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Abstract: The authors have analysed how
bending, torsion and tensile stresses affect the
dispersion and polarisation in a plastic optical
fibre. This respectively becomes locally uniaxial
and inhomogeneous, biaxial and inhomogeneous,
and uniaxial and homogeneous, with little
variation in the dispersion. The polarisation
changes rapidly and the induced anisotropy is of
the order of that produced in the manufacturing
process.

1 Introduction

Although, until a few years ago, most of the studies
were focused on conventional glass optical fibres, the
recently discovered plastic optical fibre (POF) has
attracted a lot of attention. Despite its higher attenua-
tion, a POF is easier to handle and cheaper than a
glass fibre [1-3], serving for small distance links, even
at very high data rates, with the new graded-index
POFs [4].

For these reasons, many efforts have been devoted to
the study of properties of POFs. However, some minor
aspects as, for example, the photoelastic or stress-opti-
cal effect, still require a systematic study. This paper
analyses the effects of different stresses on the disper-
sion and is based on our previous work on the torsion
induced optical effect [5].

2 Theoretical background

The theoretical analysis in this Section is based on
some essential assumptions about the structure and
properties of a POF. We suppose that an undisturbed
POF is an isotropic, transparent and homogeneous
medium, so we do not consider the cladding. It is obvi-
ous that the production process induces anisotropy [6],
as we show later, with some minor differences between
the optical behaviour along the axis of the fibre and
that along the axis perpendicular to it. However, these
differences are neglected at this stage.

As is well known, the stress can be characterised by a
symmetric second-rank tensor [o] with six independent
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components o; (i = 1, ..., 6). We use the common con-
tracted notation [7] to number the elements of [o]. The
photoelastic or stress-optical effect is then described, up
to first order in the stresses, by the relation:

ABZ‘ =4q;i0; (1)
where AB; (i = 1, ..., 6) is a symmetric second-rank ten-
sor that represents the changes of coefficients in the
optical indicatrix or index ellipsoid under the action of
applied stresses. The stress-optical tensor, g, is a
fourth-rank tensor with 36 components (i, j = 1, ..., 6).

When the symmetry of an isotropic medium such as
a POF is taken into account, the number of independ-
ent elements in the tensor g; is finally reduced to two
different ones, q;; and q,,, arranged as:

911 q12 q12 0 0 0
912 911 qi2 0 0 0
[Q] _ | @12 912 911 0 0 0 (2)
0 0 0 qi1—qi2 0 0
0 0 0 0 q11—q12 0
L0 0 O 0 0 q11—q12 |

Fos

U

O3
Fig.1 Zigzag path within the core of a step-profile POF, together with
the geometry and];eference system for a POF subjected to a tensile stress

In the following Sections, we calculate the change in
the modal dispersion originated by each type of stress.
Modal dispersion is defined as the difference between
the maximum and minimum ray transit times, which,
in Fig. 1, are the times corresponding to the ray
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making an angle 6, with the fibre axis and to the ray
parallel to the axis. The complementary critical angle 9,
is given by 6, = cos™! (n/n,,), where n, and n,, are the
cladding and core refractive indices, respectively.

2.1 Effect of a uniaxial stress

First, we analyse the effect of a tensile stress applied
parallel to the fibre axis. As a consequence, the indices
of refraction increase by [5]:

An, = Any = —n qia03/2 An, = —nd q1103/2
(3)
which means that the POF becomes birefringent, with
the principal axes located parallel and perpendicular to
the direction of the tensile stress (Fig. 1). As this tensile
stress is usually present in any POF-production proc-
ess, POFs are slightly birefringent, with a preferred
direction (the optic axis) along the fibre axis. Even if
tensile stresses were absent, the temperature changes
along the fibre in the production process would give
rise to a similar effect [6].
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Fig.3 Dilation of POF along radial direction as a function of tempera-
ture

The birefringence of a commercial PMMA POF
(Eska Extra from Mitsubishi Rayon) was determined
expermmentally. For this purpose, a small section of
POF was cut and polished isotropically in the axial
direction to obtain a perfect parallelogram, as is shown
in Fig. 2. The sample was introduced in a Mettler hot
stage to control the temperature, and the hot stage was
placed between crossed polarisers in an Olympus polar-
ising microscope. To measure the birefringence we used
a Berek compensator. This procedure allows us to
obtain the variation of the product And with tempera-
ture. d stands for the sample thickness. To deduce the
behaviour of the birefringence, we also measured the
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dilation of the POF in the transverse direction by
means of a Perkin-Elmer thermomechanical analyser
TMA 500. The increase in length along the radial
direction Ad(T) is shown in Fig. 3 and the resulting
birefringence in Fig. 4. The drop observed in the dila-
tion curve is caused by the changes that the polymer
experiences close to the glass transition point. The bire-
fringence was measured for several POF slabs to ascer-
tain that the anisotropy was intrinsic and not due to
the polishing process. No noticeable differences in the
birefringence values were obtained. It is seen that the
induced birefringence is negative, ie. n, > n, and
decreases monotonicaly as we approach the glass tran-
sition temperature. At 393K the birefringence was very
small. The reason for this behaviour lies in the growing
disorder, which leads to an increasing symimetry, and
so to a reduced birefringence. In our experiments, the
size of the light spot was around 1mm?, which means
that the measured birefringence represents an average
value.
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Fig.4 Average birefringence as a function of temperature

To calculate the effect of a uniaxial stress on the dis-
persion, we consider the change in the maximum and
minimum meridional ray transit times. The transit time
for a ray travelling parallel to the fibre axis is minimum
and is modified by a uniaxial stress according to the
expression At%, = A(Ln,)c, as follows:

At = A(Ing)/c

=n,AL/c+ LAng,/c
= Ineoos/cE — Ln® 1203 /2¢ (4)
anog3 n2 qi12
Aty = 1— === 5
R )

L being the total fibre length and £ being Young’s
modulus. This expression is independent of the ray
polarisation.

The transit time for a ray propagating at an angle 6,
with the fibre axis is maximum and varies in a similar
way. However, contrary to what happens with isotropic
fibreg, the refractive index depends on the concrete ray
direction. The ordinary ray propagates with an index
of refraction equal to n,* = n,(1 — n,°0391/2), inde-
pendently of the angle 6,. For the extraordinary ray,
the index of refraction can be inferred from the follow-
ing well known formula [8]:

I cos? b,
n¥2(f.)  [ne(1 —nZ,03q12/2))
. 2 9
4 sin® 6, 6

[neo(l —n2,03q11/2))?
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which, to a good approximation, yields

n% = neoll — n2,03(qi1 sin? 6, + g cos? 6:)/2] (1)
Then, the correction to the maximum ray transit time
turns out to be [9]:

Aty e = A(Lngsech.)/c
=n;secl.AL/c+ LsecO.An;/c+ Ln;Asech./c

(8)
where n; stands for both the ordinary and extraordi-
nary refractive indices, and

AsecB. = cos0.(2Ar.r. tanf, — ALtan?6.)/L
(9)

where r,,,, stands for the core radius and o for the

Poisson ratio and Ar,,,, = — 1y, OAL/L.
Ang = —nl,03¢12/2
and
Ane = —7’2,300'3 (Q11 sin2 ec + q12 C082 96)/2

(10)
Introducing eqns. 9 and 10 into eqn. §, we obtain:

At o = Lngoos[sect.(1 — Enl,q12/2)
—sinf.(2reorec /L +tanb,)]/cE  (11)
At%am = Ln.,03

x [secB.(1—En?, (qi1 sin® O, +q12 cos® ,)/2)
—8in0.(2rcore0 /L +tané,)]/cE  (12)

All this allows us to calculate the dispersion. This will
be At ; — ALl ;, where the subindex i accounts for
the polarisation direction, which yields:

AtY = Ln,,03{(secd. — 1)(1 — En? q12/2)
—sin 0.(2reorec/ L + tané,)]/cE
Aty = Lng,03
x [sec (1 — En?,(q11 sin? 8, + q12 cos® 6,)/2)
- sin8.(2repreo /L + tanb,)
—~ 1+ En? q12/2]/cE

(13)

(14)

2.2 Effect of fibre bending

In this Section, we calculate the new refractive indices
and the principal axes of the index ellipsoid when a
fibre is bent in the X Y-plane, as shown in Fig. 5. Con-
trary to what is observed in single-mode fibres, bending
a POF produces a birefringence that varies linearly
with the distance to the neutral line [10].

2.2.1 Principal refractive indices in a bent
POF: Fig. 5 shows the reference system chosen for our
analysis of circular bends. Owing to the symmetry of
our problem, the stress tensor is calculated in cylindri-
cal co-ordinates (i.e. (p, @, z)), and the only nonzero
component turns out to be o, [11]. If R denotes the

bend radius, this stress component can be written as
0, = E(p— R)/R (15)

Changing to Cartesian co-ordinates in order to use
eqn. 1, the new indicatrix is found to be:

i—{— o, sin? ¢ + ¢120, cos? z?
2 N10yp ¥ T 41200 ®

co

+ L—i— o, sin? ¢ + gi110, cos? 2
2 q120, Y T 4q110, Y1y

co

1 .
+ (n—2 + Q120¢> 22 4+22y(q11 —qr2)0, cos p-sin =1
co

(16)
The next step is finding the directions and magnitudes
of the principal axes of the index ellipsoid. Table 1
shows the results. From the eigenvalues of the matrix
[B]. we can write the corrections to the index of refrac-
tion as An; = — n,,’AB/2.

—

>

Fig.5 Geometry and reference system for a bent POF, together with the
section of the index ellipsoid on the plane of the bend

rstands for the direction of the ray under consideration. n, and n, are the
refractive indices along the polar directions g° and ¢

2.2.2 Index of refraction along an arbitrary
direction in the plane of the bend: In this Sec-
tion, we consider the propagation of rays along some
arbitrary direction in the fibre. For this purpose, we
make use of the index ellipsoid referred to its principal
axes. Let us analyse a ray t propagating at an angle 0
with the optic axis @ (Fig. 5). There are two allowed
polarisation directions, with different refractive indices.
The first of these two waves, which is polarised along

Table 1: Principal axis vectors of index ellipsoid and corresponding
indices of refraction for POF subjected to bending stress

Eigenvectors Vi

v,

Vs

(0,0, 1)
n;=Ne, (1—(n2co/2)q126¢)

Components
Refractive index

(cos ¢,5ing,0)
n, = Neo (1_(n%o/2)q120(p)

{(-sing,coso,0}
ngu =N ( 1_(n2co/2)q11c<p)

@ is the angle with the polar axis and o, is the bending stress
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the z-direction, is the ordinary wave and has an index
of refraction n?,:

ng =N, = Neo(l — n‘zoq120¢/2) (17)

The refractive index of the extraordinary ray, n?,, var-
ies with 8 according to the expression:

1 cos?f  sin’f
n2(9) n2 n?

nb(6) ~ neo(1 — n2,0,(q12 cos* 6 + qi1 sin” 6)/2)

(18)
In the last two equations, we have supposed that the
corrections are much less than unity. Depending on the
sign of o, the ordinary and extraordinary rays will
travel faster or slower than in the case of an undis-
turbed fibre. This effect becomes more important as we
withdraw from the neutral line.

S¢

—->

b

Fig.6 Geometry of a bent optical fibre
a Meridional ray entering the bend tangentially to the fibre axis
b Meridional ray at an angle 8, with the outer surface

2.2.3 Correction to the dispersion when bend-
ing a POF: A rigorous analysis would involve the cal-
culation of an expression for the transit time of skew
rays, which generally depends on the invariants §and /
[12]. However, if the bend radius is not too small, tran-
sit times of skew rays are expected to be identical to
those of meridional rays. Consequently, to calculate the
dispersion, we will compare two rays in the plane of
the bend: that entering the bend along the fibre axis
and that making an initial angle 6, with the fibre axis,
as shown in Fig. 6. The correction to the time spread
can be calculated as:

BLn? 1
Ah = Elrieotiz {tm@_ )
«C

2c 2cos o
1
~§1ntan (% + g)} (19)
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q11 ) 1 (04 7T>
— — = ta — —_—
(912 p ) g T g
+(q12 = qu1)a] (20)
The procedure to reach this result can be summarised
as follows:

First, we calculate the transit times for the ordinary
and extraordinary rays initially parallel to the fibre
axis. To do so, we must integrate to obtain the ray
transit time #,; between two reflection points:

n Rn(x)dx

dt = —ds = 5
¢ ccos? y

2R % n(x)d
to; = —_/ ——(XZ A (21)
c Jg cos?yx
Then, we repeat the method for the corresponding rays
entering the bend at an angle 8,. From Fig. 6, it is easy
to see that cos % = ry/ry cosd,. If R >> rp—ry, cosy =
cos ¥. In such a case, we can consider the angle
between the ray tand the principal axis ¢ of the index
ellipsoid as constant and equal to 6, With all these
assumptions, we can compute the extraordinary ray
transit time between two consecutive reflections:

B

1
lo5e = E/ne (ec)ds

TA

F 2
tose = %/nco {1 — nc";“’ (q12 cos? B + q11 gin? 0.)|ds
TA
(22)
For the ordinary ray, we proceed in a similar way. The
stress has no effect on that ray transit time.

Fig.7 Torsion of POF when pure shear forces are applied at both ends
of the fibre

The arrows indicate the directions of the forces applied to the POF. In the Fig-
ure, the reference system used in the text is also shown.

2.3 Effect of fibre torsion
The geometry of the problem is illustrated in Fig. 7.
Shear forces are applied at both ends of the fibre

IEE Proc.-Optoelectron., Vol. 144, No. 6, December 1997




Table 2: Principal axis vectors of index ellipsoid and corresponding
indices of refraction for POF subjected to torsion stress

Eigenvectors v, v,

Va

Components
Refractive index n

(costsin ¥, 0)  (1A2)(sin®,—cos®,1)
co Neo (1"7%:0(5111“‘-712)“”/2)

(1N2)(sin®,—cosd,—1)
Ny (142 (q—q12)11/2)

rand @ stand for the usual polar co-ordinates: r = (X + )2 and 8 = tan™(y/x)

Table 3: Summary of results of corrections to the time spread originated by

different stresses

Stress Correction to the time spread

Uniaxial

Ordinary At¢ = Lny,o3l(secO,~1){1-En . 2q,,/2)-sin8A2r,,,. .0/ L+tan6,)l/cE

Extraordinary At¢ = Ln,,oyl{sech,(1-En *(gy,5in26,+q,,€0826,)/2)-sin8,(2r,,,.0/ L+tan§,)-1+LEN 2 q,,/2)/cE
Bending

Ordinary Ath = (ELng q.,/2ca)ltana{1-1/2coso)—(1/2)Intan{o/2+71/4)]

Extraordinary At = (ELn3 /2ca)lqyqtanc(1-1/2coso)—( g~ g11/2) Intan {o/2+7/4)+(q1,~q11) 0]

Torsion

Ordinary (-) AT? = (-nd L-qu )77, tandj4c)

Extraordinary (+) A72 = (+ndL-quN1r.,tand,jac)

For each type of stress, two different corrections, corresponding to different polarisation directions, have

been calculated

section, to produce a torsion on it. In this situation, the
components of the stress tensor will be [11]:

01 =03 =03 =04=0
04 = UTT

05 = —UTY (23)
where 7 is the torsion angle, defined as 7 = dg/dz, and
U is the stiffness constant. Introducing these compo-
nents in eqn. 1, we find that the refractive index
depends both on the position and on the ray polarisa-
tion. The eigenvectors and their corresponding eigen-
values are given in Table 2. It can be seen that the z-
direction is no longer an optic axis of the medium.
However, along the fibre axis » = 0, the index ellipsoid
1s spherical and independent of polarisation, which
means that the minimum ray transit time, ¢,7,, is not
affected by the torsion. This result is a consequence of
the fact that the stress on the fibre axis is null (g; = 0).
As the anisotropy for any other direction, say t is not
null, we have to calculate the corresponding refractive
index, n,, by means of Fresnel’s ray-equation:

t3, t3, t3

B =0 (24)
2 2 2 P 2 2 =
ny —ny,  ng—ny, N —ng

For the ray propagating at an angle 6, shown in
Fig. 1, in the reference system formed by the principal
eigenvectors (t = (sind, 12 cosﬁc, 1A2 cosB,)) and
choosing the eigenvector V| to be in the plane of the
meridional ray, eqn. 24 yields:

3 cos? b, z cos? 0.

B (R SE AN ()

sin® 0.

ng —n,

(25)

where f = n2(q,; — g12)u7r/2. From this equation, we
can deduce the value of n;:

Ny = Neoy/1 £ 2fsinf, (26)

neglecting second-order corrections in the anisotropy
and considering that the energy propagates in the
direction of the wave normal. Now, if we calculate the
radius r,, at which each ray would touch the turning-
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point caustic, we can see that r, is typically much
larger than the core radius (remembering that, for a
typical POF, n, = 1492, n, = 1.417 and r,, = 0.5
10*m), so ray trajectories can be considered as
straight:

( Neo — 1 cl)
n2, (g1 — qiz)prsinf.

The difference between the maximum and minimum
ray transit times gives the time spread. As we have
already pointed out, 1%, = n.,L/c. On the other hand,
L, can be inferred as follows. The time between two
reflections will be:

Tip = > Teore (27)

core

e " n{r)dr
mer — J, csin 6,
1 TCOT‘E
= — / nco(l:l:2fsin96)1/2dr
csinf. Jq
. 1 T‘COT‘E ‘
Unas = csin B, /0 nco(l + Q44n§oTW s 00/2)dr
= M(l + quan> TUT core SIN O, /4)
csinf,

(28)
This is the time that a ray takes to travel a distance z =
Feore/tand,, so for a distance L we have (qq = ¢11 — 912):

r __ NeoTcore 9 . _L_
tmam - csin 90 (1 + Neoq44 T T core S Oc/4) .
Teol .

= ccz)osH 1+ N2, quadTT core Sin O /4)
(29)
Hence, the time spread is
At = Neol (1 + 12, quafiTT core Sin 6. /4 1
c cos 8,
(30)

The double sign corresponds to two different polarisa-
tion directions (Table 3).
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3 Discussion

Stresses affect both the refractive index and the disper-
sion. With regard to uniaxial or tensile stress, one effect
is the appearance of a linear birefringence. This is given
by:

An¥ =np¥ —n¥ = —n® 03(q12 cos? 6 + g1y sin” §) /2

(31)

It is, therefore, independent of the point considered

and directly proportional to the magnitude of the
stress.

Calculating the birefringence induced by a moderate
stress in a fibre of length L, we know that the induced
anisotropy is maximum for a ray propagating at an
angle 6, with the fibre axis, and the corresponding opti-
cal phase shift is

b = —mn3,03(q1s c0s? 8. + ¢u1 5in° 6,.) (32)

Acosb,
This means that the polarisation state will repeat itself
for each beat length L}, defined as
1e_ 2m _ 2Acosb. _ (33)

P b ng,o3(qr2 cos? 0, + gq1 sin® 6;)
This is of the order of 10m for typical values of these
parameters (Table 4), so uniaxial stresses have a great
influence on the polarisation state. As we approach the
glass transition temperature T, this effect is expected
to be more important [13, 14]. As a moderate tensile
stress is also applied in any POF production process,
we measured the intrinsic optical anisotropy of a com-
mercial POF to obtain a rough estimation of the bire-
fringence. When the measured optical anisotropy
(Fig. 4) is used to calculate L, the same order of mag-
nitude is obtained.

Regarding the variation of the time spread, a tensile
stress originates a decrease in the ray transit times, to a
greater extent as the angle with the optical-fibre axis
increases. Each point of the curve in Fig. 8 represents
the correction that has to be applied to each original
ray transit time, which is given by the x co-ordinate,
assuming that we begin to count the time when the first
ray arrives. The corrections are of the order of the dis-
persion in a graded-index POF (78ps in 25ns) [4, 15].
To calculate this curve, we have neglected random var-
iations in the fibre diameter during the manufacturing
process [13]. Although the effect of a tensile stress on
the dispersion is negligible, the same does not occur
with the polarisation direction, which changes very rap-
idly.

A bending stress makes the POF locally uniaxial,
with the revolution axis orientated tangentially to the
fibre symmetry axis. The directions of the principal

axes depend on the polar angle, but not on the co-ordi-
nates p or z. The induced anisotropy, which is directly
proportional to the distance to the neutral line and
inversely proportional to the bend radius R, is given
by:

b
N,

b__ b
An® =n. —
n3 2
= %Uw(qlg—qll)sm f
3

-n ‘
= 200 0 Gas sin? 6

n (R—p)E
= ﬁ(ﬁ—e)——%zg Sin2 8 (34)
This behaviour is opposite to that observed in single
mode fibres, in which the bending birefringence varies
as the square of r,,,/R [10].

A torsion stress makes the POF slightly biaxial. The
correction term for the refractive indices along two of
the principal axes of the index ellipsoid, given by
1,,2(q11 — q12)1hTr/2, is much less than unity (10~ — 107°)
and only depends on the radial co-ordinate. Along the
fibre axis (r = 0), the index ellipsoid becomes a sphere,
so this direction will be isotropic. Going far away from
the fibre axis, the index ellipsoid becomes more and
more asymmetric and the fibre more birefringent.
When the wavelength is of the order of the pitch of the
twist, a torsion stress leads to a circular birefringence
proportional to the twist [10]. In our case, however, the
pitch considered in our calculation (one turn per metre)
is much greater than the light source wavelength.
Therefore, circularly polarised waves are not normal
modes of the twisted fibre.

-90 —

75 }

ps
A
o

0 ; . ; 4
0 5 10 15 20 25 30
ns
Fig.8 Correction that has to be applied to each ray transit time, to take
into account the birefringence induced by a tensile stress, against the ray
transit time in the absence of stresses

The beat length resultant with each stress is very
small, especially with bending stresses (Table 4), which

Table 4: Expression of beat length, its vaiue and magnitude of correction to
dispersion with tensile, bending and torsion stresses

Tensile

Beat Length
Beat Length 102m

Correctionto -78ps
time spread

LY = | (226088 NE, 05(G118IN* B+ G1 0082, ) )}

Bending Torsion

Ll;’) =|(2)“/ngoq446(psin27}c)| L;J:!(4ﬂ'/nc30q44u7rcoretanﬁc)|
10°m 10-'-102m

~0.064ps +0.31ps

The values of the correction to the dispersion have been calculated for the ordinary ray per 100 m, using the
following typical parameters: 6, = 107 N/m?, A = 600 nm, n,, = 1492, G~ Gy~ Qag = 102 m%IN, R = 102 m,
Feore = 0.5 10 m, = 1.1 10° N/m?, 6 = 0.4, T = 2n rad/m, E = 3.2 10° N/m? and, finally, 0, = 18.24° = 0.318 rad
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shows that the polarisation state changes rapidly. The
same does not happen with the dispersion correction
term, which is negligible in all cases (Table 4, Figs. 8
and 9). Fig. 9 is the counterpart to Fig. 8 for bending
and torsion stresses. In this case, as in Fig. 8, the ordi-
nary and extraordinary rays both give rise to the same
curve, as we have considered ¢;; = ¢;,. The corrections
to the time spread for bending and torsion stresses are
even smaller than that for tensile stresses.

0 . : . - ‘ . .
0.1
® j
(=3
0.2 {
0.3

0 5 10 15 20 25 30 35 40 45
ns
Fig.9 Correction that has to be applied to each ray transit time, to take
into account the birefringence induced by bending and torsion stresses,
against the ray transit time in the absence of stresses

With the above results and the value of Young’s
modulus, we can infer indirectly the approximate val-
ues of the photoelastic coefficients ¢;; and ¢;, by meas-
uring L,' and L. The approximation is good, because
the change & in the polarisation state is much more
than that provoked by the reflections at the core-clad-
ding interface along the same length of fibre (=102 or

10°m). & is given by [8]:

§ sinf;

tan 2 cos? 6;

which yields a phase change of only 0.1 degrees for the

most tilted bound rays, for which the distance between

two total-internal-reflection points can be calculated as
27 ore/tand, = 6.1 x 1073m.

To some extent, another factor that could hide these
results is the intrinsic anisotropy of the refractive index.
POFs are manufactured by means of a melt spinning
process. At the final step of the production process,
POFs are drawn out from the nozzle at a controlled
diameter, by regulating the polymer temperature, the
drawing velocity and other factors [1]. The magnitude
of the intrinsic anisotropy induced at this stage turns
out to be around 10~* — 107 [13, 15], which is of the
order of the stress-induced anisotropy. This value coin-
cides with our measurements.

Finally, we note that the results obtained here do not
vary significantly when the mechanical properties of
the cladding and jacket are taken into account. When
doing so, their effect is expected to change the value of
E and y, but not the qualitative dependence of the dis-
persion and beat length on these parameters [5].

cos? §; — nl;r’
co (35)

IEE Proc.-Optoelectron., Vol. 144, No. 6, December 1997

4 Conclusions

We have analysed the optical effects induced by three
different types of stresses. A uniaxial stress makes the
isotropic POF uniaxial with its optic axis parallel to the
fibre axis. On the other hand, bending and torsion
stresses convert the fibre into an inhomogeneous
medium, because the refractive index depends on the
position as well as on the direction of the ray path
through the POF. While, as a result of a bending stress,
the fibre becomes locally uniaxial, twisting a fibre pro-
duces a biaxial medium. All in all, the main conclusion
is that these stresses have no noticeable effect on the
modal dispersion, although they could yield a signifi-
cant contribution to the dispersion of a graded index
POF. However, bending and tensile stresses make the
polarisation state vary very rapidly. In any case, the
magnitude of the induced anisotropy for moderate
stresses results is similar to intrinsic manufacturing ani-
sotropy.
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