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Abstract: The redistribution of light power and 
the radiated power along a bent section of a 
plastic optical fibre (POF) is analysed. In this 
context, a theoretical approach for 
understanding, and hence optimising, the major 
factors that affect the behaviour of sensors 
utilising losses in fibre bends is reported. With a 
brief comment on the bend loss model used, an 
implementation of a three-dimensional analysis 
for bend losses is presented, and the theoretical 
analysis is compared with experimental results. 
The spatial redistribution of the optical power in 
the bend is also calculated 

1 Introduction 

Compared with glass fibres, the large core diameter of 
plastic optical fibres (POF) makes them an easy to han- 
dle transmission medium, facilitates splicing together 
two or more fibre lengths, and allows the use of less 
accurate connectors. In addition, POFs are not only 
usually cheaper to produce than glass fibres, but they 
are also especially well suited for use with inexpensive 
LEDs, emitting in the visible region of the spectrum. 
Although nowadays graded-index POFs are used for 
high-bandwidth telecommunications, step-index POFs 
are usually preferred for the design of transduction 
mechanisms, using optical fibres to sense physical 
parameters. In this context, we report on a theoretical 
approach for understanding, and hence optimising, the 
major factors that affect the behaviour of sensors utilis- 
ing losses in fibre bends. We briefly comment on the 
bend loss model used, present an implementation of a 
3 0  analysis for bend losses, and compare our theoreti- 
cal analysis with experimental results. 

2 
sensors 

Radiation losses along a bent section of a step-index 

Relation between bending losses and optical 
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plastic optical fibre are usually calculated by means of 
a geometric approach. Light is treated as individual 
rays that propagate in zigzag paths, taking into 
account the changes in ray directions and probable 
radiation losses that take place at the reflection points 
on the core surface [I, 21. The results for bending losses 
based on this theoretical approach can be represented 
as a function of a certain physical parameter, e.g. bend 
radius, which enables the design of optical sensors 
based on this parameter. Such sensors, based on bend- 
ing losses, have been reported in the literature for 
measuring parameters such as the refractive index of a 
liquid [3-61. Typically, such optical refractometers were 
implemented by shaping the optical fibre into an ideal 
U-shape. When using this configuration, the semicircu- 
lar bend is usually stripped of its cladding and 
immersed in the liquid to be measured. If a longer bent 
section is desired, the preferred shape for the fibre is a 
semicircle plus a certain number of full turns, with the 
straight sections parallel, in order to occupy a small 
physical space. As a first simplified approach, the phys- 
ical impossibility of having all the turns with any bend 
radius in exactly the same plane will not be taken into 
account. We will also neglect possible additional radia- 
tion losses due to the appearance of leaky rays (e.g. 
tunnelling rays) along any straight fibre section follow- 
ing the bend. These leaky rays would be caused by the 
discontinuity in the bend radius when the bend finishes, 
and by the redistribution of light power along the 
bend. The fibres we consider are 1 mm step-index high 
NA (0.47) POFs. These are considered to be especially 
well suited for sensors based on radiation losses, 
because their large core diameters simplify physical 
implementation. In such sensors, by measuring the 
ratio of input to output light power, one can obtain the 
unknown influencing parameter by comparison with 
previously calculated or measured results. For that pur- 
pose, it is necessary to know the power ratios corre- 
sponding to a useful range of values for the parameter 
under test. 

3 Bend loss calculation method 

3.1 Geometric approach 
For bent step-index optical fibres, light power can be 
considered to flow along the core within tubes of paral- 
lel rays of infinitesimal cross-section, which can 
undergo radiation at reflection points [l ,  71. In the fol- 
lowing, the word ‘ray’ refers to these infinitesimal tubes 
of rays. The basic method for calculating the reflection 
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points in this paper is the same as that already pro- 
posed in the literature [8], but our analytical approach 
has the advantage of not requiring knowledge of spe- 
cific mathematical formulae. The mathematical simplic- 
ity of our approach makes it easy to generalise the 
method to other fibre shapes, such as that of a spiral- 
shaped POF rolled up in an optical fibre reel. This sim- 
plicity lies in obtaining the ray paths by using concepts 
of relative motion, which constitutes another approach 
to the aforementioned basic method as illustrated in 
Fig. 1 .  This Figure shows a portion of a torus repre- 
senting a bent section of a POF, as well as the straight 
path followed by a light ray until it reflects for the first 
time during its propagation along the bend. The succes- 
sive imaginary circular cross-sections of the torus are 
intersected by the light ray, during its propagation, at 
different distances from the centre of the circle. Only at 
the reflection point does the light ray intersect the cor- 
responding circular cross-section on its circumference, 
and this yields a method for calculating the reflection 
point. By superimposing all the circular cross-sections, 
in order to have all the successive intersection points in 
the same plane, the geometric locus of all these copla- 
nar points becomes a hyperbola. This reduces the cal- 
culation of the reflection point to the intersection 
between a hyperbola and a circumference. The three- 
dimensional point can be easily obtained from the two- 
dimensional one by using symmetry properties. In 
Fig. 1, three circular cross-sections are shown, as well 
as three small spots representing the corresponding 
intersection points between the ray path and the circu- 
lar cross-sections. 

Fig. 1 RLIJ path ctrkulation method I 

Fig. 2 Ray ,ticrth culrulution niethod 2 

In our approach, the method for calculating this 
hyperbola is based on the fact that rotating the ray and 
not the plane leads to the same relative effect. In this 
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way, the necessity of considering all successive circular 
cross-sections generated by rotating the plane disap- 
pears, the hyperbola being obtained, instead, as the 
intersection between the hyperboloid generated by the 
rotating ray and any stationary plane containing a sin- 
gle circular cross-section, as shown in Fig. 2. The for- 
mulae to be used in the previously mentioned approach 
can be derived using our approach, but our method is 
easier to generalise to other fibre shapes. Our method 
serves for any number of turns, and for both meridi- 
onal and skew rays, since meridional rays can be con- 
sidered as rays with negligible skewness. 

3.2 Application of the transmission 
coefficients 
An important step in the analysis is the assigninent of a 
certain input power to each ray entering the bend. This 
power, which depends on the angle 8 with the fibre 
symmetry axis at the entrance of the bend, has been 
assumed to be proportional to (cos O)Y, with y = 1, 
although we could have chosen any other value 
between 0 and I ,  because the value of y does not signif- 
icantly affect our results. This distribution is believed 
to approximate the output of an LED [9]. Although 
there is a short length of fibre between the lambertian 
LED and the bend, which causes refracting rays to lose 
all their power before entering the bend, bound rays 
maintain their initial power along the straight section. 
In calculating the total radiation loss, we assume a high 
enough number of initially uniformly distributed rays, 
in principle more than 2 million rays. If we add the 
powers of all the rays entering and exiting the bend, 
then the total radiation loss is the ratio between these 
two sums. As we calculate the ratio of output to input 
power, arbitrary units of power can be used. Calcula- 
tion of the fraction of power that each ray still conveys 
on exiting the bend is made by considering the follow- 
ing. 

The loss of light power at each reflection of the ray 
considered depends on its angle a with the normal to 
the core surface. As is well known, rays will refract a t  
the core surface if a is less than the critical angle (re. In 
such a case, the fraction of power reflected back into 
the core is P,. = Pi * (1 ~ T), where Pi is the power in 
the incident ray, and T is the power transmission coef- 
ficient. T is calculated from: 

1 / 2  4 cos cy (cos2 a - cos2 cy.) 

cos a + (cos2 a - cos2 c y c )  
1/21 

T =  [ 
assuming that the direction of the electric field is per- 
pendicular to the plane of incidence [l]. For any other 
polarisation direction, the value of T would not differ 
significantly from that given by eqn. I ,  especially when 
the refractive indices in the two media are similar, as 
proved in a previous paper [2]. 

If a > ac, we can assume that P, = Pi, since non- 
refractive rays will radiate a negligible amount of 
power, if any [ I ,  2, 10-121. We can also neglect any 
absorption in the POF in relation to POF transpar- 
ency, because the length of the bent section is very 
small. The total power reaching the exit of the bend is 
obtained by adding the powers remaining in each of 
the individual rays considered. 

IEE P,.oc.-Oproelt,er,v,n.. Vol 145, No. 6. Drccrnhrr I Y Y N  



4 
bends of different radii and external refractive 
indices 

4. I Effect of nd radius 

Theoretical and experimental results for would have an adequate slope for the design of a 
precision refractometer. Similarly, although the curve 
for 1.75mm does not provide a steep response over any 
part of the refractive index range, it does, however, 
yield a similar accuracy over the full refractive index 

When light is forced to propagate in a POF along a 
semicircular bend stripped of its cladding, the ratio of 
the output power to the input power (P,lP,) depends 
on the bend radius. This quotient is also a function of 
the refractive index of the outer medium, which could 
be a liquid in which the POF core is immersed, this fact 
being the basis of typical optical refractometers [3-61. 
One of the goals in our analysis has been a better 
understanding of the e€fect of the bend radius on the 
output powers for a range of external refractive indices 
between 1.333 and 1.44. The lowest value is the refrac- 
tive index of distilled water, and the highest value cor- 
responds to a high concentration of a solute dissolved 
in water, such as a solution containing 85% of sugar. 
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1.33 1.35 1.37 1.39 1.41 1 43 

refractive index 
Fig.3 Effect of the bend radius (0.5 turns) 

A desirable characteristic of the ratio P,IP, corre- 
sponding to a given bend radius is its sensitivity to var- 
iations in the external refractive index, which is 
determined by the slope of the response of this quotient 
against the refractive index. Obviously, the steeper the 
curve the more accurately the refractive index can be 
calculated from experimental measurements. Fig. 3 
shows the theoretically obtained quotients PJP, corre- 
sponding to five different bend radii, using a semicircu- 
lar bend. The core diameter is assumed to have a 
standard diameter of 1 mm, a value that corresponds to 
the usual core diameter of 98Opn1, approximated here 
to 1mm. This assumption does not imply loss of gener- 
ality. Indeed we have established that the most impor- 
tant parameter in the loss calculations is the ratio of 
the bend radius to the core radius, and this can be used 
as a scaling factor to obtain the same fractional losses 
due to the bend. This fact can be utilised, for example, 
to experimentally simulate the losses due to a small 
bend radius by using a thicker POF, but with a greater 
bend radius. 

The curves in Fig. 3 correspond, starting from the 
top, to bend radii of 15mm, 9mm, 7mm, 4mm and 
1.75mm, respectively, with a core size of lmm. It is 
interesting to observe that the larger bend radii give 
steeper slopes for the higher refractive indices, while, in 
contrast, the smaller bend radii yield more linear curves 
and no horizontal section over the low refractive 
indices. It could be said, therefore, that a very 
inaccurate sensor would result if we used the left side 
of the curve corresponding to 15mm, but the right side 
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Eange, and this may be-advantageous in measuring the 
low refractive indices. Another observation from this 
Figure is that the curves in the low refractive index 
region change from convex to concave as the bend 
radius decreases. This fact suggests that a more linear 
response might be possible by using a bend radius 
between 7 and 4mm, or even by adding a convex 
response curve to a concave one. 

In Fig. 4, it is seen that the response for a bend 
radius of 4.25mm is quite linear up to a refractive 
index of 1.39, but presents a gentle gradient over the 
highest refractive indices. Fig. 4 also shows a possible 
way to linearise the whole curve by adding the curves 
corresponding to 8mm and 4.25mm, resulting in 
another curve that is much more linear than the two 
separate ones. 

Finally, in order to test the validity of our analysis, 
we have intentionally chosen a bend radius of 1.75mm, 
in Fig. 3, since this value has been proposed and used 
in the literature for a refractive index sensor ranging 
from 1.3330 to 1.3723 [4]. This range coincides with the 
lowest part of our range of refractive indices. The 
experimental results that were presented were not abso- 
lute, but relative, and we have been able to compare 
these with our theoretical ones, and show very close 
agreement in the slope of the linear response. 
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1.33 1.35 1.37 1.39 1.41 1.43 

refractive index 
Fia.4 Method to obtain a more linear curve by addinn a concave one 
una a convex one 
I )  R = 8 + R = 4.25; 2) R = 9mm; 3) R = 8mm; 4) R = 6mm; 5) R = 5mm; 
6 )  R = 4.5mm; 7) R = 4.25mm 
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Fig. 5 
I )  0.5 turns; 2) 1.5 turns; 3) 2.5 turns; 4) 3.5 turns 

Effect of the number of turns ( R  = 7mm) 
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4.2 Effect of the number of turns 
Fig. 5 shows theoretical sets of ratios POIPI correspond- 
ing to different numbers of turns in a typical step-index 
POF, stripped of its cladding, for the same range of 
refractive indices as before, and a bend radius of 7mm. 
From this Figure it is observed that, as the number of 
turns increases, the response is less affected by the 
addition of a new turn. This fact occurs because leaky 
rays contribute less and less to the total power as the 
distance increases, while bound rays remain bound all 
along the bend. Specifically, the uppermost curve, 
which corresponds to a semicircular bend (0.5 turns), 
differs from the curve just below more than this second 
curve does from the third one, although in both cases 
the difference in the number of turns is the same, 
namely I full turn. In the same way, the curves for 2.5 
and 3.5 turns, the lowest ones in the Figure, are even 
closer to each other, thus indicating that the response 
curves tend to reach a stabilised state. This behaviour 
is interesting and suggests that the influence of an 
external parameter (bend radius, external refractive 
index, etc.) on the ratio POIPI will only change signifi- 
cantly for changes in the number of turns between 0.5 
and 2.5. 

0.5 

0.4 
a. 

:- I \ \  

\ - 
- 

refractive index 
Fig. 6 
1) 0.5 turns; R = 15mm; 2 )  0.5 turns: R = 9mm: 3) 0.5 turns; R = 4mm: 
4) 0.5 turns: R = 1.75mm; 5 )  1.5 turns; R = 15mm; 6) 1.5 turns: R = 9mm: 
7)1.5 turns: R = 4mm; 8)  1.5 turns; R = 1.75mm 

Combined eJfect of the bend radius and the number of turns 

4.3 Combined effect of the bend radius and 
the number of turns 
In Fig. 6, we plot curves corresponding to four differ- 
ent bend radii, and two cases of different turns, namely 
0.5 and 1.5, since adding more full turns would quickly 
lead to a stabilised state. It can be seen that the 
response curves are much less affected by increasing the 
number of turns than by changing the bend radius. It is 
interesting, however, to note that by increasing the 
number of turns one might obtain a slightly more lin- 
ear response, as is the case for the bend radius of 9mm. 

4.4 Checking the accuracy of the theoretical 
analysis 
When one calculates bending losses by a ray tracing 
method, as in our case, it is necessary to allow a mar- 
gin of error for not considering a high enough number 
of rays. The ideal number of rays should be approxi- 
mately equal to the estimated number of modes N 
propagating along the fibre, which is given by N = 
0.5*(JzFd*NA/A) [13]. For a wavelength of A = 650nm, 
a numerical aperture N A  = 0.47, and a fibre diameter d 
= lmm, we obtain N = 2.7*106 modes. If the number 
of rays is so high, the computation process will be too 

slow. Therefore, it is useful to know of the influence of 
the number of rays on the accuracy obtained. All cal- 
culations in this paper have been carried out with 
10,000 uniformly-distributed skew rays, i.e., equally 
spaced both in the transverse plane and within the cone 
of power radiated from each transverse point. An esti- 
mation of the error introduced by limiting the number 
of rays to 10,000 has been obtained by comparing the 
corresponding results with those calculated for a much 
higher number of rays. Fig. 7 shows pairs of curves for 
I5mm, 9mm, 4mm and 1.75mm, respectively, starting 
from the top, and with the upper curve corresponding 
to 2.56 million rays and the one below it to 10,000 
rays. It can easily be checked that with a bend radius 
greater than 9mm, 10,000 rays yield a result to within 
10% of that for 2.56 million rays. We also note that the 
total computation time for 10,000 rays was 270 times 
less than that for 2.56 million rays. 
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Fig.7 Comparison between I0,WO ray.? (lo) and 2.56 million rays (2') 
1) R = 15mm (1'): 2) R = 15mm (2"): 3) R = 9mm (lo):  4) R = 9mm (2"); 
5) R = 4mm ( 1 %  6) R = 4mm (2"): 7) R = 1.75mm (1'); 8) R = 1.75mm (2") 

The next step was to check the differences between 
the theoretical results and experimental measurements. 
For this purpose, we prepared fibre probes with several 
bend radii using the 1 mm step-index Mitsubishi Eska 
Extra POF (n,,,, = 1.492, ncluddrnR = 1.417), stripped of 
its jacket without damaging the cladding. We managed 
to create permanent semicircular bends by heat treat- 
ment for 1 h at 75°C. However, we experienced serious 
practical difficulties in removing the cladding using sol- 
vents such as alcohol. In all cases tried, there was 
always uncertainty as to whether this layer was com- 
pletely removed, and in many cases it was over- 
removed, and the core was damaged. In consequence, it 
was decided to keep the cladding on and modify the 
computer program slightly to take into account the 
presence of the cladding. Although new approaches 
have to be introduced into the calculation, an agree- 
ment between the new results and the experimental 
ones can serve as a partial verification of the computer 
simulation. 

Given the above, we modified the analysis to take 
into consideration the core-cladding-liquid interfaces. 
First, rays refracted at the core-cladding interface, 
although they change their direction, reach the clad- 
ding-liquid interface and can be reflected back into the 
POF. Secondly, for any liquid refractive index higher 
than that of the cladding, no significant reflection 
occurs, and the loss curve should start to become hori- 
zontal if plotted against the liquid refractive index. 
Therefore, we included the second reflection in the 
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computer sirnulation, calculating the corresponding 
new incidence angle and obtaining the power lost by 
the ray at both inte also assumed, for sim- 
plicity, that rays arising ond reflection were 
reflected in the same direct1 om the same posi- 
tion as those arising from t t reflection. This 
approach, although very approximate, is used because 
the cladding is very thin in relation to the core (20cLm/ 
9 8 0 ~ ) .  In addition, we found that we had to multiply 
all the calculated reflection coefficients by the same 
constant (0.59) in order for our theoretical curves to 
coincide with the experimental ones. An intuitive expla- 
nation for this factor arises from the observation of 
Fig. 8. When ray 1 is only slightly refracting, the 
refracted ray is nearly parallel to the interface and re- 
enters the fibre at a considerable distance from the 
refraction point. Therefore, when considering for sim- 
plicity that ray 3 starts from the same point as ray 2, 
we are assuming more reflections than in reality, so we 
need a factor less than unity to compensate for the 
excess of calculated losses. Both the experimental 
results with cladding and the theoretical ones including 
the correction factor are shown in Fig. 9. 

/ 

Fig.8 
mental results 

Just$cation of the factor used to adjust theoretical and experi- 
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Fig.9 Comparison between experimental and theoretical results 
1) R = 1 2 m ,  2) experimental, 3) R = 7 m ,  4) experimental, 5 )  R = 4mm, 
6) experimental 

In Fig. 10, it is shown graphically how the power 
transmission coefficient at the reflection points, i.e. T, 
varies with angle of incidence and with outer refractive 
index. More specifically, we plot 1 - Po, which would 
correspond to 40 identical reflections in an uncladded 
POF, this number representing a possible number of 
reflections for a given ray in the semicircular bends 
that we will consider later. This Figure serves to con- 
firm our theory in the sense that the more linear curves 
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are obtained for the more perpendicular rays to the 
interface, i.e., for sharp bends, whereas the greater 
slopes are obtained at the back p r t  of the Figure, i.e., 
for greater bend radii. 

5 Conclusions 

We have generalised a recently published method for 
evaluating the characteristics of bent optical fibres, and 
have further developed it by incorporating some simpli- 
fications. As a result, our analysis greatly simplifies the 
mathematical complexity of the problem, and thus 
reduces computational time considerably. We have 
adopted our analysis for characterising the behaviour 
of liquid refractive index sensors utilising bent sections 
of fibre. Although the fibres used in our examples are 
plastic with large core diameter, the analysis is also 
applicable to other types of fibres. It has been shown 
that by understanding the propagation characteristics 
of light around bends, it is feasible to optimise the 
response of particular types of sensors that use high 
losses in fibre bends as the sensing mechanism. Specifi- 
cally, we have shown that a reasonably linear curve, for 
a lmm POF over a large range of external refractive 
indices, can be obtained by adding the responses for R 
= 8mm and R = 4.25mm, which can be easily imple- 
mented in practice. We have also shown that increasing 
the number of turns over 2.5 has very little effect on 
the response. 

outer refractive index 
Fig.10 Estimalion of the power remaining ajier 40 refections ar a 
function of outer refractive index and ungle with the normal, in the case 
that all refections are identical 

Experimental results obtained with bends of various 
radii and various refractive indices surrounding the 
bend core have provided convincing evidence for the 
validity of our analysis. 
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