an inhomogeneous 
medium, because the refractive index depends on the 
position as well as on the direction of the ray path 
through the POF. While, as a result of a bending stress, 
the fibre becomes locally uniaxial, twisting a fibre pro- 
duces a biaxial medium. All in all, the main conclusion 
is that these stresses have no noticeable effect on the 
modal dispersion, although they could yield a signifi- 
cant contribution to the dispersion of a graded index 
POF. However, bending and tensile stresses make the 
polarisation state vary very rapidly. In any case, the 
magnitude of the induced anisotropy for moderate 
stresses results is similar to intrinsic manufacturing ani- 
sotropy. 
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