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Hitzaurrea 

Liburu honen edukia Euskal Herriko Unibertsitateko (UPV/EHU) Ingeniaritza 
Mekanikoa Graduko Elastikotasuna eta Materialen Erresistentzia irakasgaiari 
dagokio. Irakasgai honetan Egituren Kalkuluko eta Diseinu Mekanikoko oinarri batzuk 
aztertzen dira. Bi atal nagusi ditu: alde batetik Elastikotasunaren Teoria eta bestetik 
Materialen Erresistentzia. Lehen atalean, gorputz deformagarrien deskripzio 
matematikoa egiten da eta hauek bete behar dituzten ekuazio orokorrak aztertzen dira. 
Sortzen den problema matematikoaren zailtasuna dela eta, bigarren atala osatzen duen 
Materialen Erresistentzian hipotesi sinplifikatzaileak erabiltzen dira, pieza 
prismatikoen geometria duten gorputzetan. 

Lehenengo gaia irakasgaiaren deskribapena da eta ondoren Elastikotasunaren 
Teoriako lau gaiak datoz. Bigarren gaian tentsioak edo gainazal unitateko barne 
indarrak aztertzen dira. Tentsioa bektorea, tentsio tentsorea eta bere osagaiak jorratzen 
dira, beraiekin erlazionatutako autobalio eta autobektoreen problema ere barneratuz. 
Tentsio egoera laua, duen garrantziagatik, berezituta aztertzen da eta Mohr-en 
zirkuluaren erabilpena azaltzen da.   

Hirugurren gaian deformazio unitarioak aztertzen dira. Hauek, luzera aldaketa 
erlatiboak edo angelu zuzenen txikitzeak adierazten dituzte. Beren analisi matematikoa 
tentsioen kasuan garatutakoaren parekoa dela ikusten da, eta ondorioz bigarren gaian 
garatutako prozedura matematiko berak erabiliko dira deformazioen kasuan ere.  

Laugarren gaian tentsioak eta deformazioak materialen ezaugarrien menpeko diren 
ekuazio linealen bidez erlazionatzen dira, gorputz isotropoen kasuan. Elastikotasun edo 
Young-en modulua eta Poisson-en koefizientea erabiliz, tentsioak eta deformazioak 
erlaziona daitezke. Deformazio energia elastikoa ere gai honetan aztertzen da. 
Bostgarren gaian, aurrekoetan lortutako ekuazioak elkartzen dira, problema elastikoa 
eta bere zailtasun matematikoa deskribatzeko.  

Seigarren gaian, pieza baten hutsegitea eragiten duten tentsio edo deformazio egoera 
determinatzeko irizpideak aztertzen dira. Hutsegitean piezaren haustura da material 
hauskorren kasuan eta isurpen plastikoa material harikorren kasuan. Zazpigarren gaian 
pieza prismatikoen sekzioetan tentsioek sortzen dituzten erresultantearen eta momentu 
erresultantearen osagaiak aztertzen dira, sekzioko indar eta momentu deitzen direnak. 
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Sekzio indarrak indar normala eta ebakitzailean dira. Sekziko momentuak berriz, 
momentu makurtzailea eta momentu bihurtzailea dira. Gai honetan Solido Zurrunaren 
Estatikako ekuazioak erabiltzen dira bakarrik.  

Zortzigarren gaian Materialen Erresistentzia hasten da, trakzioa eta konpresioa 
jasten duten pieza eta sistemak hipotesis sinplifikatzaileak erabiliz aztertzen baitira. Gai 
honetan, trakzioa eta konpresioa jasaten duten lodiera txikiko egiturak ere jorratzen 
dira. Bederatzigarren gaian, momentu makurtzaileak jasaten dituzten pieza 
prismatikoen tensio egoera aztertzen da, makurdura hiru kasutan sailkatuz: makurdura 
hutsa, makurdura bakuna eta makurdura konposatua. Makurdura hutsean, sekzioari 
momentu makurtzaileak bakarrik eragiten dio. Makurdura bakunean, momentu 
makurtzaileaz gain indar ebakitzaileak ere eragiten dio eta makurdura konposatuan, 
indar normalak ere sekzioari eragiten dio.  

Hamargarren gaian, pieza prismatikoen makurduran sortzen diren desplazamendu 
bertikalak eta sekzioek biratzen dituzten angeluak aztertzen dira. Hamaikagarren gaian, 
aurreko gaian erabilitako metodoak sistema hiperestatikoetan baldintzak ezartzeko eta 
horrela problemaren ezezagun guztiak determinatzeko erabiltzen dira. Hamabigarren 
gaian, bihurdura aztertzen da, lau sekzio mota barneratuz: zirkularra, laukizuzena, 
lodiera txikiko sekzio irikia eta lodiera txikiko sekzio itxia. Makurdurak eta bihurdurak 
batera eragiten duteneko kasua ere aztertzen da.  

Hamairugarren gaian deformazio energiarekin eta deformazio koenergiarekin 
erlazionatutako kalkuluak burutuko dira, Engesser-Castigliano-ren teorema erabiliz 
nagusiki. Honen bidez, aurreko gaietan kalkulatutako puntuen desplazamenduak eta 
angeluak, teorema bakarrarekin determinatu ahal izango dira eta sistema 
hiperestatikoetan, baldintza bezala erabili ahal izango da. Indar ebakitzaileek 
makurdura bakuneko zurruntasunean duten eragina eta tenperaturak makudurako 
kasuetan izan dezakeen eragina aztertzeko ere erabilgarria da.  

Hamalugarren gaian konpresioa jasaten duten pieza prismatikoen oreka egonkorra 
aztertzen da, oreka ezegonkorra edo gilbordura ekiditeko. Kasu honetan, problemaren 
analisia egoera deformatuan egin behar da, karga kritikoa lortu ahal izateko. Bukatzeko, 
zutabe lerdenen konpresio eszentrikoa ere aztertzen da, hemen ere, piezaren 
konfigurazio deformatua erabiliz azterketarako.  
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1. IRAKASGAIAREN 

DESKRIBAPENA  

1.1. SARRERA 
Mekanika, gorputzen higidura aztertzen duen Zientziako adarra da. Higidura bere 

zergatiak kontuan hartu gabe aztertzen dituen atala Zinematika da eta higidura eta bere 
zergatiak, hau da indarrak, aztertzen dituena, Dinamika da. Ingeniaritzan, gorputz 
isolatu bati eragiten dioten indar sistemaren erresultantea eta momentu erresultantea 
nuluak direneko kasuak interes berezia du. Egoera honetan, gorputza orekan dagoela 
esaten da eta orekan dauden gorputzak aztertzen dituen Mekanikako atala Estatika da. 

Gorputz motaren ikuspuntutik, errealitateranzko lehen hurbilpena partikula aztertuz 
egiten da, bere ezaugarri matermatikoak puntu baten koordenatuak eta bere masa 
izanik. Hurrengo urratsa, jarraituak edo diskretoak izan daitezkeen partikula sistemak 
jorratzea da. Ingurune jarraituek gainera solidoak edo fluidoak izan daitezke. Ingurune 
jarraitu solido baten kasuan, errealitateranzako hurrengo urratsean, puntuen arteko 
distantzia erlatiboak ez direla aldatzen onartzen da, Solido Zurrunera iritsiz. Puntuen 
arteko distantziak aldatzen direla onartzen bada, Solido Deformagarriaren modelora 
iristen da. Baina distantzia aldaketa erlatiboek solidoaren osotasunari aldaketa 
nabarmenik ez badiote eragiten, solidoaren higidura orokorra edo oreka, Solido 
Zurrunaren Mekaniko legeak erabiliz azter daitezke. Hau da, solidoa deformatuta 
egonik ere, bere orobateko analisia deformatu gabeko konfigurazioarekin egin daiteke. 
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Irakasgai honetako kasu gehienetan, Solido Zurrunaren legeak deformatu gabeko 
konfigurazioari aplikatuko zaizkio, konfigurazio deformatuaren eta deformatu 
gabekoaren alde txikiaren ondorioz. Beste alde batetik, gorputza orekan ez dagoenean, 
D'Alembert-en printzipioa aplikatuko da, Dinamikako problema Estatikako batean 
bihurtuz. Solido deformagarriko puntuen arteko distantzia aldaketa erlatiboak eta beren 
zergatiak analizatzeko, bi magnitude definitzen dira: tentsioak eta deformazio 
unitarioak. 

Tentsioak, gainazal unitateko barne indarrak dira eta normalak edo tangentzialak 
izan daitezke, gainazalarekiko elkartzut edo bertan barneratuak badira, hurrenez hurren. 
Beste alde batetik, deformazio unitario normalek luzera aldaketa erlatiboak adierazten 
dituzte eta tangentzialek, hasieran zuzenak ziren angeluen txikitzea. Tensioak 
deformazioak eragiten dituzten zergatiak direla onartuz, batzuk eta besteak, 
parametroak barneratzen dituzten ekuazioen bidez erlazionatuta daude matematikoki. 
Parametro hauek, gorputza osatzen duen materialaren ezaugarri fisiko-kimikoen 
menpekak dira.  

Irakasgai honetan, tentsio eta deformazio unitarioak biunibokoki erlazionatuta 
daudela suposatzen da, hau da, tentsio egoera bakoitzari deformazio egoera bat 
dagokiola, eta alderantziz. Honen ondorioz, gorputz bat kargatzen bada eta ondoren 
deskargatu, tentsioak eta deformazioak erlazionatzen dituzten kurbek ibilbide bera 
jarraitzen dute karga eta deskargan. Portaera honi elastiko deritzo. Gainera, tentsioak 
eta deformazioak erlazionatzen dituzten ekuazioak linealak direla suposatzen da. 
Honen ondorioz gainjarpen prinzipioa erabil daiteke, zeinaren arabera, zergati multzo 
baten ondorioa, zergati bakoitzak eragiten dituen ondorien batura den. Irakasgaia, 
ondorengo ataletan azaltzen diren bi zati nagusitan banatzen da: Elastikotasuna eta 
Materialen Erresistentzia. 

1.2. ELASTIKOTASUNA 
Tentsioak, deformazioak eta beren arteko erlazio legeak aztertzen dira. Tentsioen 

analisitik oreka ekuazioak lortzen dira, Estatikako legeak aplikatuz. Deformazioen 
analisian, deformazio prozesuaren geometria aztertzen da eta puntu bateko deformazio 
unitarioak bertako desplazamenduen deribatuekin erlazionatzen dira. Tentsio eta 
deformazioen arteko erlazioei konstitutibo deritze, materialaren propietateen menpeko 
baitira. Beren azterketan, materiala, elastikoa eta lineala izateaz gain, isotropoa dela 
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suposatzen da. Horrela, bi konstante elastiko independente behar dira tentsio eta 
deformazioen arteko erlazio legeak ezartzeko.  

Tentsioen, deformazioen eta ekuazio konstitutiboetatik lortutako ekuazio multzoak, 
errealitateko kasu gehienetan ebazteko oso zaila den ekuazio sistema bat osatzen dute. 
Horregatik, geometria ezaugarri jakina duten pieza prismatiko, plaka eta oskolen 
kasuan bezalako solidoetan, deformazioei eta tentsioei buruzko hipotesi 
sinplifikatzaileak erabiltzen dira.  

1.3. MATERIALEN ERRESISTENTZIA 
Irakasgaiaren atal honetan, ingeniaritzan ohikoa den solido tipologia bat aztertuko 

da: pieza prismatikoez osatutako sistemak. Pieza prismatikoa honela definitzen da: 
gainazal lau baten grabitate zentruak kurba bat deskribatzerakoan sortutako bolumena, 
gainazala eta kurbak elkartzut irauten dutelarik. Gainazal laua sekzio zuzena edo 
sekzioa deitzen da eta kurba, zuzentzailea edo ardatza da. Gainera, piezaren luzera 
sekzioaren dimentsioak baino nabarmenki handiagoa da. Aztertzen diren kasu 
gehienetan zuzentzailea zuzena da, habe, zutabe eta ardatzetan gertatzen den bezala. 

Sekzio bateko tentsioen erresultantea eta momentu erresultantea determinatzen dira 
bertako grabitate zentruan. Irakasgaiaren garapenean, sekzioen deformazioari buruzko 
hipotesi sinplifikatzaileak egin ondoren, sekzioko indar eta momentu bakoitzak berau 
eragiten duten tensio banaketarekin erlazionatzen da. Analisi honen bidez, tentsio 
maximoak materialaren tensio onargarriarekin konparatzen dira, eta erresistentzia 
analisia deitzen zaio. Beste alde batetik, pieza prismatikoaren desplazamendu eta 
biraketak aztertzen dira, zurruntasun analisia eginez. Azken gaian, konpresioa jasaten 
duten piezen egonkortasuna aztertzen da, gilbordura. Hemen, oreka baldintzak 
konfigurazio deformatuan ezartzen dira eta konpresio indarrek piezaren makurdura 
ezegonkorra eragiten duten egoera aztertzen da.  





2. TENTSIOAK 

2.1. SARRERA 
Gorputz batean diharduten gainazal unitateko barne indarrak tentsioak dira. 

Tentsioa planoarekiko elkartzuta den osagai normalean eta banaketa gainazalean 
barneratuta dagoen osagai tangentzialean deskonposa daiteke. 

2.2. TENTSIO BEKTOREA ETA OSAGAIAK 
Izan bedi indar sistema bat jasaten duen eta oreka estatikoan dagoen gorputz bat. 

Plano baten bidez banatuta suposatzen bada, alde bakoitzaren oreka mantentzeko 
ebaketa planoan barne indarrak azaltzen dira, 2.1 irudian ikus daitekenez.  

 
2.1 irudia 

n̂  bektore unitario normala duen planoko tentsio bektorea honela definitzen da:  

 
0

limn A

fS
A∆ →

∆
=

∆





 (2.1) 

  

1F


2F


f∆


n̂ n̂− 1NF −



f−∆


NF

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f∆
  barne indarra eta A∆  barne indarraren eragite azalera izanik. Ebaketa 

planoarekiko normala den osagai batean eta plano horretan barneratuta dagoen beste 
osagai batean deskonposa daiteke 2.2 irudian azaltzen den bezala. Osagai normala σn 
tentsio normala deitzen da eta plano barneko osagaia τn tentsio ebakitzaile edo 
tangentziala deitzen da. Osagai hauek erreferentzia sistema baten menpekoak ez 
direnez, tentsio bektorearen osagai intrintsekoak deitzen dira. 

 
2.2 irudia 

2.2 irudiaren arabera, osagai intrintsekoak honakoak dira: 

 ( ) ( )
ˆ

ˆ ˆ ˆ ˆ ˆ
n n

n n n n

S n

t S S n n n n S

σ

τ

= ⋅

= − ⋅ = × ×



    (2.2) 

t̂  τn ren norabideko bektore unitarioa izanik. 

Erreferentzia sistema bat erabiliz, osagai tangentziala ardatzen norabidea duten 
beste bitan deskonposatzen da, 2.3 irudian ikus daitekenez. 

 

n̂
nσ

nτ

nS

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2.3 irudia 

σi tentsio normalen kasuan, i azpiindizeak planoaren norabide normala adierazten 
du. τij tentsio ebakitzaileen kasuan i azpiindizeak norabide normala eta j azpiindizeak 
osagaiaren norabidea adierazten du. Tentsio osagaien ikurrentzat honako hitzarmena 
ezartzen da: plano positiboan norantza positiboa duenean edo plano negatiboan 
norantza negatiboa duenean osagaia positiboa da. Plano positiboa normal positiboa 
duena da, adibidez, 2.3 irudian azaltzen diren mozte planoak. 

2.3. OREKA EKUAZIOAK 
Solido baten barneko O(x,y,z) puntuaren inguruko paralelepipedo zuzen 

diferentziala isolatuko da. Aurpegien zentruetan tentsio osagaiek eta grabitate zentruan, 
2.4 irudian azaltzen ez diren bolumen unitateko indarrek dihardute. Tentsioak O 
puntuaren koordenatuen menpeko funtzio bezala hartuko dira, eta funtzio jarraituak 
direla onartuko da. Ondorioz, i (i = x, y, z) norabidearekiko elkartzut diren bi planoetan, 
funtzioari i koordenatuari dagokion aldaketa gehitu behar zaio. Hau da, O-tik igarotzen 
den planoan balioa ( ), ,f x y z  izanik, plano paraleloko balioa ( ) ( ),, , , ,if x y z f x y z di+  

da. Bien arteko aldaketa honela izendatuko da: ,i if f di∆ = . 

x 

z 

y 

xσ
xyτ

xzτ

î

  
 

yσ

yxτ
ĵ

yzτ

  zσ
zxτ

k̂

zyτ
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2.4 irudia 

Indarren oreka ekuazioak erabiliz honakoa lortzen da: 

( ) ( ) ( )

( ) ( ) ( )

( )

, , ,

, , ,

,

0

0

0

0

0

x

x x x x yx yx y yx zx zx z zx x

y

xy xy x xy y y y y zy zy z zy y

z

xz xz x xz yz

F

dx dydz dydz dy dxdz dxdz dz dxdy dxdy F dxdydz

F

dx dydz dydz dy dxdz dxdz dz dxdy dxdy F dxdydz

F

dx dydz dydz

σ σ σ τ τ τ τ τ τ

τ τ τ σ σ σ τ τ τ

τ τ τ τ

=

+ − + + − + + − + =

=

+ − + + − + + − + =

=

+ − +

∑

∑

∑
( ) ( ), , 0yz y yz z z z z zdy dxdz dxdz dz dxdy dxdy F dxdydzτ τ σ σ σ+ − + + − + =

 (2.3)  

(2.3) ekuazioetan eragiketak egin eta atalez atal dxdydz zatitu ondoren, honakoa 
gelditzen da: 
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, , ,

, , ,

, , ,

0

0

0

x x yx y zx z x

xy x y y zy z y

xz x yz y z z z

F
F
F

σ τ τ

τ σ τ

τ τ σ

+ + + =

+ + + =

+ + + =
 (2.4) 

Momentuen oreka baldintzak planteatzeko, elementuaren grabitate zentruan sorrera 
duen eta Oxyz sistemarekiko ardatz paraleloak dituen Gx’y’z’ erreferentzia sistema 
aukeratzen da. Ardatzekiko momentuak hartuz, ardatza mozten duten edo berarekiko 
paraleloak diren osagaiek momentu nulua ematen dute. 2.5 irudian x’ ardatzarekiko 
elkartzuta den planoa eta ardatz horrekiko momentua ematen duten osagaiak azaltzen 
dira.  

 

2.5 irudia 

x’ ardatzarekiko momentuen oreka planteatuz: 

 ( ) ( )
'

1 1 1 1
, ,2 2 2 2

0

0
x

yz yz yz y zy zy zy z

M

dxdz dy dy dxdz dy dxdy dz dz dxdy dzτ τ τ τ τ τ

=

+ + − − + =

∑

 (2.5) 

Tentsio ebakitzaileen deribatuak zenbaki finituak direla onartuz, deribatuei 
dagokien gaiak arbuiagarriak dira besteen parean. (2.5) ekuazioan dxdydz atalez atal 
zatitu ondoren honako berdintasuna gelditzen da: 

 
yz zyτ τ=  (2.6) 
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2.6 irudia 

2.6 irudian y’ ardatzarekiko momentua ematen duten osagaiak azaltzen dira. 
Aurreko kasuaren antzera garatuz, honakoa lortzen da 

 zx xzτ τ=  (2.7) 

 

2.7 irudia 

2.7 irudian z’ ardatzarekiko momentua ematen duten osagaiak azaltzen dira. 
Honakoa lortzen da: 

 
xy yxτ τ=  (2.8) 

(2.6)-(2.8) ekuazioen arabera, tentsio osagai tangentzialak simetrikoak dira edozein 
Oxyz erreferentzia sistemetan.  
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2.4. TENTSIO EGOERA OROKORRA 
2.4.1 Tentsio tentsorea 

O-n sorrera duen erreferentzia sistema bat erabiliz, 2.8 irudian azaltzen den tetraedro 
elementala isolatuko da, O puntutik igarotzen den edozein planoko tentsio bektorearen 
osagaiak determinatzeko. Plano koordenatuei dagokien tentsio bektoreak osagai 
normal batean eta ardatzen araberako bi osagai tangentzialetan deskonposatzen dira, 
lehen esan den bezala: 

 

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

x x xy xz

y yx y yz

z zx zy z

S i j k

S i j k

S i j k

σ τ τ

τ σ τ

τ τ σ

= − − −

= − − −

= − − −







 (2.9) 

 

2.8 irudia 

Elementuak 2.8 irudian azaltzen ez den bolumen unitateko F


 indarra ere jasaten 
du, Fx, Fy, Fz osagaiak dituena. Indar hori grabitatorioa, elektromagnetikoa edo inertzia 
indarra izan daiteke. Indarren oreka ekuazio bektoriala honakoa da: 

  

 

nS


n̂

O 
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    0 0n x y zF S ABC S OBC S OAC S OAB FdV= + + + + =∑
      

 (2.10) 

nx, ny eta nz n̂  bektore normalaren osagaiak izanik, azaleren arteko honako erlazioak 
betetzen dira: 

      

x y zOBC n ABC OAC n ABC OAB n ABC= = =  (2.11) 

(2.11) ekuazioko emaitzak justifikatzeko, ny-ren kasua azaltzen da 2.9 irudian. OP  

eta BP  zuzenkiak elkartzutak eta cosyn β=  izanik: 

 




1
2

1
2

ABC ACPB

OAC ACOP

=

=
 (2.12) 

(2.12) ekuazioko bi azalerak zatituz eta 2.9 irudia kontuan izanik,  

yOAC n ABC=

lortzen da. (2.11)-ko beste erlazioak antzera lor daitezke. 

 

2.9 irudia 

 

n̂

O 
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(2.11) ekuazioa (2.10) ekuazioan ordezkatuz, ABC  azaleragatik zatituz eta 
ardatzen arabera deskonposatuz, tentsio bektorearen osagai kartesiarrak honakoak dira: 

 
nx x x yx y zx z

ny xy x y y zy z

nz xz x yz y z z

S n n n
S n n n
S n n n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +

= + +
 (2.13) 

(2.13) ekuazioan bolumen indarrei dagokien batugaiak ez dira barneratu, 
arbuiagarriak baitira 



dV
ABC

 gai diferentzialagatik bidertuta egoteagatik. Matrize moduan 

honela gelditzen da: 

 { } [ ]{ }
nx x yx zx x

ny xy y zy y n

nz xz yz z z

S n
S n S n
S n

σ τ τ
τ σ τ σ
τ τ σ

    
    = =    

        

 (2.14) 

(2.14) ekuazioaren arabera, Oxyz erreferentzia sisteman adierazitako { }n  bektorea 

{ }nS  bektorean transformatzen da [ ]σ  matrize simetrikoaren bidez. Erreferentzia 

sistemaren menpekoa ez den adierazpena honakoa da: 

 ˆnS nσ=


  (2.15) 

Transformazioari dagokion eragile matematikoa tentsorea deitzen da. (2.15)
ekuazioan σ  tentsio tentsorea da eta erreferentzia sistema kartesiar batean 3x3 matrize 
baten bidez adierazten da. Tentsio bektorearen osagai intrintsekoak ez dira erreferentzia 
sistemaren menpekoak eta honakoak dira: 

 
{ } { } { } [ ]{ }

22 2

t t
n n

n n n

n S n n

S

σ σ

τ σ

= =

= −


 (2.16) 

2.4.2 Bektoreen eta tentsoreen transformazioa 
2.10 irudian Oxyz eta Ox’y’z’ erreferentzia sistemak azaltzen dira. Bektore baten 

osagaien arteko erlazioa aztertzen lehenik. Edozein v  bektoreren adierazpena bi 
erreferentzia sistemetan honakoa da: 
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 ˆˆ ˆ
x y zv v i v j v k= + +



 (2.17) 

 ˆˆ ˆ
x y zv v i v j v k′ ′ ′′ ′ ′= + +



 (2.18) 

 
2.10 irudia 

Erreferentzia sistema bakoitzeko bektore unitarioak beste erreferentzia sisteman 
adieraz daitezkenez: 

 

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

xx xy xz

yx yy yz

zx zy zz

i r i r j r k

j r i r j r k

k r i r j r k

′ ′ ′

′ ′ ′

′ ′ ′

′ ′ ′= + +

′ ′ ′= + +

′ ′ ′= + +

 (2.19) 

 

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

x x x y x z

y x y y y z

z x z y z z

i r i r j r k

j r i r j r k

k r i r j r k

′ ′ ′

′ ′ ′

′ ′ ′

′ = + +

′ = + +

′ = + +

 (2.20) 

ri’j eta rij’ koefizienteak bektore unitarioen norabidetako kosinu zuzentzaileak 
direnez, honakoa betetzen da: 

i j jir r′ ′= . (2.19) ekuazioa (2.17) ekuazioan ordezkatuz: 

x 

x’ 

y’ 

z’ 
z 

y 

O 
ĵ′

k̂ ′
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( )
( )
( )

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

x xx xy xz

y yx yy yz

z zx zy zz

v v r i r j r k

v r i r j r k

v r i r j r k

′ ′ ′

′ ′ ′

′ ′ ′

′ ′ ′= + +

′ ′ ′+ + +

′ ′ ′+ + +



 (2.21) 

(2.21) ekuazioko osagaiak (2.18) ekuaziokoekin berdinduz eta 
i j jir r′ ′=  dela 

kontuan izanik, matrize moduan honakoa lortzen da: 

 { } [ ]{ }
x x x x y x z x

y y x y y y z y Ox y z Oxyz

z z x z y z z z

v r r r v
v r r r v v R v
v r r r v

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′

    
    = ⇒ =    

        

 (2.22) 

(2.22) ekuazioak bektorearen bi adierazpenak [R] matrizearen bidez erlazionatzen 
ditu. Matrize honen errenkadak biratutako sistemaren bektore unitarioen osagaiak 
biratu gabeko sisteman dira, (2.20) ekuazioan ikus daitekenez. (2.20) ekuazioa (2.18) 
ekuazioan ordezkatuz eta lehen bezalako prozedura jarraituz honakoa lortzen da: 

 { } [ ] { }
x x x y x z x x

t
y x y y y z y y Oxyz Ox y z

z x z y z z z z

v r r r v
v r r r v v R v
v r r r v

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′

    
    = ⇒ =    

        

 (2.23) 

(2.22) eta (2.23) ekuazioetatik honakoa ondoriozta daiteke: 

 [ ] [ ] [ ][ ] [ ] [ ] [ ] 1t t tR R R R I R R −= = ⇒ =  (2.24) 

(2.24) ekuazioaren arabera [R] matrizearen alderantzizkoa eta iraulia berdinak 
direnez, ortogonala da.  

Adibidea: x ardatzarekiko θ angeluko errotazioa egiten bada, bektoren unitario 
berrien adierazpena eta errotazio matrizea honakoak dira: 
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[ ]
1 0 0ˆˆ ˆcos sin
0 cos sin

ˆ ˆˆsin cos 0 sin cos

j j k
R

k j k

θ θ
θ θ

θ θ θ θ

 ′ = +   ⇒ =  ′ = − +   − 

 

Aztertutako transformazioak tentsioen analisian aplikatukoa dira. (2.14) ekuazioa bi 
erreferentzia sistemetan honela adierazten da: 

 { } [ ] { }n Oxyz OxyzOxyz
S nσ=  (2.25) 

 { } [ ] { }n Ox y z Ox y zOx y z
S nσ′ ′ ′ ′ ′ ′′ ′ ′

=  (2.26) 

(2.25) ekuazioan [R] aurrebidertuz eta (2.22) kontuan izanik, { }Oxyzn  bektore 

normalarentzat (2.23) ekuazioa erabiliz eta (2.26) ekuazioarekin alderatuz, honakoa 
lortzen da: 

 [ ] [ ][ ] [ ]t

Ox y z Oxyz
R Rσ σ

′ ′ ′
=  (2.27) 

(2.26) ekuazioan [ ]tR  aurrebidertuz eta (2.23) kontuan izanik, { }Ox y zn ′ ′ ′ bektore 

normalarentzat (2.22) ekuazioa erabiliz eta (2.25) ekuazioarekin alderatuz, 
alderantzizko erlazioa lortzen da: 

 [ ] [ ] [ ] [ ]t

Oxyz Ox y z
R Rσ σ

′ ′ ′
=  (2.28) 

(2.28) ekuazioko erlazio bera (2.27) ekuazioan [ ]tR  aurretik bidertuz eta [ ]R  atzetik 

bidertuz lor daiteke. 

2.4.3 Tentsio nagusiak 

Problemaren bi formulazio 

(2.14) ekuazioko transformazioaren arabera, erreferentzia sistemari dagokion 
tentsio matrizea ezagutuz, O puntutik igarotzen den edozein planotako tentsio 
bektorearen osagaiak determina daitezke. Planoren batean osagai tangentziala nuloa 
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den jakin nahi da. Horrela bada, tentsio bektoreak osagai normala du bakarrik eta 
transformazioa honela gelditzen da: 

 { } { }ˆ0n n n n nS n S nτ σ σ= ⇒ = ⇒ =


 (2.29) 

(2.14) ekuazioko transformazio orokorra ere bete behar duenez, Oxyz erreferentzia 
sisteman honakoa betetzen da: 

 { } [ ]{ } [ ] [ ]( ){ } { }0n nn n I nσ σ σ σ= ⇒ − =  (2.30) 

(2.30) ekuazioak autobalio eta autobektore problema adierazten du. Baldintza 
betetzen duten hiru tentsioak tentsio nagusiak eta dagozkien norabideak norabide 
nagusiak dira. Norabide nagusiekiko elkartzut diren planoak plano nagusiak dira eta 
bertan tentsio nagusiek dihardute. 

Beste alde batetik, norabideren batean σn tentsio normalak balio estazionariorik, 
hau da, maximo eta minimo erlatiborik duen determinatu nahi da. Tentsio normala 
(2.16) ekuazioan emanda dago eta bektore normalak modulu unitarioaren baldintza 
bete behar du. Maximo eta minimo baldintzatuen problema da, aldagaia { }n  bektorea 

eta baldintza { } { } 1tn n =  izanik. Funtzio lagrangearra honakoa da: 

 { }( ) { } [ ]{ } { } { }( ), 1t tF n n n n nλ σ λ= − −  (2.31) 

Balio estazionarioak honako baldintzatik lortzen dira: 

 
{ }( )
{ } [ ]{ } { } { }

,
0 2 2 0

F n
n n

n
λ

σ λ
∂

= ⇒ − =
∂

 (2.32) 

(2.32) ekuazioan gaiak ordenatuz, (2.30) ekuazioko autobalio eta autobektoreen 
problema bera lortzen da, nλ σ=  izanik, hau da: 

 [ ] [ ]( ){ } { }0I nσ λ− =  (2.33) 

Ondorioz, norabide nagusietan tentsio normalek balio estazionarioak dituzte.  
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Problemaren ebazpena eta inbarianteak 

(2.30) ekuazioko matrizeak garatuz: 

 
( )

( )
( )

0
0
0

x n xy zx x

xy y n yz y

zzx yz z n

n
n
n

σ σ τ τ

τ σ σ τ

τ τ σ σ

 −         − =     
     −      

 (2.34) 

(2.34) ekuazioak sistema homogeneoa adierazten du eta soluzio nuluaz gain 
besteren bat izan dezan, sistemaren determinanteak nulua izan behar du. Determinantea 
garatuz, sistemaren ekuazio karakteristikoa honela gelditzen da: 

 3 2
1 2 3 0n n nI I Iσ σ σ− + − =  (2.35) 

Ekuazio karakteristikoaren erroak tentsio nagusiak dira eta balio horiek ez dira 
erabilitako erreferentzia sistemaren menpekoak. Ondorioz, I1, I2 eta I3 inbarianteak dira, 
O puntuan sorrera duen edozein erreferentzia sistema kartesiarrentzat honakoak izanik:  

 

1

2

3

x y z

x xy y yzx zx

xy y yz zzx z

x xy zx

xy y yz

zx yz z

I

I

I

σ σ σ

σ τ σ τσ τ
τ σ τ στ σ

σ τ τ
τ σ τ
τ τ σ

= + +

= + +

=

 (2.36) 

(2.35) ekuazioko hiru tentsio nagusiak determinatu ondoren, (2.34) sisteman 
ordezkatzen dira norabide nagusiak determinatzeko. Norabide nagusiak 1, 2 eta 3 
azpiindizeekin izendatzen dira eta eskuarki honela ordenatzen dira: 1 2 3σ σ σ> > . 

(2.34) sisteman ekuazio bat gutxienez konbinazio lineala denez, norabide nagusi 
bakoitzaren nx, ny eta nz kosinu zuzentzaileak determinatzeko modulu unitarioaren 
baldintza erabiltzen da: 

 2 2 2 1x y zn n n+ + =  (2.37) 
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Tentsio nagusiak zenbaki errealak dira 

Ondoren, hiru tentsio nagusiak zenbaki errealak direla frogatuko da. (2.35) ekuazio 
karakteristikoa kubikoa denez, bere erroak determinatzerakoan bi aukera daude: 
hirurak errealak izatea edo bat erreala eta beste biak konplexu konjokatuak izatea. 
Gutxienez erro batek erreala izan behar duenez, erro horri dagokion norabidea x dela 
suposatuko da. x norabide nagusia denez, ekuazio karakteristikoa honako 
determinantetik lortzen da: 

 
( )

( )
( )

0 0

0 0

0

x n

y n yz

yz z n

σ σ

σ σ τ

τ σ σ

−

− =

−

 (2.38) 

Beste bi tentsio nagusiak lortzeko honakoa bete behar da: 

 
( )

( )
0y n yz

yz z n

σ σ τ

τ σ σ

−
=

−
 (2.39) 

(2.39) ekuazioko determinantea garatuz honako ekuazio kuadratikoa lortzen da: 

 ( ) ( )2 2 0n y z n yz y zσ σ σ σ τ σ σ− + − − =  (2.40) 

(2.40) ekuaziotik lortzen diren erroak honakoak dira: 

 ( ) ( ) ( )2 21
2 4n y z y z yz y zσ σ σ σ σ τ σ σ = + ± + + −  

 (2.41) 

Erroak errealak izan daitezen, (2.41)eko diskriminantearen ikurrak positiboa izan 
behar du: 

 ( ) ( )2 24 0y z y z yzσ σ σ σ τ+ − − >  (2.42) 

Eragiketak eginez, (2.42)ko baldintza beti betetzen dela ikusten da, bi karratuen 
batura bezala adieraz baitaiteke: 



20 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA  
 

 ( ) ( )2 2
2 0y z yzσ σ τ− + >  (2.43) 

Norabide nagusiak elkartzutak dira 

1 eta 2 norabide nagusiak kontsideratuz: 

 { } [ ]{ }1 1 1n nσ σ=  (2.44) 

 { } [ ]{ }2 2 2n nσ σ=  (2.45) 

(2.44) ekuazioa { }2
tn gatik eta (2.45) ekuazioa { }1

tn gatik aurrebidertuz, atalez atal 

kenketa eginez eta eskalar baten iraulia zenbaki bera dela kontuan izanik, honakoa 
lortzen da: 

 ( ){ }{ }1 2 1 2 0tn nσ σ− =  (2.46) 

(2.46) ekuazioa bete dadin bi aukera daude: 

• 1 2 1 2ˆ ˆ 0n nσ σ≠ ⇒ ⋅ =  Hau da, 1 eta 2 norabide nagusiak elkartzutak dira. 

• 1 2σ σ=  Ekuazioa identikoki betetzen da eta ondorioz 3 norabidearekiko 

elkartzuta den edozein norabide nagusia da. 

Frogapena 1 eta 3 edo 2 eta 3 norabideentzat antzera egin daitekenez, hiru tentsio 
nagusiak desberdinak direnean hiru norabide nagusiak elkartzutak dira. Bi balio 
berdinak badira, hirugarren balioari dagokion norabidearekiko elkartzuta den planoko 
norabide guztiak nagusiak dira. Azkenik, hiru tentsio nagusiak berdinak badira, 
norabide guztiak nagusiak dira. 

O sorrera eta ardatzak norabide nagusiak dituen O123 erreferentzia sistema 
kartesiarra definitu daiteke. Tentsorearen adierazpena honakoa da: 

 [ ]
1

2123

3

0 0
0 0
0 0

O

σ
σ σ

σ

 
 =  
  

 (2.47) 
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Tentsio ebakitzaile maximoak 

Tentsio ebakitzailearen karratua honakoa da: 

 { } { } { } [ ]{ }( )2
2 t t
n n nS S n nτ σ= −  (2.48) 

Kosinu zuzentzaileak { } { } 1tn n =  ekuazioagatik erlazionatuta daudenez, lagrangear 

funtzioa honakoa da: 

 { }( ) { }( ) { } { }( )2, 1t
nG n n n nµ τ µ= − −  (2.49) 

Balio estazionarioaren baldintza ezarriz, honakoa lortzen da: 

 
{ }( ) { } [ ] [ ] [ ]( ){ } { }2,

0 2 0n

G n
I n

µ
σ σ σ µ

µ
∂

= ⇒ − − =
∂

 (2.50) 

(2.50) ekuazioko sistema ez da lineala, σn kosinu zuzentzaileen menpekoa baita. nτ

ren balio maximoak plano noagusietatik 45ºra daudela froga daiteke. 

2.4.4 Osagai eskerikoa eta desbideratze osagaia 
Definizioz, tentsio esferikoa honakoa da:  

 ( )1 1
13 3e x y z Iσ σ σ σ= + + =  (2.51) 

Oxyz erreferentzia sistemari dagokion tentsio matrizea honela deskonposatzen da: 

 [ ] [ ] [ ]e dσ σ σ= +  (2.52) 

[ ]eσ  matrize esferikoa da:  

 [ ]
0 0

0 0
0 0

e

e e

e

σ
σ σ

σ

 
 =  
  

 (2.53) 
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[ ]dσ  desbideratze matrizea da. (2.52) ekuaziotik askatuz lortzen da: 

 [ ]
( )

( )
( )

x e xy zx

d xy y e yz

zx yz z e

σ σ τ τ

σ τ σ σ τ

τ τ σ σ

 −
 

= − 
 

−  

 (2.54) 

Aurrerago ikusiko denez, material isotropo batean osagai esferikoa gorputzaren 
bolumen aldaketarekin erlazionatua dago. 

2.5. TENTSIO EGOERA LAUA 
Tentsio osagai ez nuluak bakarrik xy planoan daudela suposatuko da, hau da 

0z yz zxσ τ τ= = = . Edozein planotako tentsio bektorearen osagaiak Oxyz sisteman, 

(2.14) ekuazioaren arabera: 

 
0
0

0 0 0

nx x yx x

ny xy y y

nz z

S n
S n
S n

σ τ
τ σ

     
    =    
         

 (2.55) 

(2.55) ekuazioaren arabera, edozein plano aukeratuta 0nzS = . Beraz, analisia xy 

planoan egin daiteke. 2.11 irudian azaltzen den prisma triangeluarra analizatzen da, x 

eta y ardatzen araberako aldeak OA dx= , OB dy=  izanik, hurrenez hurren. Aldeak 

diferentzialak direnez, AB O puntutik igarotzen dela suposatzen da eta ondorioz AB 
gainazalaren tentsio bektorea analizatzen da. Beste alde batetik, z norabideko luzera 1 
da. Analisia 0 θ π< <  tartean egiten da. Izan ere, ( )θ π+  angeluari dagokion planoak 

2.11 irudian azaltzen denarekiko, bektore normala eta tentsio bektorea aurkakoak ditu. 
Plano hori, 2.1 irudian azaltzen den mozketaren beste aldeari dagokiona da. 



 TENTSIOAK 23 

 

2.11 irudia 

cosxn θ=  eta sinyn θ=  denez, (2.55) ekuazioa honela idatz daiteke: 

 
cos
sin

nx x xy

ny xy y

S
S

σ τ θ
τ σ θ

     
=    

    
 (2.56) 

2.11 irudian ikusten denez, n̂  norabide normaleko eta t̂  norabide tangentzialeko 
bektore unitarioak Oxy erreferentzia sisteman adieraziz honakoak dira: 

 
ˆ ˆˆ cos sin
ˆ ˆˆ sin cos

n i j

t i j

θ θ

θ θ

= +

= − +
 (2.57) 

Tentsio bektorearen osagai intrintsekoak honakoak dira:  

 
ˆ cos sin

ˆ sin cos
n n nx ny

n n nx ny

S n S S

S t S S

σ θ θ

τ θ θ

= ⋅ = +

= ⋅ = − +





 (2.58) 

(2.56) ekuazioko Snx, Sny osagaiak (2.58) ekuazioan ordezkatuz honakoa lortzen da:  

S


 

x 

y 

σx 

σy 

τxy 

τyx O 
A 

B 

 

x’ 

 
 

  

 

Sx 

Sy 

 
 

σn 
τn  θ 

n̂

S


P 

t̂
 θ 
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( ) ( )

2 2

2 2

cos sin 2 sin cos

sin cos cos sin
n x y xy

n y x xy

σ σ θ σ θ τ θ θ

τ σ σ θ θ τ θ θ

= + +

= − + −
 (2.59) 

(2.59) ekuazioak erabiliz, σx, σy, τxy tentsio osagaiak eta θ angelua ezagutuz, O-tik 
igarotzen den edozein planori dagokion tentsio bektorearen osagai normala eta 
tangentziala determina daitezke. Ondoren, angelu bikoitzarekin erlazionatutako 
identitate trigonometriko batzuk azaltzen dira:  

 

2 2 2

2

1 cos 2cos cos 2 cos sin
2

1 cos 2sin sin 2 2sin cos
2

θθ θ θ θ

θθ θ θ θ

+
= = −

−
= =

 (2.60) 

(2.60) ekuazioak (2.59) ekuazioetan ordezkatuz, tentsio bektorearen osagai normala 
eta tangentziala honakoak dira: 

 
cos 2 sin 2

2 2

sin 2 cos 2
2

x y x y
n xy

y x
n xy

σ σ σ σ
σ θ τ θ

σ σ
τ θ τ θ

+ −
= + +

−
= +

 (2.61) 

Ondoren tentsio egoera jakin batzurekin zerikusia duten bi alde interesgarri 
planteatzen dira:  

1. σn estazionarioak direneko θ1 angeluak. (2.61)1 deribatuz eta zerora berdinduz 
honakoa lortzen da: 

 1

2
tan 2 xy

x y

τ
θ

σ σ
=

−
 (2.62) 

(2.62) ekuazioei dagokien norabideak norabide nagusiak dira. (2.62) ekuazioko 
angelua (2.61)2 ekuazioan ordezkatuz, norabide nagusietan τn tentsio ebakitzailea nulua 
dela ikus daiteke. β eta β±π angeluek tangente bera izanik eta angeluak bikoitzak 
direnez, norabide nagusiak elkartzutak dira.  



 TENTSIOAK 25 

2. τn maximoa direneko θ2 angeluak. (2.61)2 deribatuz eta zerora berdinduz, honakoa 
lortzen da: 

 2
1

1tan 2
2 tan
x y

xy

σ σ
θ

τ θ
−

= − = −  (2.63) 

(2.63)-n azaltzen den baldintza betetzeko angeluen arteko erlazioa honakoa izan 
behar da: 

 1 1
2 1 2 12 42 2θ θ π θ θ π= ± ⇒ = ±   (2.64) 

(2.64) ekuazioaren arabera, norabide nagusiek 45º osatzen dute tentsio ebakitzaile 
maximoko norabideekin. 

Tentsio normalen kasuan, ikurrak esanahi fisikoa du. Orohar, ez da berdin material 
batek trakzioan edo konpresioan lan egitea. Adibidez, material hauskor baten kasuan 
haustura trakzioko tentsio maximoen ondorioz gertatzen da. Material harikorren 
kasuan, haustura tentsio ebakitzaile maximoko norabideen inguruan gertatzen da, beren 
norantza edozein delarik ere.  

Tentsio normal eta ebakitzaile maximoen arteko angelua 45º dela ikusteko, klarion 
zilindriko baten bihurdurazko haustura ikus daiteke. Bihurdurako tentsio ebakitzaile 
maximoak zirkunferentzialak dira. Klarionaren materiala hauskorra denez, trakzio 
maximoko planoetatik haustea aurrikusten da. Bihurdura aplikatzen zaionean, haustura 
helize moduan gertatzen da, trakzio maximoko plano nagusien arabera. Aplikatutako 
momentuaren norantza aldatzen bada, haustura aurrekoarekin 90º osatzen dituen 
helizearen arabera gertatzen da.  

2.6. MOHR-EN ZIRKULUA 
2.6.1 Tentsio egoera laua 

(2.61) ekuazioak honela idatz daitezke:  

 
cos 2 sin 2

2 2

sin 2 cos 2
2

x y x y
xy

y x
xy

σ σ σ σ
σ θ τ θ

σ σ
τ θ τ θ

+ −
− = +

−
= +

 (2.65) 
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(2.65) ekuazioak zirkunferentzia baten ekuazio parametrikoak dira, parametroa 2θ 
izanik. Bi ekuazioak karratura jasoz eta atalez atal batuz honakoa lortzen da: 

 
2 2

2 2

2 2
x y x y

n n xy

σ σ σ σ
σ τ τ

+ −   
− + = +   

   
 (2.66) 

(2.66) ekuazioa honela idatz daiteke: 

 ( )2 2 2
n C n Rσ σ τ− + =  (2.67) 

 

2.12 irudia 

Abzisa artatz bezala σn eta ordenatu ardatz bezala τn balio absolutuan hartuz, (2.67) 
ekuazioa bere zentroa abzisa ardatzean duen zirkunferentzia bati dagokiona da. 
Zentroaren posizioa eta erradioa honakoak dira:  

 
( )

( )

1
2

2 21
2

C x y

x y xyR

σ σ σ

σ σ τ

= +

 = − + 

 (2.68) 

2.12 irudian 0x yσ σ> >  eta 0xyτ >  direneko tentsio egoera azaltzen da. 

Zirkunferentziako puntu bakoitzak σn, τn osagai intrintsekoek eragiten duten 
planoarekiko norabide elkartzuta adierazten du. (2.62) eta (2.63) ekuazioetako 
informazio bera lor daiteke. Honela, 1, 2 norabideetan tentsio normalak hurrenez hurren 
maximoa eta minimoa direla ikusten da, eta puntu horietan tentsio ebakitzailea nulua 

σx 

σy 
τxy 

 

O C 

x 

y 
 

σn 
1 2 

nτ t1 

t2 
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dela. Norabide hauek norabide nagusiak dira eta dagozkien tentsioak tentsio nagusiak 
dira. Norabide nagusiak 90º-ra daude, zirkuluko angeluak bikoitzak baitira. Tentsio 
ebakitzaile maximoak erradioaren balioa duela ikusten da. Zirkunferentziaren goi eta 
behe aldean hurrenez hurren dauden t1 eta t2 norabideak Mohr-en zirkuluan norabide 
nagusietatik 90º-ra daude eta ondorioz errealitatean 45º-ra. 

Mohr-en zirkuluaren marrazte prozedura honakoa da: 

1. (2.68) ekuazioan azaltzen diren zirkuluaren zentroa eta erradioa kalkulatzen dira. 
2.12 irudiaren arabera, tentsio nagusiak honakoak dira: 

 1

2

C

C

R
R

σ σ
σ σ

= +
= −

 (2.69) 

2. Zirkunferentzia eta σn abzisa ardatza marrazten dira. Tentsio ebakitzaileen nτ  

ardatz bertikala O sorreran kokatzen da, zentruaren σC posizioa kontuan izanik. σx 
abzisa bezala eta τxy ordenatu bezala hartuz, x ardatzari dagokion puntua zirkuluan 
adieraz daiteke. Baina honako arazoa sortzen da: x ardatza goiko aldean badago y 
ardatza beheko aldean dago eta alderantziz. Beraz, badirudi τxy-ren ikur berarentzat 
balio positiboa eta negatiboa daudela. Horregatik, tentsio ebakitzaileen ardatza balio 
absolutuan adierazten da, nτ  deituz. Mohr-en zirkuluaren erabilpenerako dagoen 

arazo nagusia honakoa da: zein da (σx, τxy) balio pareari dagokion ardatza zirkuluaren 
goi edo beheko erdian kokatzeko irizpidea? 

(2.62) ekuazioaren arabera, norabide nagusiak ematen dituen tan(2θ1) positiboa edo 
negatiboa izan daiteke, zenbakitzailearen eta izendatzailearen ikurren arabera. 2.13 
irudian egon daitezkeen lau kasuak azaltzen dira. 2.11 irudiaren arabera tangentea 
positiboa bada angelua erlojorratzen kontrakoa da eta tangentea negatiboa bada angelua 
erlojorratzen aldekoa da. 2.13 irudian tentsio egoerak ere azaltzen dira, gezi lodiz 
erlojorratzen aldeko pareak eragiten dituzten tentsio ebakitzaileak adieraziz. Kasu 
guztietan erlojorratzen aldeko parea eragiten duten tentsio tangentzialekiko ardatz 
perpendikularra zirkuluaren goiko erdian kokatuta dago.  
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tan 2 0pθ >  

0xy

x y

τ

σ σ

>

>
 

  

0xy

x y

τ

σ σ

<

<
 

  

tan 2 0pθ <  

0xy

x y

τ

σ σ

<

>
 

  

0xy

x y

τ

σ σ

>

<
 

  

2.13 irudia 

2.13 irudia aztertuz, honako irizpidea ezar daiteke puntu bat zirkuluaren goi edo 
behe aldean kokatzeko: plano paralelotan eragiten duten tentsio ebakitzaileei dagokien 
parea erlojorratzen aldekoa denean, plano hauekiko ardatz elkartzuta zirkuluaren 
goiko erdian kokatzen da. Horregatik, 2.12 irudian x ardatza beheko aldean eta y ardatza 
goiko aldean daude. Alderantziz, ardatz bat zirkuluaren goi edo behe aldean egoteak, 
tentsio ebakitzaileen norantzari buruzko informazioa ematen du.  
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2.6.2 Tentsio egoera orokorra 
Tentsio egoera orokorrean, hiru zirkulu azaltzen dira: 1-2, 2-3 eta 3-1 plano nagusiei 

dagokiena hain zuzen ere, 2.14 irudian ikus daitekenez. O puntutik igarotzen den 
edozein planotako tentsio bektorearen osagai intrintsekoak ilundutako azaleran daudela 
froga daiteke. Tentsio ebakitzaile maximoa zirkulu handienaren erradioa da.  

 

2.14 irudia 

Tentsio egoera lauean, z norabidea norabide nagusia da eta 2.15 irudian azaltzen 
diren hiru egoerak gerta daitezke. Tentsio ebakitzaile maximoa ez dago beti Oxy 
planoan. z norabideko tentsio nagusia nulua denez, 3 zenbakiarekin izendatu da. Kasu 
bakoitzean, Oxy planoari dagokion zirkuluak 1 eta 2 norabide nagusiak ditu eta grisez 
marraztuta dago.  

 
a/ ( )1

max 1 22τ σ σ= −   

σn 3 2 1 
O 

σn 3 2 1 
O 

nτ

nτ
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b/ ( )1 1

max 1 3 12 2τ σ σ σ= − =  

 
c/ ( ) ( )1 1

max 3 2 22 2τ σ σ σ= − = −  

2.15 irudia 
 

3 1 2 
O 

σn 

σn 2 3 1 
O 

nτ

nτ



3. DEFORMAZIOAK  

3.1. SARRERA 
Indarren eraginpean dagoen gorputza deformatu egiten da. Gorputz barneko O 

puntuaren inguruko elementu diferentziala kontsideratuz, elementuren ertzek luzera 
aldaketa jasaten dute eta hasierako angelu zuzenak aldatu egiten dira. Gainera, 
elementuak solido zurrun gisako translazioa eta errotazioa ere jasaten ditu. Gai honetan 
deformazio unitario normalak eta tangentzialak aztertuko dira. Bukaeran, analisia 
tentsioen gaian garatutakoaren parekoa dela ikusiko da. 

3.2. ELEMENTU DIFERENTZIALAREN DEFORMAZIOA 
Gorputzaren O(x,y,z) puntuaren inguruan bolumeneko elementu diferentziala 

analizatzen da. 3.1 irudian ikus daitekenez, deformatu aurretik bere ertzak OA


, OB


 eta 

OC


bektoreak eta bere diagonala OP


 dira. Atal honetan, gorputza deformatzen denean 
ertzek jasaten dituzten aldaketak aztertuko dira.  
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3.1 irudia 

Deformatu ondoren, puntuak primadun posizioetara mugitzen dira eta ertz berriak 

O A′ ′


, O B′ ′


 eta O C′ ′


dira, 3.2 irudian ikus daitekenez. O puntuaren desplazamendu 
bektorea honakoa da: 

 ( ) ( ) ( ) ( ) ˆˆ ˆ, , , , , , , ,OO x y z u x y z i v x y z j w x y z kδ′ = = + +




 (3.1) 

 
3.2 irudia 

A 

B 

C 

x 

y 

z 

P 

A 

B 

C 

x 

y 

z 

A’ O’ 

B’ 

C’ 
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(3.1) ekuazioaren arabera, u, v eta w ardatzen norabidetako desplazamendu osagaiak 
dira. Gutxienez hirugarren deribaturarte funtzio jarraituak direla onartuko da. x 
ardatzeko ertza aztertuz, deformatu ondoren A puntua A’ igarotzen da. O-tik A-rako 
aldaketa bakarrik x ardatzean gertatzen denez, desplazamendua honakoa da: 

 ( ) ( ) ( ), , ,
ˆˆ ˆ

x x x xAA u u dx i v v dx j w w dx kδ δ′ = + ∆ = + + + + +


 

 (3.2) 

Hasierako ertza ˆOA dxi=


 izanik, 3.2 irudia kontuan hartuz, honakoa betetzen da: 

 OA AA OO O A′ ′ ′ ′+ = +
   

 (3.3) 

(3.3) ekuaziotik, deformazioaren ondoren x ardatzeko ertzari dagokion bektorea 
honakoa da: 

 ( ) ( ) ( ), , ,
ˆˆ ˆ1 x x xO A OA AA OO u dxi v dxj w dxk′ ′ ′ ′= + − = + + +

   

 (3.4) 

ˆOB dyj=


 eta ˆOC dzk=


 deformazioa baino lehen y eta z ardatzei dagokien ertzen 

bektoreak izanik, B eta C puntuen desplazamenduak honakoak dira: 

 ( ) ( ) ( ), , ,
ˆˆ ˆ

y y y yBB u u dy i v v dy j w w dy kδ δ′ = + ∆ = + + + + +


 

 (3.5) 

 ( ) ( ) ( ), , ,
ˆˆ ˆ

z z z zCC u u dz i v v dz j w w dz kδ δ′ = + ∆ = + + + + +


 

 (3.6) 

Deformazio ondorengo bektoreak, 3.2 irudia eta (3.1), (3.5) eta (3.6) ekuazioak 
kontuan izanik honakoak dira: 

 ( ) ( ) ( ), , ,
ˆˆ ˆ1y y yO B OB BB OO u dyi v dyj w dyk′ ′ ′ ′= + − = + + +

   

 (3.7) 

 ( ) ( ) ( ), , ,
ˆˆ ˆ 1z z zO C OC CC OO u dzi v dzj w dzk′ ′ ′ ′= + − = + + +

   

 (3.8) 

Irudian ertz berriak eta beren osagaiak 3.3 irudian azaltzen dira. Paralelepipedo 
zuzena paralelepipedo zeiharrean bihurtzen da.  
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3.3 irudia 

3.3. DEFORMAZIO UNITARIOAK 
3.3.1 Deformazio unitario normalak 

Definizioz, puntu bateko norabide baten deformazio unitario normala, norabideak 
puntu horretan jasaten duen luzera aldaketa erlatiboa da. O puntuan, x norabidean: 

 x
O A OA

OA
ε

′ ′ −
=  (3.9) 

Zuzenkien luzerak bektoreen moduluak direnez, (3.9) ekuazioak honakoa ematen 
du: 

 ( ) ( ) ( )2 2 2
, , ,1 1x x x xu v wε = + + + −  (3.10) 

Erroketa barnean, 1 zenbakia batzen duen α zenbakia honako aproximazio erabili 

ahal izateko nahiko txikia dela onartuko da: 1
21 1α α+ = + . Beraz, (3.10) honela 

gelditzen da: 

 ( ) ( ) ( )2 2 21
, , , ,2x x x x xu u v wε  = + + +  

 (3.11) 

 

( ),1 xu dx+

,xv dx

,xw dx

( ),1 yv dy+

, yu dy
, yw dy

( ),1 zw dz+
,zv dz

,zu dz
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y eta z ardatzetako deformazio unitarioak, antzera, honakoak dira: 

 ( ) ( ) ( )2 2 21
, , , ,2y y y y yv u v wε  = + + +  

 (3.12) 

 ( ) ( ) ( )2 2 21
, , , ,2z z z z zw u v wε  = + + +  

 (3.13) 

Desplazamenduen deribatuek ez dute dimentsiorik. Zenbaki txikiak direla 
suposatzen bada, 0,02 baino txikiagoak, bigarren mailako gaiak arbuiagarriak dira 
lehen mailakoen parean eta deformazio unitario normalak honela gelditzen dira: 

 , , ,x x y y z zu v wε ε ε= = =  (3.14) 

Desplazamenduen deribatuak txikiak izatearen baldintza betetzen denean, 
desplazamendu gradiente txikien problema edo desplazamendu txikien problema dela 
esaten da. Deformazio txikien problema batean aldiz, εx, εy eta εz zenbaki txikiak dira, 
baina baliteke desplazamenduen deribatuen karraturen bat arbuiagarria ez izatea.  

3.3.2 Deformazio unitario tangentzialak 
3.4 irudian deformatu ondorengo ertzen arteko angeluak azaltzen dira. Deformazio 

tangentzial edo ebakitzaile unitarioa, hasieran elkartzutak diren bi norabideren arteko 
angelu zuzenaren txikitzea bezala definitzen da. x eta y norabidei dagokien deformazio 
tangentzial unitarioa honakoa da: 

 1
2xy xyγ π ϕ= −  (3.15) 
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3.4 irudia 

x eta y norabideek deformatu ondoren osatzen duten angelua ϕxy izanik. Beraz, 
honakoa betetzen da: 

 ( )( )cos xyO A O B O A O B ϕ′ ′ ′ ′ ′ ′ ′ ′⋅ =
 

 (3.16) 

(3.15) ekuaziotik askatuz, cos sin xyϕ γ=  dela ikusten da. (3.16) ekuazioa kontuan 

izanik: 

 
( )( )

sin xy
O A O B
O A O B

γ
′ ′ ′ ′⋅

=
′ ′ ′ ′

 

 (3.17) 

(3.17) ekuazioan (3.4) eta (3.7) ekuazioak ordezkatuz eta izendatzailean 
1
21 1α α+ = +  sinplifikazioa egin daitekela onartuz: 

 
( ) ( )
( ) ( )

, , , , , ,

2 2 2 2 2 21 1
, , , , , , , ,2 2

1 1
sin

1 1
x y x y x y

xy
x x x x y y y y

u u v v w w

u u v w v u v w
γ

+ + + +
=

   + + + + + + + +   
 (3.18) 

x 

y 

z 

A’ 

O’ 

B’ 

C’ 

ϕxy ϕyz 

ϕzx 
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Desplazamendu txikien problema batean, bigarren mailako eta maila altugoko gaiak 
arbuiatuz: 

 
( )

, ,

, ,

sin
1

y x
xy

x y

u v
u v

γ
+

=
+ +

 (3.19) 

(3.19) ekuazioan, izendatzaileko deribatuak 1 baino askoz ere txikiagoak direnez, 

honako hurbilpena aplika daiteke: 1 1
1

α
α

 = − + + 
 . Berriro 2. mailatik gorako 

gaiak arbuiatuz: 

 , ,sin xy y xu vγ = +  (3.20) 

Azkenik, deribatuak txikiak izanik sin xy xyγ γ=  betetzen da. Beste angelu 

zuzenentzat antzera jokatuz, desplazamendu txikien problema batean deformazio 
unitario tengentzialak honakoak dira: 

 , , , , , ,xy y x yz z y zx x zu v v w w uγ γ γ= + = + = +  (3.21) 

3.4. DEFORMAZIO ETA ERROTAZIO TENTSOREAK 
Orain arte, 3.1 irudian azaltzen den elementu diferentzialaren ertzen aldaketak 

aztertu dira. Oraingoan elementuaren OP


 diagonala aztertuko da. Deformatu baino 
lehen, diagonala honakoa da: 

 ˆˆ ˆOP dr dxi dyj dzk= = + +


  (3.22) 

Deformatu ondoren, diagonala O P dr′ ′ ′=


  izango da. O eta P puntuen arteko 
koordenatu aldaketak hiru norabidetan gertaten direnez, P puntuaren desplazamendua 
honakoa da. 

 , , ,x y zPP d dx dy dzδ δ δ δ δ δ′ = + = + + +


     

 (3.23) 

Bektoreen arteko erlazioa kontuan izanik: 
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 OP PP OO O P′ ′ ′ ′+ = +
   

 (3.24) 

(3.24), (3.1) eta (3.23) ekuazioetatik, honako erlazioa lortzen da: 

 O P OP PP OO dδ′ ′ ′ ′− = − =
   



 (3.25) 

(3.25) ekuazioa honela idatz daiteke: 

 
( )
( )
( )

, , ,

, , ,

, , ,

, , ,

'

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

x y z

x x x

y y y

z z z

dr dr d dx dy dz

u i v j w k dx

u i v j w k dy

u i v j w k dz

δ δ δ δ− = = + +

= + +

+ + +

+ + +

   

 

 (3.26) 

(3.26) ekuazioa honela idatz daiteke matrize moduan Oxyz erreferentzia sisteman: 

 { } { } [ ]{ }dr dr g dr′ = +  (3.27) 

(3.27) ekuazioan [ ]g  desplazamenduen gradiente matrizea deitzen da eta ez da 

simetrikoa: 

 [ ]
, , ,

, , ,

, , ,

x y z

x y z

x y z

u u u
g v v v

w w w

 
 =  
  

 (3.28) 

Erreferentzia sistemarekiko menpekotasunik ez duen adierazpena erabiliz, g  

desplazamendu gradienteen tentsorea azaltzen da: 

 'dr dr gdr= +
     (3.29) 

3x3 mailako edozein matrize, matrize simetriko eta ez simetriko baean deskonposa 
daiteke. [ ]g -ren kasuan, gij edozein elementu izanik, honakoa betetzen da: 

 ij ij ijg e ω= +  (3.30) 
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eij elementu simetrikoa eta ωij elementu antisimetrikoa izanik: 

 ( )1
2ij ij jie g g= +  (3.31) 

 ( )1
2ij ij jig gω = −  (3.32) 

[ ]e eta [ ]ω  matrizeak (3.28), (3.31) eta (3.32) ekuazioak kontuan hartuz, honakoak 

dira: 

 [ ]
( ) ( )

( ) ( )
( ) ( )

1 1
, , , , ,2 2

1 1
, , , , ,2 2

1 1
, , , , ,2 2

x y x z x
xx xy zx

xy yy yz x y y z y

zx yz zz
x z y z z

u u v u we e e
e e e e v u v v w

e e e w u w v w

 + +      = = + +        + + 

 (3.33) 

 [ ]
( ) ( )

( ) ( )
( ) ( )

1 1
, , , ,2 2

1 1
, , , ,2 2

1 1
, , , ,2 2

00
0 0

0 0

y x z x
yx xz

yx zy x y z y

xz zy
x z y z

u v u w

v u v w

w u w v

ω ω
ω ω ω

ω ω

 − − −     = − = − −    −    − − 

 (3.34) 

Desplazamendu txikien problema bati dagokien (3.14) ekuazioko deformazio 
unitario normalak eta (3.21) ekuazioko deformazio unitario tangentzialak kontuan 
izanik, [ ]e  matrize simetrikoa deformazio unitarioekin erlazionatua dago: 

 [ ]
1 1
2 2

1 1
2 2
1 1
2 2

xx xy zx x xy zx

xy yy yz xy y yz

zx yz zz zx yz z

e e e
e e e e

e e e

ε γ γ
γ ε γ
γ γ ε

   
   = =   
      

 (3.35) 

[ ]e matrize simetrikoa, [ ]ε  deformazio matrizea deitzen da. (3.34) ekuazioko [ ]ω  

matrize antisimetrikoa solido zurrun gisako errotazio batekin erlazionatua dago, 
ondorengo atalean ikusiko denez, eta errotazio matrizea deitzen da. (3.29) ekuazioa 
honela idatz daiteke: 

 ( )'dr dr drε ω= + +
     (3.36) 
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3.5. DEFORMAZIO ETA ERROTAZIO BEKTOREAK 
3.5.1 Errotazio bektorea 

(3.36) ekuazioko transformazioaren zati antisimetrikoa hartuz: 

 'dr dr drω= +
    (3.37) 

(3.37) ekuazioko 2. batugaia, (3.34) ekuaziko matrizea kontuan hartuz honakoa da: 

 [ ]{ }
0

0
0

yx xz xz yx

yx zy yx zy

xz zy xz zy

dx dz dx
dr dy dx dz

dz dx dy

ω ω ω ω
ω ω ω ω ω

ω ω ω ω

   − − 
    = − = −    

    − − +    

 (3.38) 

(3.38) ekuazioko emaitza honako biderketa bektorialari dagokiona da: 

 [ ]{ }
ˆˆ ˆ

xz yx

yx zy zy xz yx

xz zy

dz dx i j k
dr dx dz dr

dx dy dx dy dz

ω ω
ω ω ω ω ω ω ω

ω ω

 −
 = − = = × 
 − + 

   (3.39) 

ˆˆ ˆ
yz zx xyi j kω ω ω ω= + +



 izanik. Beraz, (3.37) ekuazioa honela idatz daiteke: 

 dr dr drω′ = + ×
    (3.40) 

Ondoren, desplazamendu txikien problema batean transformazio antisimetrikoa 
solido zurrun gisako errotazioa dela frogatuko da. Horretarako, honako bi aldeak 
frogatu behar dira: 

• Elementuaren luzera ez da aldatzen 
• Bi elementuren arteko angelua ez da aldatzen 

Elementuaren luzera ez da aldatzen 

Luzera berria dr′  denez, (3.40) ekuazioa erabiliz bere moduluaren karratua 
determina daiteke: 

 ( ) ( ) ( )2 2 2 2 2sindr dr dr dr dr dr dr dr drω ω ω θ′ ′ ′⋅ = = + × ⋅ + × = +
        (3.41) 
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ω  eta dr  bektoreek osatzen duten angelua θ izanik. (3.41) ekuazioa honela idatz 
daiteke: 

 2 21 sindr dr ω θ′ = +  (3.42) 

Desplazamendu txikien problema batean, erro barneko bigarren batugaia 
arbuiagarria denez, 'dr dr= . (qed). 

Bi elementuren arteko angelua ez da aldatzen 

Hasierako 1dr  eta 2dr  elementuek deformazio aurretik ϕ angelua eta 1dr ′  eta 2dr ′  

elementuek deformazio ondoren ϕ’ angelua osatzen dutela suposatuko da. Elementuen 
transformazio ekuazioak honakoak dira: 

 1 1 1

2 2 2

dr dr dr

dr dr dr

ω

ω

′ = + ×

′ = + ×

  

  

 (3.43) 

(3.43) ekuazioko elementu transformatuen arteko biderketa eskalarra eginez: 

 ( )( )1 2 1 2 1 1 2 2cos ' cos sin sin cosdr dr dr dr dr drϕ ϕ ω θ ω θ β′ ′⋅ = +  (3.44) 

1drω ×
   eta 2drω ×

   bektoreek osatzen duten angelua β izanik. Elementuen luzera 

aldatzen ez dela frogatu denez, hau da, 1 1dr dr′ =  eta 2 2dr dr′ =  atalez atal ( )1 2dr dr -gatik 

zatituz: 

 2
1 2cos os sin sin coscϕ ϕ ω θ θ β′ = +  (3.45) 

Desplazamendu txikien problema batean (3.45) ekauzioko bigarren batugaia 
arbuiagarria denez, cos oscϕ ϕ′ = . (qed). 

3.5.2 Deformazio bektorea 
Trasformazioaren zati simetrikoa hartuz: 

 'dr dr drε= +
    (3.46) 
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Definizioz, deformazio bektorea honakoa da: 

 '
u

dr drD
dr
−

=
 



 (3.47) 

(3.46) ekuazioa kontuan hartuz, (3.47) ekuazioa honela gelditzen da: 

 ˆuD uε=


  (3.48) 

dr  bektorearen norabideko bektore unitarioa ˆ dru
dr

=


 izanik. Matrize moduan, 

(3.48) ekuazioa honakoa da: 

 { } [ ]{ }uD uε=  (3.49) 

(3.49) ekuazioa modu hedatuan honela gelditzen da: 

 

1 1
2 2

1 1
2 2
1 1
2 2

ux x xy zx x

uy xy y yz y

uz zx yz z z

D u
D u
D u

ε γ γ
γ ε γ
γ γ ε

    
    =    

        

 (3.50) 

 
3.5 irudia 

x 

y 

z 

O 
ux 

uy 

uz 
εxux 

εyuy 

εzuz 
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3.6 irudia 

(3.50) ekuazioko deformazio bektorearen osagaiek, deformazio unitario normalek 
eta tangentzialek ardatz bakoitzean eragiten dituzten deformazio ekarpenak barneratzen 
dituzte. 3.5 irudian û  bektore direktorearen osagaiak deformazio normalen ondorioz 
nola aldatzen diren azaltzen da. 3.6 irudian bektore unitarioaren osagaiak deformazio 
tangentzialen ondorioz nola aldatzen diren azaltzen da. Ardatz bakoitzean 3.5 irudian 
eta 3.6 irudian marra bikoitzez azaltzen diren ekarpenen batura, ardatz horretako 
deformazio bektorearen osagaia da. 

uD


 deformazio bektorea bere osagai intrintsekotan deskonposa daiteke. û -ren 

norabidean projektatuz, norabidearen εu deformazio unitario normala lortzen da: 

 ˆu uD uε = ⋅


 (3.51) 

(3.51) ekuazioa matrize moduan adieraziz eta (3.49) ekuazioa kontuan izanik: 

 { } { } { } [ ]{ }t t
u uu D u uε ε= =  (3.52) 

x 

y 

O ux 

uy 

½γxyux 

½γxyuy 

½γxy 
z z 

y 

O uz 

uy ½γyzuz 

½γyzuy 

½γyz 
x 

x 

z 

O 
ux 

½γzxux ½γzx 

y 

uz 

½γzxuz 
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Deformazio bektorearen osagai tangentzial intrintsekoa honakoa da: 

 2 21
2 u u uDγ ε= −  (3.53) 

Norabide bateko deformazio normalaren formula galga extensiometrikoekin 
deformazioak neurtzerakoan erabiltzen denez, (3.51) ekuazioa garatuz honakoa lortzen 
da: 

 2 2 2
u x x y y z z xy x y yz y z zx z xu u u u u u u u uε ε ε ε γ γ γ= + + + + +  (3.54) 

Neurketa planoa xy bada, 0zu =  eta (3.54) ekuazioa honela gelditzen da: 

 2 2
u x x y y xy x yu u u uε ε ε γ= + +  (3.55) 

3.6. TENTSIOEN ETA DEFORMAZIOEN ANTZEKOTASUNA 

(3.48) ekuazioak, tentsioen ˆnS nσ=


  transformazioaren parekoa adierazten du. 

Beraz, tentsioen analisian garatutako atalak deformazioetan aplika daitezke. 
Parekotasuna ondorengo taulan azaltzen da: 

 Tentsioak Deformazioak 

Transformazioa ˆnS nσ=


  ˆuD uε=


  

Osagai kartersiar normalak iσ  iε  

Osagai kartesiar tangentzialak ijτ  1
2 ijγ  

Osagai intrintseko normala ˆn nS nσ = ⋅


 ˆu uD uε = ⋅


 

Osagai intrintseko tangentziala 2 2
n n nSτ σ= −  2 21

2 u u uDγ ε= −  

Mohr-en zirkuluko ardatzak nσ , nτ  uε , 1
2 nγ  

Mohr-en zirkulua marrazterakoan, deformazio tangentzialen ondorioz ardatzak 
erojorratzen alde biratzen badu, zirkuluaren goiko aldean adierazten da. 
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3.7. FORMA ETA BOLUMEN ALDAKETAK 

3.1 irudian azaltzen den elementuaren deformatu ondorengo bolumena 
determinatzeko, deformazio ondorengo ertzen arteko biderketa mistoa eginez: 

 ( )
( )

( )
( )

, , ,

, , ,

, , ,

1

' 1

1

x x x

y y y

z z z

u v w

dV O A O B O C u v w dV

u v w

+

′ ′ ′ ′ ′ ′= ⋅ × = +

+

  

 (3.56) 

Hasierako bolumena dV dxdydz=  izanik. (3.56) ekuazioko determinantearen 
garapenean bigarren mailatik gorako gaiak arbuiatuz eta (3.14) ekuazioko deformazio 
normalak kontuan hartuz: 

 ( )( )( )1 1 1x y zdV dVε ε ε′ = + + +  (3.57) 

(3.57) ekuazioan lehen mailako gaiak bakarrik hartuz: 

 ( )1 x y zdV dVε ε ε′ = + + +  (3.58) 

Deformazio bolumetriko unitarioa bolumen aldaketa erlatiboa bezala definitzen da. e-
rekin izendatzen da eta (3.58) ekuaziotik, honakoa da: 

 '
x y z

dV dV dVe
dV dV

ε ε ε∆ −
= = = + +  (3.59) 

Gorputz osoaren bolumen aldaketa honakoa da: 

 
V V

V dV edV∆ = ∆ =∫ ∫  (3.60) 

Bolumen aldaketa deformazio normalen ondoriozko ertzen luzera aldaketagatik 
gertatzen da, 3.5 irudian azaltzen denez. Elementuaren forma aldaketa, deformazio 
tangentzialen ondorioz gertatzen da. Hauek elementuaren angelu zuzenen aldaketa 
eragiten dute, elementuak bolumen aldaketarik gabeko distortsioa jasaten duelarik, 3.6 
irudian azaltzen denez.  
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Orain arte azaldutakoagatik, 3.1 irudian azaltzen den elementuak desplazamendu 
txikien problema batean jasaten dituen aldaketak honakoak dira: 

• Translazio hutsa, δ


 desplazamendu bektorearen arabera. 
• Solido zurrun gisako errotazoa, ω  bektorearen arabera. 
• Deformazio hutsa: 

o Deformazio normalak, iε : bolumen aldaketa eragiten dute. 

o Deformazio tangentzialak, ijγ : distortsioa edo forma aldaketa eragiten dute. 

3.8. BATERAGARRITASUN BALDINTZAK 
Deformazio hutsa adierazten duten deformazio tentsorearen 6 osagaiak 

desplazamenduaren 3 osagaiekin erlazionatuta daude. Desplazamenduak deformazioak 
integratuz lortu ahal izateko, integragarritasun baldintza batzuk bete behar dira. 
Baldintza hauek bateragarritasun ekuazioak deitzen dira. Desplazamenduak eta 
errotazioak diferentzial exakotak izatearen baldintzatik lor daitezke. Honen arabera, 
desplazamenduak eta errotazioak puntuaren funtzioak dira eta ez integratzeko 
ibilbidearen menpekoak. Frogapena xy planorako garatzen da, baina antzekoa da 3 
dimentsioen kasuan. Desplazamendu osagaien diferentzialak deformazio unitario eta 
errotazioen menpe honakoak dira:  

 
( )

( )
1
2

1
2

x xy xy

xy xy y

du dx dy

dv dx dy

ε γ ω

γ ω ε

= + +

= − +
 (3.61) 

(3.61) ekuazioko bi diferentzialak exaktoak izan daitezen, deribatu gurutzatuek 
berdinak izan behar dute. Baldintza hau inposatuz errotazio osagaien deribatuak lortzen 
dira:  

 
1

, , ,2

1
, , ,2

xy x x y xy x

xy y xy y y x

ω ε γ

ω γ ε

= −

= −
 (3.62) 

Errotazioa diferentzial exaktoa izan dadin deribatu gurutzatuek berdinak izan behar 
dute. Baldintza hau (3.62) ekuazioko lehen deribatuei aplikatuz, honakoa lortzen da: 
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 , , ,x yy y xx xy xyε ε γ+ =  (3.63) 

(3.63) ekuazioa lortzeko , ,xy xy xy yxε ε=  betetzen dela onartu da. Baldintza hori 

betetzeko deformazioen bigarren deribatuek jarraiak izan behar dute, Schwarz-en 
teoremaren arabera. Edo beste modu batera esanda, desplazamenduen hirugarren 
deribatuek jarraiak izan behar dute. Espazioko bateragarritasun baldintzak antzera 
lortzen dira:  

 

( )
( )
( )

1
, , , , , , ,2 ,

1
, , , , , , ,2 ,

1
, , , , , , ,2 ,

x yy y xx xy xy x yz yz x zx y xy z x

y zz z yy yz yz y zx zx y xy z yz x y

z xx x zz zx zx z xy xy z yz x zx y z

ε ε γ ε γ γ γ

ε ε γ ε γ γ γ

ε ε γ ε γ γ γ

+ = = − + +

+ = = − + +

+ = = − + +

 (3.64) 

3.9. GALGA EXTENSIOMETRIKOAK 
Deformazio unitario normalak esperimentalki neurtzeko erabiltzen diren gailuak 

dira. Piezen gainazalean itsasten diren erresistentzia elektrikoak dira, 3.7 irudian ikus 
daitekenez. Deformazioak galgaren erresistentzia aldaketa eragiten du eta gailu 
elektriko batekin neurtzen da. Erresistentzia aldaketa galgaren deformazioarekin 
erlazionatuta dagoenez, neurketa elektrikoa deformazio unitario normal batean 
bihurtzen da.  

 

3.7 irudia 

Galgen bidez bakarrik deformazio unitario normalak neurtzen direnez, hiru galgez 
osatutako konfigurazioak erabiltzen dira puntu baten inguruko deformazio egoera 
determinatzeko. Erabilienak galgak 45º eta 120ºra dituztenak dira. 3.8 irudian 120º 
dauden hiru galgako konfigurazioa azaltzen da. 
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3.8 irudia 

b eta c galgen norabideentzat (3.55) ekuazioa erabiliz:  

 
331

4 4 4

331
4 4 4

b x y xy

c x y xy

ε ε ε γ

ε ε ε γ

= + −

= + +
 (3.65) 

(3.65) emandako ekuazioak atalez atal batu eta kenduz eta x aε ε=  kontuan izanik, 

εy eta γxy lortzen dira:  

 
( )

( )

1
3

2
3

2y b c a

xy c b

ε ε ε ε

γ ε ε

=  + −  
= −

 (3.66) 

 

a 

b 

c 

 120º 

x 

 

 

120º 



4. GORPUTZ ELASTIKOA  

4.1. SARRERA 
 Tentsio eta deformazioen gaietan, materialaren homogenotasuna eta jarraitasuna 

bakarrik suposatu dira. Homogeneoa izanik, puntu guztietan propietateak berdinak 
dira. Gai honetan tentsio eta deformazio osagaien arteko erlazioak aztertuko dira 
material isotropo, elastiko eta lineal baten kasuan. Materiala isotropoa izateagatik, 
puntu bateko propietateak berdinak dira edozein norabidetan. Elastikoa izateagatik, 
materiala deformatu gabeko egoerara itzultzen da jasaten dituen indarrak kendu 
ondoren. Linealtasunak, tentsio eta deformazioen arteko erlazioak linealak direla 
adierazten du. Deformazio unitario normal eta tangentzialak txikiak dirlea onartuko da, 
0,02 baino txikiagoak. Tentsio eta deformazioen arteko erlazioak materialaren 
propietate fisiko-kimikoen menpekoak dira. Erlazioak linealak izateagatik, 
gainezarpenaren printzipioa betetzen da, hau da: eragin batzuri dagokion ondorioa, 
eragin bakoitzari dagokion ondorioen batura da.  

4.2. DEFORMAZIOAK TENTSIOEN MENPE 
Material isotropoetan, portaera elastiko lineala denean, x norabidean trakzioa 

eragiterakoan, deformazio tangentzialak nuloak dira eta honako deformazio normalak 
sortzen dira: 

 x x
x y zE E

σ σ
ε ε ε ν= = = −  (4.1) 
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E luzetarako elastikotasun modulua edo Young-en modulua da eta bere unitateak 
tentsioarenak dira. ν Poisson-en koefizientea da, adimentsionala izanik. Tentsio 
normalek hiru ardatzetan eragiten badute, deformazioak honako taulan adierazten dira: 

 xσ  yσ  zσ  

xε  x

E
σ  y

E
σ

ν−  z

E
σν−  

yε  x

E
σ

ν−  y

E
σ

 z

E
σν−  

zε  x

E
σ

ν−  y

E
σ

ν−  z

E
σ  

Gainezarpenaren printzipioaren arabera errenkada bakoitzeko gaiak batuz, ardatz 
bakoitzeko deformazioak lortzen dira: 

 

( )

( )

( )

1

1

1

x x y z

y y x z

z z x y

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

 = − + 

 = − + 

 = − + 

 (4.2) 

Tentsio ebakitzaileak aplikatzerakoan, deformazio normalak nuluak dira eta 
bakarrik tentsioaren planoko deformazio tangentzialak sortzen dira: 

 xy yz zx
xy yz zxG G G

τ τ τ
γ γ γ= = =  (4.3) 

G ebakidurako modulu elastikoa edo modulu tangentziala izanik. (4.2) eta (4.3) 
ekuazioek Hookeren legea osatzen dute.  

Ondoren E, G eta ν -ren arteko erlazioa deduzitzen da tentsio lau egoera batentzat. 
Erlazioa, materialaren propietatea izanik, edozein tentsio egoerarentzat egokia da. xy 
planoko tentsioen norabide nagusiak honakoak dira: 
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 ( )1

2
tan 2 xy

ten
x x

τ
θ

σ σ
=

−
 (4.4) 

Deformazioen norabide nagusiak plano berean honakoak dira: 

 ( )1tan 2 xy
def

x y

γ
θ

ε ε
=

−
 (4.5) 

(4.3) ekuazioen arabera deformazio tangentzialak nuluak dira tentsio tangentzialak 
nuluak direnean eta alderantziz. Ondorioz, material isotropo batean tentsio eta 

deformazioen norabide nagusiak berdinak dira, hau da, ( ) ( )1 1tan 2 tan 2def tenθ θ= . (4.2) 

eta (4.3) ekuazioak (4.5) ekuazioan ordezkatuz eta hau (4.4)-rekin berdinduz honakoa 
lortzen da:  

 
( )2 1

EG
ν

=
+

 (4.6) 

Tentsio tangentzial batek ikur bereko deformazio tangentziala sortzen duenez, G-k 
positiboa izan behar du eta, ondorioz: 

 1ν > −  (4.7) 

4.3. TENTSIOAK DEFORMAZIOEN MENPE 
(4.2) ekuazioak atalez atal batuz honakoa lortzen da: 

 
( ) ( )1 2

x y z x y zE
ν

ε ε ε σ σ σ
−

+ + = + +  (4.8) 

(4.8) ekuaziotik tentsioen batura askatuz: 

 ( ) ( )1 2x y z
E eσ σ σ

ν
+ + =

−
 (4.9) 
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x y ze ε ε ε= + +  deformazio bolumetriko unitarioa izanik. (4.2)1 ekuazioko eskuin 

atalaean xνσ  gaia batuz eta kenduz, eta (4.9) ekuazioa ordezkatuz honakoa lortzen da: 

 ( ) ( )
1 1

1 2x x
E e

E
ε σ ν ν

ν
 

= + − 
−  

 (4.10) 

(4.10) ekuaziotik xσ  askatuz: 

 
( ) ( )( )1 1 1 2x x

E E eνσ ε
ν ν ν

= +
+ + −

 (4.11) 

Beste ardatzetan antzera eginez, tentsio normalak deformazio normalen menpe 
honakoak dira: 

 
2
2

2

x x

y y

z z

G e
G e
G e

σ ε λ
σ ε λ

σ ε λ

= +
= +

= +

 (4.12) 

( )( )1 1 2
Eνλ

ν ν
=

+ −
 Lamé-ren koefizientea izanik. Tentsio tangentzialak 

deformazio tangentzialen menpe zuzenean (4.3) ekuazioetatik lortzen dira:  

 xy xy yz yz zx zxG G Gτ γ τ γ τ γ= = =  (4.13) 

“Tentsioak” gaian ikusi denez, tentsio esferikoa ( )1
3e x y zσ σ σ σ= + + da. 

“Deformazioak” gaian, bolumen aldaketa e deformazio bolumetrikoarekin erlazionatua 
dagoela ikusi da. Beraz, (4.8) ekuazioa honela idatz daiteke: 

 
( )3 1 2

ee
E

ν
σ

−
=  (4.14) 

(4.14) ekuazioaren arabera, gorputzaren bolumen aldaketa tentsio esferikoarekin 
dago erlazionatua eta ondorioz, distortsioa tentsio tentsorearen desbideratze 
osagaiarekin erlazionatua dago. 
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Tentsio egoera hidrostatiko batean, x y z pσ σ σ= = =  izanik, (4.14) ekuazioa 

honela idatz daiteke: 

 
( )3 1 2

Ep e
ν

=
−

 (4.15) 

(4.15) ekuaziotik, k bolumeneko elastikotasun modulua honela definitzen da: 

 
( )3 1 2

Ek
ν

=
−

 (4.16) 

p presioa positiboa bada bolumena handitzen da eta e positiboa da. Aldiz, p 
negatiboa bada bolumenta txikitu egiten da eta e negatiboa da. Ondorioz, (4.16) 
ekuazioko bolumeneko elastikotasun moduluak positiboa izan behar du eta honakoa 
bete behar da: 

 1 2 0 0,5ν ν− > ⇒ <  (4.17) 

(4.7) eta (4.17) ekuazioetako baldintzak elkartuz, Poisson-en koefizientearen mugak 
honakoak dira: 

 1 0,5ν− < <  (4.18) 

4.4. TENPERATURAREN ERAGINA 
Tenperatura aldaketak deformazio unitario normalak eragiten ditu. Deformazio 

hauen balioa Tα∆  da, α  dilatazio koefizientea eta T∆  temperatura aldaketa izanik, 
erreferentziatzat deformazio termikorik gabeko egoera hartutua. α  konstantea dela eta 
gainezarpenaren printzipioa erabil daitekela suposatuko da. Ondorioz, deformazio 
normalak honakoak dira: 

 

( )

( )

( )

1

1

1

x x y z

y y x z

z z x y

T
E

T
E

T
E

ε σ ν σ σ α

ε σ ν σ σ α

ε σ ν σ σ α

 = − + + ∆ 

 = − + + ∆ 

 = − + + ∆ 

 (4.19) 
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(4.19) ekuazioak honela idatz daitezke: 

 

( )

( )

( )

1

1

1

x x x y z

y y y x z

z z z x y

T
E

T
E

T
E

ε ε α σ ν σ σ

ε ε α σ ν σ σ

ε ε α σ ν σ σ

 ′ = − ∆ = − + 

′  = − ∆ = − + 

 ′ = − ∆ = − + 

 (4.20) 

(4.20) ekuazioetatik, aurreko ataleko prozedura jarraituz, tentsioak deformazioen 
menpe honakoak dira: 

 
2
2

2

x x

y y

z z

G e
G e
G e

σ ε λ
σ ε λ

σ ε λ

′ ′= +
′ ′= +

′ ′= +

 (4.21) 

(4.21) ekuazioan e’ honakoa izanik: 

 3 3x y z x y ze T e Tε ε ε ε ε ε α α′ ′ ′ ′= + + = + + − ∆ = − ∆  (4.22) 

4.5. TENTSIO ETA DEFORMAZIO EGOERA LAUA 

4.5.1 Tentsio egoera laua 
Tentsio egoera lauean, honakoa betetzen da: 

 0z zx yzσ τ τ= = =  (4.23) 

Tentsio egoera laua, lodiera txikiko piezetan eta orohar, gorputzen kanpo aldean 
gertatzen da, z norabide normalean ez baitago deformazioa eragozten duen tentsiorik. 
(4.20) ekuazioetatik, deformazioak tentsioen menpe honakoak dira: 

 

( )

( )

( )

1

1

1

x x y

y y x

z x y

E

E

E

ε σ νσ

ε σ νσ

ε ν σ σ

′ = −

′ = −

 ′ = − + 

 (4.24) 
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Galga extensiometrikoekin egiten diren neurketetan tentsio egoera laua kontsidera 
daiteke. (4.21) ekuazio orokorrak erabili ordez, egokiagoa da zuzenean tentsio 
normalak analitikoki determinatzea. (4.24) ekuazioetako lehen bietatik honakoa lortzen 
da: 

 
( ) ( )

( ) ( )

2

2

1

1

x x y

y x y

E

E

σ ε νε
ν

σ νε ε
ν

′ ′= +
−

′ ′= +
−

 (4.25) 

Tenperaturaren eragina kontuan hartu gabe, (4.24) ekuazioan x yσ σ= −  bete behar 

da 0zε =  lortzeko. 

4.5.2 Deformazio egoera laua 
Deformazio egoera lauean honakoa betetzen da: 

 0z zx yzε γ γ= = =  (4.26) 

Deformazio egoera laua, lodiera handiko gorputzen barne aldean gertatzen da, 
deformazio askatasunik ez dagoenean. Deformazioa eragozteko, z norabideko tentsio 
normalak sortzen dira. Deformazio eta tentsioen arteko erlazioak lortzeko, ekuazio 
orokorrak erabiltzen dira 0zε =  baldintzarekin. Tenperaturaren eragina kontuan hartu 

gabe, (4.12) ekuazioan 0zσ =  lortzeko, x yε ε= −  bete behar da. 

4.6. DEFORMAZIO ENERGIA  
F indarra jasaten duen malguki lineal batean, bere luzapena edo laburpena x izanik, 

indarraren eta desplazamenduaren arteko erlazioa F kx=  da. Deformatu gabeko 
egoeratik indarrak egindako W lana U energia potentzial elastikoan bihurtzen da: 

 1
2W U Fx= =  (4.27) 

1
2  gaia erlazio linealaren ondorio da. Gorputz elastiko baten kasuan, elementu 

diferentzial batean tentsioek eta bolumen indarrek egiten duten lana determinatuko da. 
4.1 irudian elementu diferentziala eta bere aurpegietako tentsioak azaltzen dira. 
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Ezkerreko 1 aurpegian, tentsioen eta desplazamenduen norantzak aurkakoak izanik, 
lana honakoa da:  

 ( ) ( ) ( )1
2 1 11x xy xzu v w dydzσ τ τ − + +   (4.28) 

 
4.1 irudia 

2 aurpegian, 1 aurpegiarekiko aldaketa x ardatzean gertatzen da eta tentsioek eta 
desplazamenduek norantza bera dute. Ondorioz, lana positiboa da: 

 ( ) ( ) ( ) ( ) ( ) ( )1
2 1 , 1 ,1 ,x x xy xy xz xzx xx

u u dx v v dx w w dx dydzσ σ τ τ τ τ + + + + +   (4.29) 
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y 

z 
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O 

(σy)3 

(τyx)3 (τyz)3 

(σx)1 
(τxz)1 

(τxy)1 
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(τxz)2 
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(τzy)5 
(τzy)6 
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(4.28) eta (4.29) ekuazioetatik, 1 eta 2 aurpegietan tentsioek egindako lana honakoa 
da. 

 ( ) ( ) ( )1
2 , ,,x xy xzx xx

u dx v dx w dx dydzσ τ τ + +   (4.30) 

Beheko aurpegia 3 eta goikoa 4 izanik, bertako tentsioek egindako lana antzera 
determina daiteke, aldaketak y ardatzean direlarik: 

 ( ) ( ) ( )1
2 , , ,yx y yzy y y

u dy v dy w dy dxdzτ σ τ + +  
 (4.31) 

Atzeko aurpegia 5 eta aurrekoa 6 izanik, tentsioek egindako lana honakoa da: 

 ( ) ( ) ( )1
2 , , ,zx zy yzz z z

u dz v dz w dz dxdyτ τ τ + +   (4.32) 

Azkenik, 4.1 irudian azaltzen ez diren bolumeneko indarren lana honakoa da: 

 ( )1
2 x y zF u F v F w dV+ +  (4.33) 

Elementu osoan indarrek egindako lana determinatzeko, (4.30)-(4.33) gaietako 
ekarpenak batu behar dira. Desplazamenduen deribatuak dituzten batugaiak 
desplazamenduak dituzten batugaietatik bereiziz: 

 

( ) ( ) ( )
( ) ( ) ( )

1
, , , , , , , , ,2

1
, , , , , , , , ,2

x x yx y zx z x xy x y y zy z y xz x yz y z z z

x x y y z z xy x y yz y z zx x z

dV F u F v F w

dV u v v v u w v w u

σ τ τ τ σ τ τ τ σ

σ σ σ τ τ τ

 + + + + + + + + + + + 
 + + + + + + + + + 

 (4.34) 

“Tentsioak” gaian ikusitako orekaren ekuazio diferentzialen arabera, (4.34)-ko 
lehen lerroko batugaiak nuluak dira. Bigarren lerroan berriz, “Deformazioak” gaian, 
desplazamendu txikien problema batean, aztertutako deformazio normal eta 
tangentzialak azaltzen dira. Beraz, elementu diferentzialean tentsoek egindako lana 
honakoa da: 
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 ( )1
2 x x y y z z xy xy yz yz zx zxdW dVσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +  (4.35) 

Malgukiaren kasuan bezala, lan hori U deformazio energia elastikoan bihurtzen dela 
onartzen da, hau da: dU dW= . (4.35) ekuaziotik, bolumen unitateko energia 
potentzial elastikoa edo deformazio energia honakoa da: 

 ( )1
0 2 x x y y z z xy xy yz yz zx zx

dUU
dV

σ ε σ ε σ ε τ γ τ γ τ γ= = + + + + +  (4.36) 

Gorputz osoaren energia potentzial elastikoa edo deformazio energia honakoa da: 

 0V
U U dV= ∫  (4.37)



5. PROBLEMA ELASTIKOA  

5.1. SARRERA 
”Tentsioak” gaian oreka ekuazioak lortu dira. “Deformazioak” gaian, 

desplazamenduen eta deformazio unitarioen arteko erlazioez gain, bateragarritasun 
ekuazioak lortu dira. “Gorputz Elastikoa” gaian, tentsioen eta deformazioen arteko 
erlazioak aztertu dira. Gai honetan, ekuazio guztiak bildu eta Elastikotasunaren 
Teoriako problema orokorra nola plantea daitekeen azalduko da. 

5.2. ELASTIKOTASUNAREN TEORIAKO EKUAZIOAK 
“Tentsioak” gaian, elementu diferentzial batean indarren oreka planteatuz, honako 

ekuazioak lortu dira: 

 
, , ,

, , ,

, , ,

0

0

0

x x yx y zx z x

xy x y y zy z y

xz x yz y z z z

F
F
F

σ τ τ

τ σ τ

τ τ σ

+ + + =

+ + + =

+ + + =

 (5.1) 

Momentuen oreka ekuezioetatik, tentsio ebakitzaileak simetrikoak direla 
ondorioztatu da, hau da ij jiτ τ= . Ekuazio diferentzial hauek ingurune baldintzak bete 

behar dituzte. Gorputzaren ingurunean eragiten duten gainazal indarrak nT


 eta 

gainazalaren normala n̂  izanik, baldintza horiek honakoak dira: 
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nx x x yx y zx z

ny xy x y y zy z

nz xz x yz y z z

T n n n
T n n n
T n n n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +

= + +

 (5.2) 

“Deformazioak” gaian honako erlazioa lortu da desplazamendu osagaien eta 
deformazio unitarioen artean: 

 
, , ,

, , ,

, , ,

x x xy y x

y y yz z y

z z zx x z

u u v
v v w
v w u

ε γ

ε γ

ε γ

= = +

= = +

= = +

 (5.3) 

Gainera, (5.3) ekuazioetako 6 deformazioak integratuz 3 desplazamendu osagaiak 
lortzeko baldintzak deduzitu dira. Hauek bateragarritasun ekuazioak dira: 

 

( )
( )
( )

1
, , , , , , ,2 ,

1
, , , , , , ,2 ,

1
, , , , , , ,2 ,

x yy y xx xy xy x yz yz x zx y xy z x

y zz z yy yz yz y zx zx y xy z yz x y

z xx x zz zx zx z xy xy z yz x zx y z

ε ε γ ε γ γ γ

ε ε γ ε γ γ γ

ε ε γ ε γ γ γ

+ = = − + +

+ = = − + +

+ = = − + +

 (5.4) 

Hooke-ren legeak tentsioak eta deformazioak erlazionatzeko beste 6 ekuazio ematen 
ditu. Deformazioak tentsioen menpe ematen dituztenak honakoak dira: 

 

( )

( )

( )

1

1

1

xy
x x y z xy

yz
y y x z yz

zx
z z x y zx

E G

E G

E G

τ
ε σ ν σ σ γ

τ
ε σ ν σ σ γ

τ
ε σ ν σ σ γ

 = − + = 

 = − + = 

 = − + = 

 (5.5) 

Tentsioak deformazioen menpe ematen dituztenak honakoak dira: 

 

2

2

2

x x xy xy

y y yz yz

z z zx zx

G e G
G e G
G e G

σ ε λ τ γ

σ ε λ τ γ

σ ε λ τ γ

= + =

= + =

= + =

 (5.6) 
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Beraz, problema elastikoaren ezezagunak honakoak dira: 

• 6 tentsio osagai: xσ , yσ , zσ , xyτ , yzτ , zxτ  

• 3 desplazamendu osagai: u, v, w 
• 6 deformazio osagai: xε , yε , zε , xyγ , yzγ , zxγ  

15 ezezezagunentzat beste 15 ekuazio ditugu:  

• (5.1) ekuazioak: 3 oreka ekuazio 
• (5.3) ekuazioak: desplazamenduen eta deformazio unitarioen arteko 6 

erlazio 
• (5.5) edo (5.6) ekuazioak: tentsioen eta deformazioen arteko 6 erlazio  

5.3. PROBLEMA ELASTIKOAREN PLANTEAMENDUA 

5.3.1 Desplazamenduak ezezagun bezala hartuta 
Ingurune baldintzak desplazamendu baldintza bezala ematen direnean, 

desplazamenduak ezezagun bezala hartzea da egokiena. Tentsioak deformazioen 
menpe ematen dituzten (5.6) ekuazioak (5.1) oreka ekuazioetan ordezkatuz, hauek 
deformazioen menpe adierazten dira. Desplazamendu eta deformazio unitarioak 
erlazionatzen dituzten (5.3) ekuazioak erabiliz, 3 oreka ekuazioak 3 desplazamendu 
ezezagunen menpe gelditzen dira. Lortzen diren ekuazioak Navier-en ekuazioak 
deitzen dira eta honakoak direla froga daiteke: 

 

( )( ) ( )
( )( ) ( )
( )( ) ( )

, , , , , ,,

, , , , , ,,

, , , , , ,,

0
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x x y z xx yy zzx
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F G u v w G v v v

F G u v w G w w w

λ

λ

λ

+ + + + + + + =

+ + + + + + + =

+ + + + + + + =

 (5.7) 

5.3.2 Tentsioak ezezagun bezala hartuta  
Ingurune baldintzak kanpo indarren moduan ematen direnean, ezezagun bezala 

tentsioak hartzea da egokiena. (5.5) ekuazioak erabiliz, deformazioak tentsioen menpe 
lortzen dira. Hauek (5.4) bateragarritasun ekuazioetan ordezkatuz eta (5.1) oreka 
baldintzak barneratuz, Beltrami-Michell-en 6 ekuazioak lortzen direla froga daiteke: 
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 (5.8) 

1 x y zI σ σ σ= + +  tentsio tentsorearen lehen inbariantea izanik. 

5.3.3 Materialen erresistentzia 
Kasu askotan, gorputzaren ezaugarri geometrikoek hipotesi sinplifikatzaileak egitea 

ahalbideratzen dute. Adibidez: 

• Pieza prismatikoak: luzera beren sekzioko dimentsioak baino nabarmenki 
handiagoa dute 

• Kableak: trakzio tentsioak bakarrik jasan dezaketela suposatzen da 
• Plakak: gainazal lauak dira, azaleraren dimentsioak lodierarenak baino 

nabarmenki handiagoak izanik  
• Oskolak: gainazal kurbatuak dira, azaleraren dimentsioak lodierarenak 

baino nabarmenki handiagoak izanik 
• Mintzak: lodiera txikiko oskolak dira. Trakzio edo konpresioan lan egiten 

dute 

Ikasgai honetan, pieza prismatikoak eta mintzak aztertuko dira. Pieza 
prismatikoetan, sekzioko tentsio eta deformazioei buruzko hipotesi sinplifikatzaileak 
egiten dira. Horrela, Elastikotasunaren Teoriako ekuazioak sinplifikatu egiten dira. 
Hipotesi sinplifikatzaile horiek erabilita sortzen den ebazpen eremuari Materialen 
Erresistentzia deitzen zaio. 
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5.3.4 Metodo numerikoak 
Konputagailuen garapenari esker, problema elastikoa metodo numeriko 

desberdinak erabiliz ebatz daiteke modu hurbilduan. Ingeniaritzan hedatuen dagoen 
metodoa Elementu Finituen Metodoa da: ingurune jarraitua elementu finituetan 
zatitzen da eta elementuen arteko korapiloen desplazamenduak hartzen dira ezezagun 
bezala. Deformazio energiarekin erlazionatutako metodoak erabiliz, oreka baldintzak 
ezartzen dira eta korapilo horietako desplazamenduak lortzen dira ekuazio sistema bat 
ebatziz. Elementu baten edozein puntutako desplazamendua interpolazio funtzioen 
bidez determinatzen da. Desplazamendu horiek deribatuz, deformazio unitarioak 
lortzen dira eta Hooke-ren legea erabiliz tentsioak lortzen dira. 5.1 irudian azaltzen den 
adibidean, gorputzaren ezkerreko aldeko inguruneak desplazamendua eragotzita du eta 
eskuin aldeko ingurunean 0,1 mm-ko desplazamendua inposatzen da. 

 
5.1 irudia 

 





6.  HUTSEGITE IRIZPIDEAK  

6.1. SARRERA 

Trakzio saiakuntza batean, σe muga elastikoa determina daiteke. Material harikor 
batean, muga horren ondoren materialak egoera plastikoan deformatzen jarraitzen du 
eta material hauskor baten kasuan hautsi egiten da. Bi egoera horietan, materialak huts 
egin duela esaten da, material harikorraren kasuan hautsi ez bada ere. Tentsio egoera 
orokor batean, hutsegitea noiz gertatzen den jakitea zailagoa da. Edozein punturen 
tentsio egoera 3 tentsio nagusiekin adieraz daiteke. Honako galdera plantea daiteke: 
tentsio nagusien zein konbinaziorentzat iristen da materiala bere hutsegite egoerara? 
Galdera horri erantzuteko irizpide desberdinak erabil daitezke, baina denek ezaugarri 
komun bat dute: tentsio egoera orokorra norabide bakarreko egoeran bihurtzen dute, 
σbal tentsio baliokidea definituz. Ondoren, kasu guztietan tentsio baliokide hori 
norabide bakarreko saiakuntzan lortutako muga balioarekin alderatzen da. Ondorioz, 

bal eσ σ<  betetzen bada, hutsegiterik ez da gertatzen. 

Gai honetan, huts egitetik zein urrun gauden adierazteko, edozein irizpidetan 
Segurtasun Faktorea (SF) honela definituko da: 

 e

bal

SF σ
σ

=  (6.1) 

Segurtasun faktorea determinatzeko tentsio egoera ezagutu behar da eta ondorioz 
konprobaketa kalkuluetan erabiltzen da. 
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Segurtasun Koefizientea (SK = n) aldiz, diseinuko kalkuluak egiterakoan erabiltzen 
den zenbakia da. Kalkuluetan bi eragin izan ditzazke: materialaren propietateak 
murriztu edo sistemak jasaten dituen kargak handitu. Ikasgai honetan, materialaren 
propietateak murriztuko dira, tentsio onargarria σon honela definituz: 

 1e
on n

n
σ

σ = >  (6.2) 

6.2. TENTSIO MAXIMOAREN IRIZPDIEA: RANKINE  
Tentsio normalen balio absolutu maximoa muga elastikora iristen denan, hutsegitea 

gertatzen da. Tentsio baliokidea honakoa da: 

 maxbalσ σ=  (6.3) 

(6.3) ekuazioko tentsio maximoa honakoa izanik: 

 max 1 2 3max( , , )σ σ σ σ=  (6.4) 

Trakzio eta konpresioko muga elastikoak desberdinak badira, etσ  eta ecσ  hurrenez 

hurren, (6.3) ekuazioko irizpidea honela idatz daiteke: 

 max

max

0
0

bal et

bal ec

σ σ σ
σ σ σ

> <
< >

 (6.5) 

(6.5) ekuazioaren arabera, tentsio maximoa trazkiokoa bada, muga trakzioko limite 
elastikoa da eta tentsio maximoa konpresiokoa bada, muga konpresioko limite elastikoa 
da. Irizpide honek tentsio nagusien arteko elkarrekintzarik ez du kontuan hartzen. 
Irizpide hau material hauskorretan, balσ  tentsio baliokidea beste tentsio nagusiak baino 

nabarmenki handiagoa denean erabil daiteke. 

6.3. DEFORMAZIO MAXIMOA: SAINT VENANT 
Deformazio unitario normalen balio absolutu maximoa balio kritikora iristen denan, 

hutsegitea gertatzen da. Tentsio baliokidea honakoa da: 

 maxbal Eσ ε=  (6.6) 
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Deformazio nagusiak honakoak izanik: 

 

( )

( )

( )

1 1 2 3

2 2 1 3

3 3 1 2

1

1

1

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

=  − +  

=  − +  

=  − +  

 (6.7) 

Deformazio maximoa balio absolutuan honakoa da: 

 max 1 2 3max( , , )ε ε ε ε=  (6.8) 

Deformazio maximoaren irizpidea honela idatz daiteke: 

 max

max

0
0

bal et

bal ec

ε σ σ
ε σ σ

> <
< >

 (6.9) 

Irizpide hau material hauskorretan deformazio nagusi bat besteak baino nabarmenki 
handiagoa denean da erabilgarria. 

6.4. MOHR-EN EGOERA LIMITEAK 
Hutsegitea gertatzen denean tentsio nagusien konbinazioa egoera kritikora heltzen 

da. Tentsioen egoera horri Mohr-en zirkulu maximo bat dagokio. Haustura eragiten 
duten tentsio egoera desberdinei dagokien Mohr-en zirkuluak marrazten badira, zirkulu 
horiek guztiak inguratzen dituen kurbari, kurba intrintsekoa deitzen zaio, 6.1 irudian 
azaltzen denez. Tentsio egoera edozein izanik ere, dagokion Mohr-en zirkulu maximoa 
kurba intrintsekoaren barnean baldin badago, ez da hausturarik gertatzen. 
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6.1 irudia 

Kurba intrintsekoa lortzeak tentsio egoera kopuru desberdin batzuk aztertzea 
dakarrenez, kurba hori erresistentzia intrintsekoko zuzenagatik ordezkatzen da, trakzio 
hutsa eta konpresio hutsa egoerei dagokien zirkuluak erabiliz, 6.2 irudian azalzen 
denez.  

 
6.2 irudia 

Zuzen intrintsekoaren ekuazioa honakoa da: 

 tann nOCτ σ ϕ= −  (6.10) 

σn 
O 

Kurba intrintsekoa 

σn O Ct Cc 

A 

B D ϕ 
C 

nτ
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6.2 irudian ikusten denez: 

 ( )
( )

1
2
1
2

sin ec et

ec et

AD
BD

σ σ
ϕ

σ σ
−

= =
+

 (6.11) 

et

ec

k σ
σ

=  izanik, (6.11) ekuazioa honela idatz daiteke: 

 1sin
1

k
k

ϕ −
=

+
 (6.12) 

Tentsio baliokidea lortzeko, tentsio egoerari dagokion eta σbal tentsioari dagokion 
zirkuluen ikutzaile komunak horizontalarekin zuzen intrintsekoaren ϕ angelu bera 
osatzen duela suposatzen da, 6.3 irudian ikus daitekenez. Bertan, tentsio egoerari 
dagokion zirkulu maximoa bakarrik adierazi da. 

 
6.3 irudia 

6.3 irudia aztertuz, honakoa betetzen da: 

 sin QR
QS

ϕ =  (6.13) 

(6.13) ekuazioko zuzenkien luzerak, 6.3 irudiaren arabera honakoak dira: 

σn O 
C Cbal 

S R ϕ 
Q 

1 3 

nτ
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( )

( )

1
1 32

1
1 32

bal

C Cbal bal

QR

QS

σ σ σ

σ σ σ σ σ

=  − −  

= − =  + −  
 (6.14) 

(6.14) ekuazioak (6.13) ekuazioan ordezkatuz eta (6.12) ekuazioa kontuan izanik, 
honakoa lortzen da: 

 1 3bal kσ σ σ= −  (6.15) 

Hutsegitea ez gertatzeko baldintza honakoa da: 

 bal etσ σ<  (6.16) 

(6.16) ekuazioak konpresio hutseko egoera ere kontuan hartzen du, etσ  bakarrik 

azaltzen bada ere. Izan ere, konpresiozko hutsegitean tentsio egoera 1 0σ =  eta 

3 ecσ σ= −  izanik, (6.15) ekuaziotik bal etσ σ=  lortzen da. Irizpide hau material 

harikorrentzan eta hauskorrentzat erabil daiteke. 

6.5. TENTSIO EBAKITZAILE MAXIMOA: TRESCA 
Irizpide honen arabera, tentsio ebakitzaile maximoak balio kritikoa hartzen duenean 

hutsegitea gertatzen da.  

 
6.4 irudia 

σ 3 2 1 
O 

nτ
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Tentsio nagusiak 1 2 3σ σ σ> >  izendatuz 6.4 irudian azaltzen den bezala, tentsio 

ebakitzaile maximoa Mohr-en zirkulu maximoaren erradioa denez: 

 ( )1
max 1 32τ σ σ= −  (6.17) 

Tentsio baliokidearen kasuan tentsio ebakitzaile maximoa honakoa da: 

 1
max 2 balτ σ=  (6.18) 

(6.17) eta (6.18) ekuazioak berdinduz: 

 1 3balσ σ σ= −  (6.19) 

(6.19) ekuazioaren arabera, Trescaren irizpidea Mohr-en irizpidearen kasu 
partikularra da, k = 1 denean. Kasu honetan, trakzio eta konpresio zirkuluek erradio 
bera dutenez, zuzen intrintsekoa horizontala da. (6.12) ekuazioaren arabera ere 
sin 0ϕ =  dela ikusten da. Irizpide hau material harikorrentzat da erabilgarria. 

6.6. DISTORTSIO ENERGIA MAXIMOA: VON MISES 
Irizpide honen arabera, distortsio energia balio kritikora iristen denean, hutsegitea 

gertatzen da. “Gorputz Elastikoa” gaian esan bezala, gorputzaren bolumen aldaketa 
tentsio tentsorearen eσ  osagai esferikoarekin dago erlazionatua. Bolumen unitateko 

deformazio energia bolumen aldaketari eta distortsioari dagozkion batugaietan 
banatuko da: 

 0 0 0
b dU U U= +  (6.20) 

0
bU  bolumen aldaketari dagokiona eta 0

dU  distortsioari dagokiona izanik. (6.20)

ekuaziotik, distortsio energia honakoa da: 

 0 0 0
d bU U U= −  (6.21) 

Bolumen unitateko deformazio energia elastikoa honakoa da: 

 02 x x y y z z xy xy zx zx yz yzU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +  (6.22) 
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(6.22) ekuazioan deformazioak tentsioen menpe idatziz: 

 ( ) ( )2 2 2 2 2 2
0

1 12 2x y z x y y z z x xy yz zxU
E G

σ σ σ ν σ σ σ σ σ σ τ τ τ = + + − + + + + +   (6.23) 

Tentsio esferikoari dagokion tentsio matrizea honakoa da: 

 [ ] ( )1
3

0 0
0 0
0 0

e

e e e x y z

e

σ
σ σ σ σ σ σ

σ

 
 = = + + 
  

 (6.24) 

(6.24) ekuazioko matrizea kontuan izanik eta osagaiak (6.23) ekuazioko adierazpen 
orokorrean barneratuz, bolumen aldaketari dagokion deformazio energia honakoa da: 

 
( ) ( ) ( )22

0

3 1 2 1 2
2

3
b

e x y zU
E E

ν ν
σ σ σ σ

− −
= = + +  (6.25) 

Distortsio energia determinatzeko, (6.23) eta (6.25) ekuazioak (6.21) ekuazioan 
barneratuz: 

 
( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

0

1 12
3

d
x y y z z x xy yz zxU

E G
ν

σ σ σ σ σ σ τ τ τ
+  = − + − + − + + +  

 (6.26) 

(6.26) ekuazioa tentsio baliokidearen egoerari aplikatuz, x balσ σ=  eta beste guztiak 
nuluak direnez: 

 ( ) ( ) 2
0

2 1
2

3
d

balbal
U

E
ν

σ
+

=  (6.27) 

Egoera orokorrak eta tentsio egoera baliokideak distortsio energia bera izan behar 
dutenez, (6.26) eta (6.27) ekuazioak berdinduz, honakoa lortzen da: 

 ( ) ( ) ( ) ( )2 2 2 2 2 21
2

6bal x y y z z x xy yz zxσ σ σ σ σ σ σ τ τ τ= − + − + − + + +  (6.28) 

(6.28) ekuazioa norabide nagusietan honakoa da: 
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 ( ) ( ) ( )2 2 21
1 2 2 3 3 12balσ σ σ σ σ σ σ= − + − + −  (6.29) 

Tentsio egoera laua denean (6.28) ekuazioa honela gelditzen da:  

 2 2 23bal x x y y xyσ σ σ σ σ τ= − + +  (6.30) 

xy planoko tentsio nagusiak 1σ  eta 2σ  izanik, (6.29) ekuazioa honela gelditzen da: 

 2 2
1 1 2 2balσ σ σ σ σ= − +  (6.31) 

6.4 irudian Tresca eta Von Mises-en irizpidea adierazten da tentsio egoera lau 
batean. Hexagonoaren barnean dauden puntuek Trescaren irizpidea betetzen dute eta 
elipsearen barnean daudenak Von Mises-en irizpidea betetzen dute. Grisez azaltzen den 
gainazaleko tentsio egoerek Von Mises-en irizpidearen arabera ez dute huts egiten 
baina Trescaren irizpidearen arabera huts egiten dute. Ondorioz, Tresca-ren irizpidea 
segurtasunaren aldekoa da.  

 

6.5 irudia 

σ1 

σ2 

σe 

σe 

−σe 

−σe 





7.  PIEZA PRISMATIKOAK: 

SEKZIOKO INDAR ETA 

MOMENTUAK  

7.1. SARRERA 
Gainazal lau baten grabitate zentruak kurba baten zehar ibiltzerakoan sortzen duen 

bolumena, gainazala eta kurba elkartzutak izanik, pieza prismatikoa bezala definitzen 
da. Gainazalari pieza prismatikoaren sekzio zuzena edo sekzioa eta kurbari, piezaren 
ardatza deitzen zaio. Pieza prismatikoan, luzera dimentsioa sekzioko dimentsioak 
baino nabarmenki handiagoa da. Egituretan, orientazio nagusia horizontala denean, 
habea deitzen zaio. Orientazio nagusia bertikala denean, zutabea deitzen zaio. Makinen 
potentzia transmisioko ardatzak eta egitura giltzatuetako barrak ere pieza prismatikoak 
dira.  

Gai honetan, pieza prismatikoaren sekzio batean diharduten barne indarren 
erresultantea eta momentu erresultantea grabitate zentrura laburbilduko da. Bi bektore 
horien osagaiak, sekzioko indar eta momentuak dira hurrenez hurren. Tentsioak 
gainazal unitateko barne indarrak direnez, sekzioko indar eta momentuak sekzioko 
tentsio eremuaren erresultantearen eta momentu erresultantearen osagaiak direla 
esango dugu. 
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7.2. SEKZIOKO INDAR ETA MOMENTUAK  

7.1 irudian 1F


, 2F


… NF


 kanpoko indar sistema jasaten duen pieza prismatikoaren 

Solido Askearen Diagrama (SAD) azaltzen da. Indar horien artean, piezak izan 
ditzaken loturei dagozkien erreakzioak ere barneratzen dira.  

 

7.1 irudia 

Pieza prismatikoa sekzio batetik mozten badugu, I eta II zatiak lortzen dira. Mozte 
gainazalean barne indarrak azaltzen dira, zati bakoitzaren oreka baldintzak bete 
daitezen. Barne indar sistema hori sekzioaren grabitate zentruan laburbilduz, 7.1 

irudian azaltzen diren iR


 erresultantea eta GiM


 momentu erresultantea lortzen dira, 

,i I II=  izanik. I zatia orekan egon dadin honako ekuazioak bete beha dira: 

 
( )
( )

0 0

0 0

kan II

G Gkan GII

F F R

M M M

= ⇒ + =

= ⇒ + =

∑ ∑
∑ ∑

   

   

 (7.1) 

II zatia orekan egon dadin, honakoa bete behar da: 
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( )
( )

0 0

0 0

kan IIII

G Gkan GIIII

F F R

M M M

= ⇒ + =

= ⇒ + =

∑ ∑
∑ ∑

   

   

 (7.2) 

(7.1) eta (7.2) ekuazioetako batukarien esanahia honakoa da: 

( )kan i
F∑


: 1F


, 2F


… NF


 kanpoko indarren erresultantea i zatian 

( )Gkan i
M∑


: 1F


, 2F


… NF


 kanpoko indarren momentu erresultantea i zatian 

Kanpoko indarrak ezagunak direnez, (7.1) eta (7.2) ekuazioen arabera, zati 
bakoitzaren oreka planteatuz barne indarren erresultantea eta momentu erresultantea 
determina daitezke. Kalkulu prozedura honi A prozedura deituko zaio.  

Akzio-erreakzio printzipoaren arabera honakoa betetzen da:  

 I II

GI GII

R R

M M

= −

= −

 

 
 (7.3) 

(7.3) ekuazioak (7.1) ekuazioan ordezkatuz: 

 
( )

( )
kan III

Gkan GIII

F R

M M

=

=

∑
∑

 

 

 (7.4) 

(7.4) ekuazioen arabera, I aldeko kanpo indarren erresultantea eta momentu 
erresultantea II aldeko barne indarren erresultantearen eta momentu erresultantearen 
berdinak dira, hurrenez hurren. Orain (7.3) ekuazioak (7.2) ekuazioetan ordezkatuz, 
honakoa lortzen da: 

 
( )

( )
kan III

Gkan GIII

F R

M M

=

=

∑
∑

 

 

 (7.5) 
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(7.5) ekuazioen arabera, II aldeko kanpo indarren erresultantea eta momentu 
erresultantea I aldeko barne indarren erresultantearen eta momentu erresultantearen 
berdinak dira, hurrenez hurren. (7.4) eta (7.5) ekuazioek barne indarren erresultantea 
eta momentu erresultantea determinatzeko beste bide bat ematen dute, alde bateko 
kanpo indarren eta beste aldeko barne indarren arteko baliokidetasuna ezarriz. 
Prozedura honi B prozedura deituko zaio. 

Aurrerantzean ezker aldea hartuko da eta I azpiindizea ez da erabiliko. Honako 
baldintzak bete behar dituen Gxyz erreferentzia sistema definitzen da:  

• Sorrera sekzioaren G grabitate zentruan du 
• x ardatza piezaren ardatzarekiko ikutzailea, hau da, sekzioarekiko 

elkartzuta da 
• y eta z ardatzak sekzioaren planoan daude 

Barne indarren erresultantea eta momentu erresultantea ardatzen arabera 
deskonposatzen dira, 7.2 irudian azaltzen denez: 

 
ˆˆ ˆ

ˆˆ ˆ
y z

G t y z

R Ni T j T k

M M i M j M k

= + +

= + −





 (7.6) 

 

7.2 irudia 

G F1 

F2 

Tz 
x 

y 

z 

Ty 

N Mt 

My 

Mz 
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(7.6) ekuazioan azaltzen diren barne indarren erresultantearen eta momentu 
erresultantearen osagaiak sekzioko indar eta momentuak dira. Izendapena eta esanahi 
fisikoa honakoa da: 

• N: indar normala, axiala. Ondoz ondoko bi sekzioen desplazamendu axial 
erlatiboa eragotzen du 

• Ty, Tz: indar ebakitzaileak, tangentzialak. Ondoz ondoko bi sekzioen 
desplazamendua eragozten dute sekzioaren planoan, y, z norabidetan, 
hurrenez hurren 

• Mt: momentu bihurtzailea. Bi sekzioen arteko x ardatzarekiko biraketa 
erlatiboa eragozen du 

• My, Mz: momentu makurtzaileak. Bi sekzioen arteko y, z ardatzekiko 
biraketa erlatiboak eragozten ditu, hurrenez hurren 

Tentsioak gainazal unitateko barne indarrak direnez, sekzioko indar eta momentuak 
bertako tentsio banaketarekin erlaziona daitezke. 7.3 irudian sekzioko indar eta 
momentuak eta y, z koordenatuak dituen dA azalera elementu batean diharduten 
tentsioak azaltzen dira, sekzioaren planoan. N indar normala eta σx tentsio normala 
planoarekiko elkartzutak dira, kanporantz. 

 

7.3 irudia 

Tz 
x 

y 

z Ty 

N 

My 

Mz 

τxy 

τzx σx 

Mt 

y 

z dA 
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Tentsioen erresultantearen eta momentu erresultantearen osagaiak kalkulatuz, 
sekzioko indar eta momentuen eta tentsioen arteko erlazioak honakoak dira: 

 

( )x t zx xyA A

y xy y xA A

z zx z xA A

N dA M y z dA

T dA M zdA

T dA M ydA

σ τ τ

τ σ

τ σ

= = −

= =

= =

∫ ∫
∫ ∫
∫ ∫

 (7.7) 

(7.7) ekuazioetan, Mz momentu makurtzailea z ardatzaren aurkako norantzan da 
positiboa, σx tentsioek norantza horretako momentua ematen baitute. 

7.3. IKUR HITZARMENA 
7.4 irudian azaltzen diren sekzioko indar eta momentuak positiboak direnaren 

hitzarmena ezarriko da. Eskuin sekzioan erreferentzia sistema zuzena da eta ezker 
sekzioan alderantzizkoa. Beraz, sekzioak eskuin edo ezker sekzio deituko dira bertan 
duten erreferentzia sistemaren arabera, pieza prismatikoaren orientazioa bertikala bada 
ere. 7.4 irudiak ez du elementu diferentziala adierazten, hitzarmena adierazteko bi 
sekzio baizik. Hain zuzen ere, eskuin sekzioa 7.1 irudian azaltzen den I zatiari 
dagokiona eta ezker sekzioa II zatiari dagokiona da. 

 

7.4 irudia 
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Mz 
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7.5 irudian momentu hitzarmena xy, xz planoetan proiektatuta azaltzen da. Momentu 
makurtzaileak biraketa bezala adierazi dira, eskuin eskuaren arauaren arabera. x 
ardatzeko N indarra eta Mt momentu bihurtzailea ez dira barneratu. 

 

7.5 irudia 

z ardatzaren norabideko indarrik ez dagoenean 0z yT M= = . Ondorioz, bakarrik xy 

planoa aztertu behar da. Orduan, yT T=  eta zM M=  izendapena erabiliko dugu. 

7.4. ZERRADA DIFERENTZIALAREN OREKA 
Ardatz zuzena duen pieza prismatikoarem dx luzerako zerradaren oreka ekuazioak 

lortuko dira. 7.6 irudian ikus daitekenez, elementu diferentzialak jasaten dituen 
indarrak honakoak dira: 

• qx, qy, qz: luzera unitateko indar banatuak. qx piezaren ardatzean aplikatzen 
da eta qy, qz-k piezaren ardatza mozten dute.  

• mt: luzera unitateko momentu bihurtzailea. 

Indar eta momentu banatu hauek uniformetzat har daitezke dx luzera 
diferentzialean. Momentuak G2 puntuan hartuko dira. x ardatzeko indar eta momentuen 
oreka planteatuz honakoa lortzen da: 

 ( )0 0x xF N dN q dx N= ⇒ + + − = ⇒∑ x
dN q
dx

= −  (7.8) 

 ( )
2

0 0G x t t t tM M dM m dx M= ⇒ + + − = ⇒∑ t
t

dM m
dx

= −  (7.9) 

x 

y 

z 
Mz x 

Mz 

Ty Ty My 

Ty 

My 

Ty 

x 
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y ardatzeko indarren eta z ardatzeko momentuen oreka ekuazioak 
determinatzerakoan, xy planoa erabil daiteke, momentuak biraketa moduan adieraziz. 
Oreka ekuazioak honakoak dira: 

 ( )0 0y y y y yF T dT q dx T= ⇒ + + − = ⇒∑ y
y

dT
q

dx
= −  (7.10) 

 ( )
2

1
20 0G z z z z yyM M dM T d q dxx dM x= ⇒ + − − + = ⇒∑ z

y
dM T
dx

=  (7.11) 

 

7.6 irudia 

(7.11) ekuazioan, qy duen batugaia bigarren mailakoa da eta ondorioz arbuiagarria. 
Azkenik, z ardatzeko indarren eta y ardatzeko momentuen oreka ekuazioak 

   

N+dN 

Ty+dTy 

Tz+d Tz 

My+dMy 

Mz+dMz 

Mt+dMt N 

Ty 

Tz 

Mt 

Mz 

My 
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qy 

qz 
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determinatzerakoan, xz planoa erabil daiteke, momentuak biraketa moduan adieraziz. 
Oreka ekuazioak honakoak dira: 

 ( )0 0z z z z zF T dT q dx T= ⇒ + + − = ⇒∑ z
z

dT q
dx

= −  (7.12) 

 ( )
2

1
20 0G y y y y zzM M dM T d q dxx dM x= ⇒ + − − + = ⇒∑ y

z

dM
T

dx
=  (7.13) 

(7.13) ekuazioan qz duen batugaia bigarren mailakoa da eta ondorioz arbuiagarria. 
Kasu askotan, z norabidean indarrik ez dago eta analisia xy planoan egin daiteke. Hau 
da, 0 0 0z z yq T M= = =  betetzen da. Horrelakoetan, y y zq q T T M M= = =  

izendapena erabiltzen da eta (7.10) eta (7.11) oreka ekuazioak honela gelditzen dira: 

 dT q
dx

= −  (7.14) 

 dM T
dx

=  (7.15) 

7.5. SEKZIOKO INDAR ETA MOMENTUEN DIAGRAMAK 
Atal honetan indarrak y ardatzaren norabidea duteneko kasua aztertuko da bakarrik 

Ondorioz, yT T=  indar ebakitzaileen eta zM M=  momentu makurtzaileen diagramak 

aztertuko dira. Nagusiki erabiliko diren indar banatuak hiru motatakoak dira: 

• 0q = ; indar banatua nulua da. Indar bilduak egon daitezke 

• 0q q= ; indar banatua uniformea da 

• 1 0q q x q= + ; indar banatua lineala da 

Indar linealaren kasuak beste biak barneratzen ditu; izan ere, 1 0q =  bada, indarra 

uniformea da; 0 1 0q q= =  bada, indar banatua nulua da. Beraz, indar lineala aztertuz 

beste birentzat ondorioak atera daitezke. (7.14) ekuazioa integratuz, indar ebakitzalea 
honakoa da: 
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 21
1 0 02T q x q x T= − − +  (7.16) 

T0 integrazio konstantea izanik. (7.15) ekuazioa integratuz, momentu makurtzaileen 
ekuazioa honakoa da: 

 3 21 1
1 0 0 06 2M q x q x T x M= − − + +  (7.17) 

M0 integrazio konstantea izanik. (7.16) eta (7.17) ekuazioak T eta M-ren ezaugarri 
nagusiak aztertzeko erabil daitezke, ondorengo taulan ikus daitekenez. 

q T M 
0q =  0T  0 0T x M+  

0q q=  0 0q x T− +  21
0 0 02 q x T x M− + +  

1 0q q x q= +  21
1 0 02 q x q x T− − +  3 21 1

1 0 0 06 2q x q x T x M− − + +  

Beheko taulan, T eta M zein funtzio mota diren azaltzen da: 

q T M 
0q =  Uniformea Lineala 

0q q=  Lineala Parabola 

1 0q q x q= +  Parabola Funtzio kubikoa 

Diagramen beste ezaugarri batzuk honakoak dira: 

• (7.15) ekuazioaren arabera, puntu batean 0T =  bada, M-k ikutzaile 
horizontala du 

• Indar bildu bat aplikatuta dagoenean, T-ren diagraman aplikatutako 
indarraren balioko lehen mailako ezjarraitasuna dago 

• Momentu bildu bat aplikatuta dagoenean, M-ren diagraman aplikatutako 
momentuaren balioko lehen mailako ezjarraitasuna dago 

7.6. ARDATZ KURBOKO PIEZA PRISMATIKOAK 
7.7 irudian ardatz kurbo planoa duen pieza prismatiko baten elementu diferentziala 

azaltzen da. N, T eta M indarrak eta momentua θ angeluaren menpeko funtzioak direla 
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suposatzen da. R kurbadura erradioa da eta hau ere θ−ren menpekoa da. Pieza 
kurbatuak qr eta qθ indar banatu erradiala eta tangentziala jasaten ditu bere ardatzean, 
hurrenez hurren. Indar hauek piezaren ardatzean banatuta daude. 

 

7.7 irudia 

Norabide erradial eta tangentzialean indarren oreka ekuazioak aplikatuz eta 

( )1 1
2 2sin d dθ θ=  eta ( )1

2cos 1dθ =  dela kontuan izanik, honakoa lortzen da. 

 0Fθ = ⇒∑ dN T q R
d θθ

= −  (7.18) 

 0rF = ⇒∑ r
dT N q R
dθ

= − −  (7.19) 

O rekiko mometuak hartuz honakoa lortzen da: 

 0OM = ⇒∑ 2dM dNR q R
d d θθ θ

= +  (7.20) 
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(7.20) ekuazioan (7.18) ekuazioa ordezkatuz honakoa lortzen da: 

 dM TR
dθ

=  (7.21) 

(7.18)-(7.21) ekuazioek adierazten dutenez, pieza prismatiko kurboetan indar 
normala momentu makurtzaile eta indar ebakitzailearekin erlazionatua dago.  

Pieza prismatiko batek jasaten duen karga kasu askotan luzera horizontal unitateko 
q indar bertikala da. Ondoren, karga banatu horrek qr, qθ-rekin duen erlazioa aztertuko 
da. 

 

7.8 irudia 

7.8 irudian, alde batetik piezaren ds luzera elementua, jasaten duen q indarra eta 
lortu nahi diren qr, qθ azaltzen dira. q horizontalean banatutako indarra eta qr, qθ 
piezaren ardatzean banatutako indarrak direnez, ezin dira zuzenean deskonposatu. 
Horregatik, 7.8 irudian honako indarren hirukia barneratu da:  

 r rdf qdx df q ds df q dsθ θ= = = −  (7.22) 

(7.22) ekuazioan, df norabide erradial eta tangentzialean deskonposatzerakoan dfθ

indarrak qθ -ren aurkako norantza duela ikusten denez, ikur negatiboa barneratu da. ds 

eta dx luzeraren arteko erlazioa ikusteko hirukia ere barneratu da, hau da:  

 sindx dsθ=  (7.23) 
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7.8 irudiaren arabera, indar erradial eta tangentziala df deskonposatuz lor daitezke, 
honakoak izanik: 

 
sin
cos

rdf df
df dfθ

θ
θ

=
=

 (7.24) 

(7.22)-ko df eta (7.23)-ko erlazioa (7.24) ekuazioetan barneratuz, honakoa lortzen 
da: 

 
2sin

sin cos
rdf q ds

df q dsθ

θ
θ θ

=
=

 (7.25) 

Azkenik, (7.25) ekuazioa (7.22)-ko dfr eta dfθ-rekin alderatuz, indar banatu 
tangentziala eta erradiala q-ren menpe lortzen dira: 

 
2sin

sin cos
rq q

q qθ

θ
θ θ

=
= −

 (7.26) 

 





8.  TRAKZIOA ETA KONPRESIOA 

8.1. SARRERA 
Gai honetan trakzioa eta konpresioa jasaten duten pieza prismatikoak aztertuko dira. 

Sekzioko indar bakarra N indar normala da, egitura giltzatuetan gertatzen den bezala. 
Presio jasaten duten lodiera txikiko sistemak ere aztertuko dira, bertako hormek 
trakzioan edo konpresioan lan egiten baitute. Gai honetan, Materialen Erresistentzia 
atalean sartzen gara, deformazioei eta tentsioei buruzko hipotesi sinplifikatzaileak 
erabiliko baititugu. Materialen Erresistentzian, orohar, bi sistema mota aztertzen dira: 

• Sistema isostatikoak: Estatikako ekuazioak nahikoa dira indar ezezagunak 
determinatzeko. Sistemak orekan egoteko lotura kopuru minimoa du. Hiru 
hankako mahai bat sistema isostatikoaren adibidea da. 

• Sistema hiperestatikoak: Estatikako ekuazioak ez dira nahikoa indar 
ezezagunak determinatzeko. Sistemak orekan egoteko behar dituen baino 
lotura gehiago ditu. Lau hankako mahai bat sistema hiperestatikoaren 
adibidea da. Estatikako ekuazioez gain, deformazio prozesuarekin 
erlazionatutako ekuazioak erabili behar dira. Ekuazio hauei, 
desplazamenduen bateragarritasun ekuazioak deitzen zaie. 

Materialen Erresistentzian, orohar, Saint Venant-en printzipioa erabiltzen da: indar 
bilduen inguruan sortzen diren tensio egoera partikularrak desagertu egiten dira 
indarren aplikazio puntutik distantzia batera. Distantzia hori sekzioaren dimentsioen 
ordenakoa da. 8.1 irudian 100 mm-luzera eta 10x10 mm2-ko sekzio karratua duen pieza 
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zuzen baten tentsioak azaltzen dira 1400 N-eko karga jasaten duenean. Indarraren 
aplikazio puntutik 2,5 mm-ra, 5 mm-ra eta 10 mm-ra dauden sekzioetako tentsioak 
azaltzen dira. Elementu Finituen Metodoa erabiliz ebatzi da, 0,5 mm-ko aldea duten 
tentsio laueko 4000 elementu karratu erabiliz.  

 
8.1 irudia 

2,5 mm-ko distantziara karga bilduaren eragina nabarmena da, baina 10 mm-ra 
dagoen sekzioan tentsio banaketa uniformetzat har daiteke. 5 mm-ra tarteko egoera bat 
ikus daiteke. 

8.2. DEFORMAZIOAK ETA TENTSIOAK 
Bernouilli-ren hipotesiaren arabera, sekzioek lau eta beraiekiko paralelo jarraitzen 

dute deformazio ondoren. Ondorioz, deformazio unitario normal eta tangentzialek 
uniformeak izan behar dute sekzioan, honek lau eta paralelo jarrai dezan. Deformazio 
tangentzialak nuluak izan behar dutela frogatuko da: sekzioan γxy, γzx deformazioak 
badaude eta uniformeak badira, tentsio ebakitzaileek ere uniformeak izan behar dute, 

xy xy zx zxG Gτ γ τ γ= =  erlazioen arabera. Baina indar ebakitzaileak nuluak direnez: 

1400 N 
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0 0

0 0

y xyA

z zxA

T dA

T dA

τ

τ

= ⇒ =

= ⇒ =

∫
∫

 (8.1) 

(8.1) ekuazioan, tentsio ebakitzaileak uniformeak direnez, integraletatik biderkagai 
komun bezala atera daitezke: 

 
0 0 0

0 0 0
xy xy xy

zx zx zx

A
A

τ τ γ

τ τ γ

= ⇒ = ⇒ =

= ⇒ = ⇒ =
 (8.2) 

(8.2) ekuazioaren arabera, absurdo bidezko frogaz, deformazio tangentzialek nuluak 
izan behar dutela ondorioztatu da. Gainera, y, z norabidetan deformazio askatasuna 
dagoela suposatuko da eta ondorioz 0y zσ σ= = . Deformazio unitario normalak, 

Hooke-ren legea aplikatuz, honakoak dira: 

 0
x

x E
σ

ε ε= +  (8.3) 

0ε  hasierako deformazio izanik, sekzioan uniformea suposatzen dena. Tenperatura 

aldaketaren kasuan, 0 Tε α= ∆ . L luzerako barra baten kasuan, hasieran h luzeagoa 

bada fabrikazio errore baten ondorioz, 0
h
L

ε = . Tentsioa askatuz honakoa gelditzen da: 

 ( )0x xEσ ε ε= −  (8.4) 

(8.4) ekuazioan deformazioak uniformeak direnez, tentsio banaketa ere uniformea 
da. Sekzioko indar bakarra N indar normala denez: 

 x xA
N dA Aσ σ= = ⇒∫ x

N
A

σ =  (8.5) 

(8.5) ekuazioaren arabera tentsio banaketa uniformea da, 8.1 irudian 10 mm-ko 
distantziara ikusten den bezala. 
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8.3. LUZERA ALDAKETA 

L luzera duen eta bere sekzioetan N indar normala jasaten duen barra baten kasuan, 
hasieran dx luzera duen zatiaren deformazio unitarioa honakoa da: 

 x
dx

dx
ε ∆

=  (8.6) 

Luzera aldaketa osoa determinatzeko, zati guztien luzera aldaketen batura eginez: 

 
0 0 0

L L L

x
dxL dx dx dx

dx
ε∆

∆ = ∆ = =∫ ∫ ∫  (8.7) 

(8.3) eta (8.5) ekuazioak (8.7) ekuazioan ordezkatuz: 

 00 0

L L

x
NL dx dx
EA

ε ε ∆ = = + 
 ∫ ∫  (8.8) 

N indar normala, A sekzioaren azalera eta 0ε  hasierako deformazioa uniformeak 

badira barran zehar, luzera aldaketa honakoa da: 

 0
NLL L
EA

ε∆ = +  (8.9) 

8.4. EGITURA GILTZATUAK: BARREN DEFORMAZIO 

PROZESUA 
Egitura giltzatuetan (8.9) ekuazioko kasua betetzen da. Barra baten deformazio 

prozesuan, barrak translazioa, luzera aldaketa eta solido zurrun gisako errotazioa 
jasaten ditu, 8.2 irudian azaltzen denez.  
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8.2 irudia 

Deformazio prozesua honakoa da: 

1. (BC) barra (B’C1) posiziora igarotzen da translazio bidez 
2. (B’C1) eta (B’C2) posizioen artean deformazio hutsa gertatzen da, barra luzatuz 
3. (B’C2)-tik (B’C3)-ra: barrak B’-ren inguruan solido zurrun gisa errotatzen du 
4. (C2C3) arkua (C2C’) ikutzaileagatik ordezkatzen da 

Barraren luzera aldaketa determinatzeko, bukaerako barraren posizioa 
hasierakoaren gainean projektatzen da, β angelua txikia dela kontuan izanik. 8.3 
irudiaren arabera: 

 0 0L B C BC B C BC′ ′ ′ ′∆ = − = −  (8.10) 

(8.10) ekuazioko berdintasuna angeluaren txikitasunaren ondorio da, hau da:  

 0 0 cosB C B C B Cβ′ ′ ′ ′ ′ ′= =  (8.11) 

8.3 irudiaren arabera, bukaerako luzera hasierako luzeraren menpe idatziz, (8.10) 
ekuazioa honela gelditzen da: 

 0 0 0 0 0 0L B C BC BC BB CC BC CC BB′ ′ ′ ′ ′ ′∆ = − = − + − = −  (8.12) 
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8.3 irudia 

8.5. LODIERA TXIKIKO EGITURAK 
8.5.1 Biltegiak  

p barne presioa jasaten duen biraketa-biltegia aztertuko da. Bere hormen t lodiera 
gainazalaren kurbadura erradioekin alderatuz txikia bada, biraketa ardatzarekiko 
elkartzutak diren zirkuluetan (paraleloak) eta beren norabide elkartzutetan 
(meridianoak) tentsio normalak daude bakarrik. Hau da, 8.4 irudian azaltzen diren t 
lodierako eta ds1, ds2 luzerako elementuetan, hurrenez hurren. Ondorioz, norabide 
horiek nagusiak dira. 8.4 irudian azaltzen den elementua isolatuz eta oreka planteatuz 
tentsioek presioarekin duten erlazioa lor daiteke. 

 

8.4 irudia 
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8.5 irudian, elementuaren bi projekzio ikusten dira, ds1, ds2 arkuei dagokien 
planoetan, hurrenez hurren. Oreka planteatzerakoan, bi irudietako tentsioak hartu behar 
dira kontuan: 

 ( ) ( )1 1
1 2 1 2 1 2 1 22 22 sin 2 sinpds ds ds t d ds t dσ θ σ θ= +  (8.13) 

(8.13) ekuazioan adierazten denez, σ1 tentsioak ds2 luzerako elementuan eta σ2 
tentsioak ds1 luzerako elementuan eragiten dutela azpimarratu behar da. 

 

8.5 irudia 

Angeluak txikiak direla eta i i ids r dθ=  dela kontuan izanik, (8.13) ekuaziotik 

honakoa lortzen da: 

 1 2

1 2

p
t r r

σ σ
= +  (8.14) 

Beste tentsio nagusiaren balioa 3 pσ = −  da hormaren barne aldean eta 3 0σ =  

kanpo aldean. Beste bi tentsio nagusiak baino nabarmenki txikiagoa denez, nulua dela 
suposatuko da. 

Esfera baten kasuan kurbadura erradioak berdinak dira, hau da, 1 2r r r= = . 
Tentsioak ere berdinak dira edozein puntutan, simetriagatik. (8.14) ekuazioan 
ordezkatuz:  

 
2
pr
t

σ =  (8.15) 
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Zilindro baten kasuan 1 2r R r= = ∞ denez, (8.14) ekuazioan ordezkatuz: 

 1
pr
t

σ =  (8.16) 

2σ  lortzeko, zilindroa bere ardatzarekiko elkartzuta den plano batetik mozten da, 

8.6 irudian ikus daiteken bezala. Oreka planteatuz eta hormaren lodiera txikia dela 
kontuan hartuz honakoa lortzen da: 

 2
22p r rtπ π σ= ⇒ 2 2

pr
t

σ =  (8.17) 

 
8.6 irudia 

8.6 irudian azaltzen den presioa kendutako zatiak isolatu denari eragindako presioa 
da. Beraz, isolatutako zatian presioa eragiten duen jariakina barnean utzi da. 

8.5.2 Eraztunak 
Barne edo kanpo presioa jasaten duten zilindro irikiak dira. Ondorioz, 2 0σ = .  

σ2 

σ1 
σ2 

p 
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8.7 irudia 

Tentsioentzat ez da azpiindizerik erabiliko. 1 eta 2 azpiindiezeak barne eta kanpo 
erradioentzat erabiliko dira, hurrenez hurren, 8.7 irudian azaltzen denez. Presioak 1r  

barneko erradioan eragiten duenean, tentsioak trakziokoak dira eta deformazioak 
positiboak dira: 

 1 1
0

pr pr
t Et

σ ε ε= = +  (8.18) 

Presioak 2r  kanpoko erradioan eragiten duenean tentsioak konpresiokoak dira eta 

deformazioak negatiboak dira. 

 2 2
0

pr pr
t Et

σ ε ε= − = − +  (8.19) 

ε  deformazioak zirkunferentziaren luzera aldaketa erlatiboa adierazten du. 
Ondorioz, 8.8 irudian azaltzen den bezala, A eta B zilindroak bata bestearen barnean 
elkarren arteko presioa jasanez daudenean, presio hori determinatzeko baldintza 
kontaktuko erradioari dagozkion deformazioak berdinak izatea da: 

 0 0
A B A B

A A A A

xr xr
E t E t

ε ε ε ε= ⇒ − + = +  (8.20) 
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8.8 irudia 

 



9.  MAKURDURA: TENTSIOAK 

9.1. SARRERA 
Sekzioko tentsio normalen momentu erresultantea nulua ez denean, My, Mz osagaiak 

ditu eta pieza makurduran dagoela esaten da. Jasaten diren sekzio indar eta momentuen 
arabera, makurdurako kasuak honela sailka daitezke: 

1. Makurdura hutsa: nuluak ez diren sekzioko indar eta momentu bakarrak My, Mz 
momentu makurtzaileak dira. Indar ebakitzaileak nuluak direnez, momentuak 
uniformeak dira piezaren luzeran zehar.  

2. Makurdura bakuna: My, Mz momentuez gain, Ty, Tz indar ebakitzaileak ere ez dira 
nuluak. Kasu honetan, momentu makurtzaileak aldatu egiten dira piezaren luzeran 
zehar.  

3. Makurdura konposatua: Aurreko bi kasuetako bati N indar normala gehitzen 
zaionean.  

Aipatutako hiru kasuetan tentsio normal eta ebakitzaileen banaketak aztertuko dira, 
deformazio eta tentsioei buruzko hipotesi sinplifikatzaileak eginez. Gai honetan, 
sekzioko indar eta momentuak ezagunak izango dira. Helburu nagusia, indar 
ebakitzaileak eta momentu makurtzaileak sekzioko tentsio normal eta ebakitzaile 
banaketekin erlazionatzea da. 
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9.2. MAKURDURA HUTSA 
9.2.1 Kasu orokorra 

Navier-Bernouilli-ren hipotesiaren arabera, deformazioaren ondoren sekzioek lau 
eta pieza prismatikoaren ardatzarekiko elkartzut jarraitzen dute, sekzioko ardatz 
batekiko biratuz. Ardatz hori Ardatz Neutroa da. Sekzio desberdinetako ardatz neutroek 
pieza prismatikoan zehar osatutako gainazala, Gainazal Neutroa da. Gainazal neutroko 
puntuek ez dute deformaziorik jasaten. 9.1 irudian dx luzerako elementu batean eskuin 
sekzioko momentu makurtzaileak, Ardatz Neutroa eta berarekiko elkartzuta den eta G-
tik igarotzen den norabidea azaltzen dira. 

 
9.1 irudia 

9.1 irudian azaltzen den elementua Ardatz Neutroarekiko G-tik igarotzen den plano 
elkartzutean proiektatuz, 9.2 irudian elementu hori deformatu baino lehen eta ondoren 
azaltzen da.   

 
9.2 irudia 

y 

z 

Mz 
x 

My 

Ardatz Neutroa 

G 

dx 

dθ
 

ξ 

ρ 
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Gainazal neutroaren kurbadura erradioa ρ eta deformatu ondorengo angelua dθ 
izanik, dx dρ θ=  betetzen da, gainazal neutroa ez baita deformatzen. Bertatik ξ 

distantziara dagoen zuntzaren deformazioa honakoa da: 

 ( )
x

d d
d

ρ ξ θ ρ θ ξε
ρ θ ρ

+ −
= =  (9.1) 

(9.1) ekuazioaren arabera, ξ -ren balio positiboentzat xε positiboa da eta ξ -ren 

balio negatiobentzat xε negatiboa da. Beraz, gainazal neutroa laburtzen diren eta 

luzatzen diren gainazalen arteko muga da.  

y, z norabidetan deformazio askatasuna suposatzen da eta ondorioz 0y zσ σ= = . 

Hooke-ren legea aplikatuz eta trakzio eta konpresio moduluak berdinak direla 
suposatuz: 

 x xE E ξσ ε
ρ

= =  (9.2) 

N indar normala nulua denez, honakoa bete behar da: 

 0 0xA
N dAσ= ⇒ =∫  (9.3) 

(9.2) ekuazioa (9.3) ekuazioan ordezkatuz: 

 0 0 0x GA A

EdA dA Aσ ξ ξ
ρ

= ⇒ = ⇒ = ⇒∫ ∫ 0Gξ =  (9.4) 

(9.4) ekuazioaren arabera, ardatz neutroa sekzioaren grabitate zentrutik igarotzen 
da. 9.3 irudian sekzioa, Ardatz Neutroa eta azalera elementu diferentziala azaltzen dira. 
Ardatz Neutroan eta bere norabide elkartzutean η , ξ  ardatzak definitzen dira, 
hurrenez hurren. Ardatz horien bektore unitarioak honakoak dira: 

 
ˆˆˆ cos sin

ˆˆˆ sin cos

u j k

u j k
ξ

η

ϕ ϕ

ϕ ϕ

= +

= − +
 (9.5) 



102 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA  
 

 

9.3 irudia 

9.3 irudiaren arabera, Ardatz Neutrotik elementu diferentzialeraino dagoen ξ  

distantzia honakoa da: 

 ˆ cos sinGP u y zξξ ϕ ϕ= ⋅ = +


 (9.6) 

(9.6) ekuazioa (9.2) ekuazioan ordezkatuz, sekzioko tentsio normal banaketa 
honakoa da: 

 ( ) 1 2cos sinx
E y z C y C zσ ϕ ϕ
ρ

= + = +  (9.7) 

1 2cos sinE EC Cϕ ϕ
ρ ρ

= =  izanik. Momentu makurtzaileak tentsio normalen 

ardatzekiko momentu erresultanteak direnez, (9.7) ekuazioa kontuan izanik: 

 
2

1 2

2
1 2

y xA A A

z xA A A

M zdA C yzdA C z dA

M ydA C y dA C yzdA

σ

σ

= = +

= = +

∫ ∫ ∫
∫ ∫ ∫

 (9.8) 

y 

z 
y 

z P 

ξ 

η 

ξ 

η 

AN 

G 

M 

Mz 

My 
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Gainazalen inertzia momentu eta inertzia biderkaduren definizioak erabiliz, (9.8) 
ekuazioa honela gelditzen da: 

 1 2

1 2

y yz y

z z yz

M C I C I
M C I C I

= +

= +
 (9.9) 

C1 eta C2 ezezagunak dituen (9.9) ekuazio sistema ebatziz: 

 1 22 2
y yz z y z yz y z

yz y z yz y z

M I M I M I M I
C C

I I I I I I
− −

= =
− −

 (9.10) 

(9.10) ekuazioko C1, C2 (9.7) ekuazioan ordezkatuz, sekzioko tentsio normalen 
banaketa honakoa da: 

 2 2
y yz z y z yz y z

x
yz y z yz y z

M I M I M I M I
y z

I I I I I I
σ

− −
= +

− −
 (9.11) 

(9.11) ekuazioa honela ere idatz daiteke: 

 2 2

1 1

yz yz
z y y z

y yz z
x z y

yz yzz y

y z y z

I IM M M MM IM Iy z M M
I II I

I I I I

σ
− −′′

′ ′= + = =
− −

 (9.12) 

Ardatz Neutroaren ekuazioa determinatzeko, (9.12) ekuazioan deformazio nuluaren 
baldintza ezarriz: 

 0 0 y z
x x

z y

M Iy
z M I

ε σ
′

= ⇒ = ⇒ = −
′

 (9.13) 

Ardatz Neutroa ezagututa, tentsio maximoko puntuak bertatik urrunen daudenak 
dira. Puntu horiek Ardatz Neutroarekiko paraleloak marraztuz lor daitezke, 9.4 irudian 
azaltzen den bezala. A eta B puntuak trakzio eta konpresiozko tentsio maximoak 
dituztenak dira, hurrenez hurren. Ardatz Neutrotik ξ distantziara dagoen MN lerroan 
tentsioek balio bera dute.  
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9.4 irudia 

9.2.2 Mohr-en zirkulua inertzia momentuentzat 
M modulua duen momentu makurtzailea ξ, η ardatzetan ere deskonposa daiteke, 9.5 

irudian azaltzen den bezala. Modu horretan, momentu makurtzailea Ardatz Neutroaren 
eta bere norabide elkartzutaren arabera deskonposatzen da. 

 

9.5 irudia 

Momentu makurtzaileak ξ , η  norabidetan dituen osagaiak, xσ  tentsio normalen 

ardatzekiko momentu erresultanteak direnez: 
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xA

xA

M dA

M dA

ξ

η

σ η

σ ξ

=

=

∫
∫

 (9.14) 

(9.2) ekuaziotik xσ  ordezkatuz, (9.14) honela gelditzen da: 

 

EM I

EM I

ξ ξη

η η

ρ

ρ

=

=
 (9.15) 

Beste alde batetik, (9.9) honela idatz daiteke matrize moduan: 

 
cos
sin

z z yz

y yz y

M I IE
M I I

ϕ
ϕρ

     
=    

    
 (9.16) 

Momentu makurtzailea 9.3 irudian edo 9.5 irudian azaltzen diren osagaietan 
deskonposa daitekenez: 

 
ˆˆ

ˆ ˆ
y zM M j M k

M M u M uξ ξ η η

= −

= −





 (9.17) 

(9.17) ekuazioa eta (9.5) ekuazioko bektore unitarioak erabiliz, momentu 
makurtzailea ξ , η  ardatzetan projekta daiteke: 

 
ˆ cos sin

ˆ sin cos
y z

y z

M M u M M

M M u M M
ξ ξ

η η

ϕ ϕ

ϕ ϕ

= ⋅ = −

= − ⋅ = +





 (9.18) 

(9.16) ekuazioak (9.18)n ordezkatuz eta (9.15) ekuazioekin berdinduz, honako 
erlazioak lortzen dira angelu bikoitzaren menpe adierazi ondoren: 

 
( )1 1

2 2

1
2

( )cos 2 sin 2

( )sin 2 cos 2
y z z y yz

y z yz

I I I I I I

I I I I
η

ξη

ϕ ϕ

ϕ ϕ

− + = − +

= − +
 (9.19) 
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(9.19) ekuazioak, 9.6 irudian azaltzen den Mohr-en zirkuluaren ekuazio 
parametrikoak dira. y, z ardatzak kokatzerakoan, z yI I>  eta 0yzI >  suposatu da. Iη  

ardatzari IM (Inertzia Momentuak) eta Iξη  ardatzari IB (Inertzia Biderkadurak) deituko 

zaie. Zentrua, erradioa eta norabide nagusiak adierazten dituen angelua honakoak dira: 

 

( )1
2

2 21
4

1

( )

2
tan 2

C y z

y z yz

yz

z y

OC I I I

R I I I

I
I I

ϕ

= = +

= − +

=
−

 (9.20) 

 

9.6 irudia 

Beraz, tentsioen eta deformazioen kasuan bezala, gainazal lauen inertzia 
momentuak planoko Mohr-en zirkuluaren arabera transformatzen dira. Ardatzak 
zirkuluaren goi edo behe aldean kokatzerakoan, Iyz positiboa bada, y ardatza zirkuluaren 
goiko aldean dagoela froga daiteke. Tentsioen, deformazioen eta inertzia momentuen 
antzeko ezaugarri nagusiak honakoak dira: 

Tentsioak Deformazioak Gainazalak 

nσ  uε  IM ( )Iη  

nτ  1
2 uγ  IB ( )Iξη  

IM 1 
O 

|IB| 

2 
C 

z 

y 

η 

ξ 

2ϕ 
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(9.15) ekuazioaren arabera, 0 0M Iξ ξη= ⇔ = . Beraz, momentu makurtzailea 

norabide nagusi batean aplikatzen denean, norabide hori Ardatz Neutroa da, 

ˆM M uη η=


 baita. 

9.2.3 Kasu partikularrak 
Inertzia ardatz nagusien kasuan 0yzI =  betetzen da. (9.12) ekuazioen arabera 

z z y yM M M M′ ′= = eta ondorioz: 

 yz
x

z y

MM y z
I I

σ = +  (9.21) 

Kasu honetan Ardatz Neutroaren ekuazioa, (9.21) ekuaziotik lor daiteke: 

 0 y z
x

z y

M Iy
z M I

σ = ⇒ = −  (9.22) 

Mz momentuak bakarrik eragiten duenean, (9.21) ekuazioaren arabera: 

 z
x

z

M y
I

σ =  (9.23) 

Sekzioko tentsio maximoa honakoa da: 

 ( )max
max

z z
x z

z

M IW
W y

σ = =  (9.24) 

Wz makurdurako modulu erresitentea da eta profil laminatuen tauletan dagoen datua 
da. Wz haundia izatea nahi denez, sekzioaren altuera jakin batentzat Iz haundia izatea 
nahi da, hau da, materiala z ardatzetik urruntzea. Horregatik IPN, IPE profilak 
makurdurako kasu honetan egokiak dira. Mz momentua jasaten duen pieza 
erresistentziaz dimentsionatzeko, Mz maximoari dagokion tentsio maximoa 
onargarriarekin berdinduz honakoa lortzen da: 
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 max max
on z

z on

M MW
W

σ
σ

= ⇒ =  (9.25) 

Wz ezagutuz, profil laminatuen tauletatik profil egokia aukera daiteke.  

9.3. MAKURDURA BAKUNA 

9.3.1 Tentsio normalak 
Makurdura bakunean tentsio normalez gain tentsio ebakitzaileak daude eta ondorioz 

deformazio tangentzialak azaltzen dira sekzioan. Hala ere, hauen eragina arbuiagarria 
da tentsio normalak determinatzerakoan. Beraz, tentsio normalak determinatzeko 
makurdura hutsean lortutako formulak erabiliko dira. 

9.3.2 Fluxu ebakitzailearen teorema  
dx luzerako elementu batean, Ac oina duen zilindroa isolatzen da, Ac-ren ingurune 

kurba c izanik, 9.7 irudian azaltzen denez. Ac azalera sekzioko zatia da. Zilindroaren 
alboko gainazalean cxτ tentsioek dihardute. Ezker sekzioan, dA elementuan diharduen 

xσ  tentsio normala eta c lerroarekiko elkartzuta den eta Ac-tik irtetzen den cxτ  tentsio 

tangentziala azaltzen dira. Eskuin sekzioan, dA elementuan diharduen ( ),x x xdxσ σ+  

tentsio normala eta c lerrokarekiko elkartzuta den eta ds-n sartzen ari den cxτ  tentsio 

tangentziala ikus daitezke.  

 

9.7 irudia 

Isolatutako zilindroan x ardatzeko oreka planteatuz: 

y 

z 

G 

c 

Ac 

τcx ds 

dx 

τcx 
c σx σx+σx,xdx 
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 ( ), 0
c c

x x x x cxA A c
dx dA dA dsdxσ σ σ τ+ − − =∫ ∫ ∫  (9.26) 

(9.26) ekuaziotik honakoa lortzen da: 

 ( ) ( ),
c

x x cxA c
dA dx ds dxσ τ=∫ ∫  (9.27) 

qc fluxu ebakitzailea, definizioz, honako integrala da: 

 c cxc
q dsτ= ∫  (9.28) 

qc eskuin sekzioan positiboa da Ac gainazalean sartzen denean, 9.7 irudiaren 
arabera. (9.27) eta (9.28) ekuazioetatik honakoa lortzen da: 

 ,
c

c x xA
q dAσ= ∫  (9.29) 

(9.12) ekuaziotik, tentsio normalen deribatua, inertzia momentuak aldatzen ez direla 
suposatuz, honakoa da: 

 ,,
,

y x yz x z
x x

z y z y

M TM Ty z y z
I I I I

σ
′ ′′ ′

= + = +  (9.30) 

(9.12) ekuazioko yM ′ , zM ′  deribatzerakoan, indar ebakitzaileen eta momentu 

makurtzaileen arteko erlazioak gogoratuz, (9.30) ekuazioko yT ′ , zT ′  honakoak dira: 

 2 2

1 1

yz yz
y z z y

y z
y z

yz yz

y z y z

I IT T T TI IT T
I I

I I I I

− −
′ ′= =

− −

 (9.31) 
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9.8 irudia 

(9.30) ekuazioa (9.29) ekuazioan ordezkatuz, honakoa lortzen da: 

 
c c

y z
c A A

z y

T Tq ydA zdA
I I

′ ′
= +∫ ∫  (9.32) 

(9.32) ekuazioko integralak Ac azaleraren momentu estatikoak dira. 9.8 irudiaren 
arabera honakoak dira: 

 c

c

c
z c cA

c
y c cA

Q ydA y A

Q zdA z A

= =

= =

∫
∫

 (9.33) 

cy , cz  Ac azaleraren grabitate zentruaren koordenatuak izanik. (9.33) ekuazioa 

(9.32) ekuazioan barneratuz, fluxu ebakitzailea honakoa da: 

 
cc
yz

c y z
z y

QQq T T
I I

′ ′= +  (9.34) 

y, z inertzia ardatz nagusiak badira, (9.31) ekuazioaren arabera y y z zT T T T′ ′= = . 

Gainera, 0zT =  bada, (9.34) ekuazioa honela gelditzen da: 
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c
z

c y
z

Qq T
I

=  (9.35) 

c lerroaren zati bat sekzioaren ingurunekoa denean, zati horretan fluxu ebakitzailea 
nula da, 0cxτ =  denez piezaren kanpoko gainazalean. 

9.3.3 Tentsio ebakitzaileak 
Fluxu ebakitzailearen teoremarekin c lerroarekiko elkartzutak diren tentsio 

tangentzial osagaien batura lortu da, c lerroan zehar. Lerro horretan dagoen tentsio 
banaketa determinatzeko beste hipotesi batzuk erabili beharko dira. Honako adibideak 
aztertuko dira: sekzio laukizuzena, sekzio zirkularra eta lodiera txikiko sekzio irekia, 

yT T=  indar ebakitzailea jasaten dutenean. Kasu guztietan ardatzak nagusiak izango 

direnez, (9.35) ekuazioa erabiliko da. 

Sekzio laukizuzena 

9.9 irudian azaltzen den sekzio laukizuzenak erakusten ez den yT T=  indar 

ebakitzailea jasaten du. Ac azaleraren ingurunean fluxu ebakitzailea bakarrik MN 
lerroan ez da nulua, c ingurunearen beste zatiak sekzioaren ingurunearekin bat egiten 
baitu. Kalkulu nagusiak honakoak dira: 

 ( ) ( ) ( )2 2 31 1 1 1 1 1
2 2 2 2 4 12

c
c c z c c zA b h y y h y Q A y b h y I bh= − = + = = − =  

(9.35) ekuazioan ordezkatuz, fluxu ebakitzailea honakoa da: 

 
2

2
3

6
4c

T hq y
h

 
= − 

 
 (9.36) 

(9.36) ekuazioaren arabera, lodieran zehar banaketa parabolikoa da. Fluxu 
ebakitzailea positiboa denez, tentsioak cA gainazalean sartzen dira. 
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9.9 irudia 

Fluxu ebakitzailea eragiten duten tensioak MN lerroarekiko elkartzutak dira eta 
ondorioz xyτ tentsioak dira. Beren banaketa determinatzeko, bi hipotesi erabiltzen dira: 

1. Tentsio guztiak konkurrenteak dira. M eta N puntuetan tentsioek ezin dute 
osagai horizontalik eduki, sekzioaren inguruneko puntuak direlako. Tentsio 
hauek bertikalak direnez, beste guztiak ere bertikalak dira eta 0zxτ =  edozein 

puntutan. 

2. Tentsioak uniformeki banatzen dira MN lerroan zehar, honakoak direlarik: 

 
2

2
3

6
4

c
xy

q T h y
b bh

τ
 

= = − 
 

 (9.37) 

(9.37) ekuazioaren arabera, tentsio banaketa parabolikoa da sekzioaren lodieran 
zehar. Sekzioaren goiko eta beheko ertzetan nuluak dira eta balio maximoa z 
ardatzean dago, 0y =  denean: 

 ( ) 3
max 2maxxy

T
bh

τ τ= =   

Sekzio zirkularra 

Sekzio zirkularraren analisirako 9.10 irudia erabiliko da . Kasu honetan ere sekzioak 

yT T=  indar ebakitzailea jasaten du, irudian azaltzen ez dena. Ac azalera 

isolatzerakoan, fluxu ebakitzailea bakarrik MN lerroan dago, c kurbaren beste zatia 
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sekzioaren ingurunekoa delako. Momentu estatikoa determinatzeko integrala erabiliko 
da: 

 ( )
3

2 2 2 22 2
1 1 1 1 32

c

Rc
z A y

Q y dA y R y dy R y= = − = −∫ ∫   

MN lerroko fluxu ebakitzailea honakoa da: 

 ( )
3

2 22 2
3c MN

z

Tq q R y
I

= = −   

Tentsio banaketari buruz, sekzio laukizuzenean erabili diren hipotesi berdinak 
erabiliko dira oraingoan ere. Tentsioak MN lerroan uniformeak izanik, honakoak 
dira: 

 ( )2 21
32 22

MN
xy

z

q T R y
IR y

τ = = −
−

  

 

9.10 irudia 

y 

R 

Ac 

z G 

y 

M N 

τM 
y1 

Q
 

τN τxy 
τzx 

τmax 
β 
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M eta N puntuetako tentsioak ingurunearekiko ikutzaileak izan behar dutenez eta 
tentsio guztiak konkurrenteak direnez, Q puntuan mozten dira, 9.10 irudian azaltzen 
denez. Ondorioz, zxτ  osagaiak ez dira nuluak. MN lerroko tentsio maximoak M eta 

N puntuetan daude, honakoak izanik: 

 2 2
32 2

4
cos 3

xy
M N xy

R T R y
RR y

τ
τ τ τ

β π
= = = = −

−
  

Sekzio osoan, 0y =  denean tentsioa maximoa da, z ardatzean: 

 ( ) 4
max 3 2maxxy

T
R

τ τ
π

= =   

Lodiera txikiko sekzio irekiak 

Sekzioaren lodiera txikia denez, tentsioak ingurunearekiko paraleloak eta lodieran 
uniformeak direla suposatzen da. 9.11 irudian azaltzen den sekzioak ere yT T=  indarra 

jasaten du. 1 indizearekin izendatuko diren zati horizontaletan edo hegaletan tentsioak, 
horizontalak direnez, zxτ dira. 2 indizearekin izendatuko den zati bertikalean edo 

ariman tentsioak bertikalak direnez, xyτ  dira. 

 

9.11 irudia 

Hegaletan, fluxu ebakitzailea, tentsio banaketa eta tentsio maximoa honakoak dira: 

y 

z G 

τmax1 

t1 
t2 

G
 

y 

G
 

y 

z 
τmax2 

 
s 

τzx 

τxy 

b0 

h0 h h1 
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 ( )1 11 1 1 1
1 1 1 1 1 1 1 1 02 2 2 21

1

c c
z c zx max

z z z

qT T TQ t s h q t h s h s h b
I t I I

τ τ= = = = =   

Beraz, hegaletan banaketa lineala da, tentsioaren balio maximoa arimaren ondoan 
dagoelarik. Arimako momentu estatikoa determinatzeko, hegal osoa eta arimaren zati 
bat hartu behar dira, 9.11 irudian ikusten den bezala.  

 
( )

( ) ( )

2 2 21 1 1
1 0 12 2 4

2 2
2 22 2( 0)

2

c
z

c c
c z xy max xy y

z

Q t b h h y

qTq Q
I t

τ τ τ
=

= + −

= = = =
 

Aurreko kalkuluetan ikus daitekenez, arimako banaketa parabolikoa da, balio 
maximoa z ardatzen egonik. Gainera, arimako balio minimoa eta hegaletako maximoa 
oso antzekoak dira. Desberdintasuna, bien arteko elkargunetik dator. Elkargune hau ez 
da analizatzen, tentsioen norabide aldaketa baitago. 9.12 irudian sekzioan zehar 
tentsioak nolakoak diren azaltzen da. Hegaletan ere badaude xyτ  tentsio ebakitzaileak, 

baino arbuiagarriak dira arimakoen parean. 

 

9.12 irudia 

9.3.4 Tentsio nagusiak 
Makurdura bakunean, sekzioaren altueran zehar aldatzen diren tentsio normal eta 

ebakitzaileak azaltzen direnez, tentsio nagusiak eta norabide nagusiak ere aldatu egiten 
dira. Tentsio nagusi bereko leku geometrikoak lerro isostatikoak deitzen dira eta 

y 

z G 
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interesa dute hormigoizko habeen kasuan, fisurazioa trakzioko plano nagusietan 
gertatzen baita.  

9.3.5 Habe konposatuak 
Bi habe bata bestearen gainean kokatzen direnean, beren arteko marruskadura 

arbuiatuz, makurdura independentea dute: bakoitzak bere gainazal neutroa eta 
trakziozko eta konpresiozko tentsio banaketak ditu. Bi habeak lotura elementuekin 
elkartzen badira, habe konposatua sortzen da eta bere portaera habe bakarrarena da: 
gainazal neutroa eta tentsio banaketa bakarrak dira. Lotura elementuak bi motatakoak 
izan daitezke habearen luzeran zehar: jarraituak eta diskretuak. Jarraituen artean 
itsasgarriak eta soldadura ditugu. Iltzeak, torlojoak eta errematxeak, aldiz, diskretuak 
dira. Lotura elementuen lana bi habeak habe bakarrean bihurtzea denez, lotura 
elementuek habe bakarrari dagozkion tentsio ebakitzaileak jasan behar dituzte.  

 

9.13 irudia 

Elementu diskretuen kasua aztertuko da, habean zehar beren arteko e distantziara 
aldenduta egonik. Elementu bakoitzak e distantzian eragina duela suposatuko da, hau 
da, bere inguruko e distantzia batean habe bakarra balitz egongo liratekeen tentsio 
ebakitzaile guztiak jasaten dituela, 9.13 irudian azaltzen den bezala. Distantzia horretan 
T indar ebakitzaileak orohar aldakorrak direnez, kalkulurako indar ebakitzaile maximoa 
erabiltzen da. Gainera, bi habeen elkargunean habe bakarra balitz leudeken tentsioak, 
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T maximo horri dagozkionak direla eta uniformeki banatuta daudela suposatzen da. 
Piezaren zabalera b izanik, zabaleran zehar n lotura elementu badaude, bakoitzaren 
indarra S izanik, nS indarrak tentsio ebakitzaile banaketaren eragina jasan behar 
duenez, honakoa betetzen da: 

 xybe nSτ =  (9.38) 

xyτ  tentsioak determinatzeko fluxu ebakitzailearen teorema erabiliko da, bi habeak 

bakarra direla suposatuz. cA  azaleratzat elkartu behar diren habeetako baten sekzioa 

hartzen da. qc fluxu ebakitzailea bakarrik bien arteko elkargunenan dagoenez, c xyq bτ=

betetzen da eta (9.38) ekuazioa honela idatz daiteke: 

 cq e nS=  (9.39) 

(9.39) ekuazioarekin bi kalkulu mota egin daitezke:  

• e distantzia eta lotura elementuaren onτ  tentsio onargarria ezagutuz, lotura 

elementuaren D diametroa lortzea. Kalkulu honetan, lotura elementuko 
tentsio ebakitzaileak uniformetzat hartzen dira, hau da: 

 21
4onS Dτ π=  (9.40) 

• Lotura elementuaren onτ  eta D datuak izanik, beren arteko e distantzia 

determinatzea (9.39) ekuaziotik. 
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9.4. MAKURDURKA KONPOSATUA 
9.4.1 Tentsio normalak eta ebakitzaileak 

Makurdura konposatuan, indar normalari dagozkion tentsioak makurdurako hutseko 
tentsioekin batzen dira, gainjarmen printzipioa erabiliz: 

 ´´ yz
x

z y

MMN y z
A I I

σ
′′

= + +  (9.41) 

Indar normalari dagokion batugaiaren ondorioz, Ardatz Neutroa ez da sekzioaren 
grabitate zentrutik igarotzen. Momentu makurtzailearen eragina nagusia denean, 
Ardatz Neutroak sekzioa mozten du eta trakzio eta konpresio tentsioak daude, 9.14 
irudian ikus daitekeen bezala. 

 

9.14 irudia 

Indar normalaren eragina nagusia denean, Ardatz Neutroak ez du sekzioa mozten 
eta tentsioak ikur berekoak dira sekzioan zehar, 9.15 irudian azaltzen den bezala. y, z 
inertzia ardatz nagusiak direnean, (9.41) ekuazioa honela gelditzen da: 

 yz
x

z y

MMN y z
A I I

σ = + +  (9.42) 
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9.15 irudia 

Tentsio ebakitzaileak makurdura bakunean bezala determinatzen dira. 

9.4.2 Trakzio eta konpresio eszentrikoa 
Makurdura konposatuaren kasu partikularra da. Indar normal eszentrikoa aplikatzen 

da, 9.16 irudian azaltzen den bezala.  

 

9.16 irudia 

Ardatzak nagusiak direla suposatuko da. (9.42) ekuazioa aplikatuz, tentsio normalak 
honakoak dira: 

 

y 

z 

P 

x G 

ez 

ey 



120 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA  
 

 y z
x

z y

Pe PeP y z
A I I

σ = + +  (9.43) 

Ardatz neutroaren ekuazioa honakoa da: 

 10 0y z
x

z y

e ey z
A I I

σ = ⇒ + + =  (9.44) 

 

9.17 irudia 

(9.44) ekuazioaren arabera, Ardatz Neutroa ez da aplikatutako indarraren 
menpekoa. z, y ardatzekiko iz, iy biraketa erradioak barneratuz, hurrenez hurren, (9.44) 
ekuazioa honela idatz daiteke: 

 2 2 1y z

z y

e ey z
i i

+ = −  (9.45) 

(9.45) ekuazioaren arabera, Ardatz Neutroak y, z ardatzekin dituen Ny , Nz  mozte 

puntuak, hurrenez hurren, 9.17 irudian azaltzen dira eta honakoak dira: 

 
22
yz

N N
y z

iiy z
e e

= − = −  (9.46) 

y 

z 
G 

ez 

ey 

P 

yN 
zN 

AN
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(9.46) ekuazioaren arabera, 0y Ne y= ⇒ = ∞ . Hau da, P indarra z ardatzaren 

gainean aplikatuta dagoenean, Ardatz Neutroa y-ren norabidekoa da. Antzera, P indarra 
y ardatzaren gainean aplikatuta dagoenean, Ardatz Neutroa z norabidekoa da, 9.18 
irudian ikus daitekenez.  

 
9.18 irudia 

Ondoren, P indarra y, z ardatzetan aplikatuta dauden P1, P2 indarretan 
deskonposatzeko baldintzak aztertzen dira. 9.19 irudian indarren aplikazio puntuak eta 
distantziak azaltzen dira.  

 
9.19 irudia 

Indar sistemak baliokideak direnez, erresultante eta momentu erresultante bera izan 
behar dute. Erresultante berdinaren baldintza erabiliz: 

y 

z 
G 
ey 
P 

yN 
AN

 

y 

z 
G 

ez P 
zN 

AN
 

y 

z 
G 

P 
yP 

y1 

AN1

 

P1 

P2 

zP 

AN2

 

z2 
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yN1 
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 1 2P P P= +  (9.47) 

y, z ardatzekiko momentu erresultanteen baliokidetasuna ezarriz: 

 2 2

1 1z
P

P

y Pz P z
Py P y

→ =
→ =

 (9.48) 

(9.48)-tik 1P  eta 2P  askatuz eta (9.47) ekuazioan ordezkatuz: 

 
1 2

1P Py z
y z

+ =  (9.49) 

(9.49) ekuazioaren arabera, P indarra 1P  eta 2P -ren aplikazio puntuek definitzen 

duten zuzenean aldatu behar da. Indar hauei dagozkion ardatz neutroak S puntuan 
mozten dira, 9.19 irudian ikus daitekenez, koordenatuak honakoak izanik: 

 
22

1 2
1 2

yz
S N S N

iiy y z z
y z

= = − = = −  (9.50) 

(9.45) ekuazioaren arabera, P-ri dagokion Ardatz Neutroa honakoa da: 

 2 21 0P P

z y

y zy z
k k

+ + =  (9.51) 

(9.50) ekuazioko koordenatuak (9.51) ekuazioan ordezkatuz, hau da, Sy y= Sz z=  

eginez, (9.49) ekuazioa lortzen da. Ondorioz, S puntua (9.51) ekuazioan emandako 
Ardatz Neutroan dago. Indarra P1-etik P2-ra aldatzen denean, Ardatz Neutroak (AN) 
erlojorratzen aurka biratzen du (AN1)-tik (AN2)-ra, 9.19 irudian ikus daitekenez. 

9.4.3 Sekzioaren Nukleoa 
Trakzio eta konpresio eszentrikoan, P indarra grabitate zentruan aplikatua dagoenean, 
makurdurarik ez dago eta Ardatz Neutroa infinituan dago. Indarraren aplikazio puntua 
G-tik aldentzen den heinean, Ardatz Neutroa sekziora gerturatzen da. P indarra G-ren 
inguruko gune batean aplikatuz, tentsioak sekzio osoan ikur berekoak izatea lortzen da. 
Gune hori Sekzioaren Nukleoa edo Nukleo Zentrala da eta konpresioa bakarrik jasan 
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dezaketen materialen kasuan interesgarria da. Nukleoa determinatzeko baldintza, 
Ardatz Neutroa sekzioarekiko ikutzailea izatea da. Adibide bezala sekzio zirkularra eta 
laukizuzena aztertuko dira. 

9.20 irudian D diametroko sekzio zirkularra azaltzen da. AN1 ikutzailea izan dadin P1 
non aplikatu behar den jakin nahi da. Hau da, 1Ny  ezaguna da eta 1y  determinatu behar 

da. Beraz: 

 2 21 1
1 2 16

z
N z

Iy D i D
A

= − = =  

 
2

1
1 8

1

z

N

iy D
y

= − =  

 
9.20 irudia 

Sekzio laukizuzenaren kasuan, 9.21 irudian azaltzen den bezala, AN1 ikutzailea izatea 
inposatzen bada, 1Ny  ezaguna da eta 1y  determinatu behar da. Beraz: 

 2 21 1
1 2 12

z
N z

Iy h i h
A

= − = =   

 
2

1
1 6

1

z

N

iy h
y

= − =  

y 

AN1 

P1 

z D/4 D 
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9.21 irudia 

Antzera, AN2 ikutzailea izatea inposatzen bada, 2Nz  datua da eta 2z  determinatu behar 

da. Ondorioz: 

 2 21 1
2 2 12

y
N y

I
z b i b

A
= − = =   

 
2

1
2 6

2

y

N

i
z b

z
= − =  

Azkenik, indarra P1-etik P2-ra zuzenkian aldatzen bada, Ardatz Neutroa AN1-tik 
AN2-ra aldatzen da, S puntuaren inguruan erlojorratzen aurka biratuz, sekzioa moztu 
gabe. Laukizuzenaren beste hiru erpinetan pareko analisia egin daitekenez, Nukleoa 
9.21 irudian grisez adierazten da. 
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b/3 

b 

h 



10. MAKURDURA: 

ZURRUNTASUNA 

10.1. SARRERA 
Makurdura jasaten duten pieza prismatikoen ardatzaren desplazamenduak eta 

angeluak aztertuko dira. Konfigurazio deformatuan pieza prismatikoaren ardatza kurba 
elastikoa deitzen da. Navier-Bernouilliren hipotesiaren arabera, kurba elastikoa 
sekzioekiko elkartzut mantentzen denez, sekzioak biratutako angelua kurba elastikoak 
biratutakoaren berdina da. Makurdurako zurruntasunaren azterketa beharrezkoa da 
desplazamendu edo angeluen mugak ezarri behar direnean. Egituretan, muga hauek 
kalkulurako arauek ezartzen dituzte. Zurruntasunak sistemaren dardarekin eta 
funtzionalitatearekin ere zerikusia du. Adibidez, erreminta batek eragindako 
mekanizatze indarren ondorioz sortutako desplazamenduek perdoiak baino txikiagoak 
izan behar dute. 

10.2. KURBA ELASTIKOAREN EKUAZIO DIFERENTZIALA 
Kurba elastikoa pieza prismatikoaren ardatz deformatua da. Makurdura hutsa 

aztertuko bada ere, makurdura bakunean piezaren luzera sekzioaren altuerarekin 
konparatuz handia denean, indar ebakitzaileek desplazamenduetan duten eragina 
arbuiagarria da. zM M=  momentuak eragiten duela eta sekzioaren ardatzak nagusiak 
direla suposatuko da. “Makurdura: tentsioak” gaian azaldutako analisia kasu partikular 
honetan aplikatuko da. 
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Deformazio prozesua adierazten duen 9.2 irudian, habearen dx luzerako elementu 
diferentziala deformatu baino lehen eta ondoren azaltzen da. Ardatz Neutroa z ardatza 
da eta sekzioek berarekiko biratzen dute.  

 

10.1 irudia 

Gainazal neutroaren kurbadura erradioa ρ eta deformatu ondorengo angelua dθ 
izanik, dx dρ θ=  betetzen da, gainazal neutroa ez baita deformatzen. Bertatik y 
distantziara dagoen zuntzaren deformazioa honakoa da: 

 ( )
x

y d d y
d

ρ θ ρ θ
ε

ρ θ ρ
+ −

= =  (10.1) 

Hooke-ren legea aplikatuz: 

 x x
yE Eσ ε
ρ

= =  (10.2) 

Gainera, tentsio normalen banaketa momentu makurtzailearen menpe honakoa da: 

 x
z

My
I

σ =  (10.3) 

(9.2) eta (10.3) ekuazioetatik honakoa lortzen da: 

 1

z

M
EI

κ
ρ

= =  (10.4) 

dx 

dθ
 

y 

ρ 

z z 
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Beste alde batetik, deformazio prozesua aztertuko da. 10.2 irudian soilki 
bermatutako habe baten kasua azaltzen da. Deformatu gabeko AB ardatza eta 
deformatu ondorengo A’B’ kurba elastikoa ikus daitezke. Deformaziorik jasaten ez 

duenez, AB A B′ ′= .  

 

10.2 irudia 

dx luzerako MN elementuaren deformazio prozesua aztertuko da, bere luzera 

aldatzen ez dela jakinik, kurba elastikokoa baita. Hau da, MN M N′ ′= . M eta N puntuen 
desplazamenduak honakoak dira: 

 
( ) ( ), ,

ˆ ˆ

ˆ ˆ
M

N x x

MM ui vj

NN u u dx i v v dx j

δ

δ

′= = +

′= = + + +







 (10.5) 

(10.5) ekuazioan u, v desplazamenduak x-en menpeko funtzioak dira. Beraz, 10.2 
irudiaren arabera, deformazio ondorengo elementua honakoa da: 

 ( ), ,
ˆ ˆ1 x xM N MN NN MM u dx dxi v dxj′ ′ ′ ′= + − = + +

   

 (10.6) 

10.3 irudian elementu deformatua azaltzen da. Eskuin aldean, bere luzera 
diferentziala denez, zuzen marraztu da. OM’ erradioak bertikalarekin θ angelua osatzen 
badu, M’N’ elementuak horizontalarekin angelu bera osatzen du.  

M 

M’ N’ 

N A, A’ B B’ 
dx
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10.3 irudia 

Luzera aldatzen ez denez, 10.3 irudiaren arabera honakoa betetzen da: 

 d M N dxρ θ ′ ′= =  (10.7) 

(10.7) ekuaziotik honakoa lortzen da: 

 1 d
dx
θκ

ρ
= =  (10.8) 

(10.4) eta (10.8) ekuazioak alderatuz: 

 
z

d M
dx EI
θκ = =  (10.9) 

10.3 irudian azaltzen den kurbadura momentu makurtzaile positiboari dagokio. 
Ikusten denez, x koordenatua handitzen denean angelua txikitzen da: OM’ erradioak θ  
angelua eta ON’ erradioak ( )dθ θ−  angelua osatzen dute. Ondorioz, aukeratutako 

ardatzetan kurbadura negatiboa da. Ikurren bateragarritasuna lortzeko (10.9) ekuazioa 
honela idazten da:  

 
z

d M
dx EI
θ

= −  (10.10) 

10.3 irudian honako erlazioak betetzen dira: 
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 ,

,

sin
cos 1

x

x

v
u

θ

θ

=

= +
 (10.11) 

(10.10) ekuaziotik integrazioz ( )xθ lortu ondoren, (10.11) ekuazioan ordezkatuz eta 

x-ekiko integratuz, v desplazamendu bertikala eta u desplazamendu horizontala lortzen 

dira. Beste alde batetik, (10.11)1 ekuaziotik ( ),arcsin xvθ =  lortzen da. (10.10) 

ekuazioan ordezkatuz, kurba elastikoaren ekuazio diferentzial exaktoa lortzen da: 

 ,

2
,1

xx

zx

v M
EIv

= −
−

 (10.12) 

θ makurdura angelua txikia denean, (10.11) ekuazioak honela gelditzen dira: 

 ,

,0
x

x

v
u

θ =

=
 (10.13) 

(10.13)1 ekuazioa (10.10) ekuazioan ordezkatuz, kurba Elastikoaren Ekuazio 
Diferentzial (EED) hurbildua lortzen da: 

 
2

, 2xx
z

d v Mv
dx EI

= = −  (10.14) 

(10.13)2 ekuazioaren arabera desplazamendu horizontalak uniformeak dira, hau da, 

( ) 0u x u= . Habeak puntu finkoa duenez, 0 0u = .  

10.3. EED INTEGRAZIOA: BAKUNTASUN FUNTZIOAK  
Bakuntasun funtzioak edo Macaulay-ren kakoak honela definitzen dira: 

 ( )
0

n
n x a x ax a

x a

 − >− = 
≤

 (10.15) 

Funtzio hauek erabiliz, habe osoko momentu makurtzaileak ekuazio bakarrean 
adieraz daitezke. Gainera, EIz makurdurako zurruntasuna uniformea bada, (10.14)ko 
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EED integratzerakoan bakarrik bi integrazio konstante azaltzen dira. Adibide gisa, 10.4 
irudian soilki bermatutako habea ikus daiteke, bermapuntuak erreakzioengatik 
ordezkatu direlarik. 

 

10.4 irudia 

Momentuak determinatzeko, mozketa azken tartean bakarrik egin behar da: 

 21
02

0

A

x L

M R x P x a q x b

< <

= − − − −
  

Ondoren, EED integratuz angeluak eta desplazamenduak lor daitezke. 10.5 irudian 
oinarrizko karga batzuren adibideak azaltzen dira, momentuak bakuntasun funtzioen 
bidez adierazteko. 

 

M P x a= − −  

 

0
0M M x a= −  

 

0
0

21
02

q q x a

M q x a

= −

= − −
 

P a 

M 
x 

a 

x 
M 

M0 

q0 
a 

x 
M 

RA RB 

P q0 

a 
b 
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31
6

q k x a

M k x a

= −

= − −
 

10.5 irudia 

10.5 irudian azaltzen diren kasuetan karga banatuak habearen bukaeraraino iristen 
dira. Hori gertatzen ez bada, karga banatu egokiak batu eta kendu behar dira, hauek 
bukaeraraino irits daitezen. 10.6 irudian karga uniformearen kasua eta dagokion 
momentu ekuazioa azaltzen dira.  

 
2 21 1

0 02 2M q x a q x b= − − + −  

10.6 irudia 

10.7 irudian karga linealaren kasua eta dagokion momentu ekuazioa azaltzen dira. 
Kasu honetan, karga lineala bukaeraraino eraman ahal izateko trapezio erako karga batu 
eta kendu behar da. 

 
( )0

3 2 21 1 1
06 2 6

q k b a

M k x a q x b k x b

= −

= − − + − + −
 

10.7 irudia 

  

a 

x 
M 

k 

q0 

a 
b 

k 

a 
b 

q0 
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10.4. MOHR-EN TEOREMAK 
10.4.1 Lehenengo teorema (M1) 

EED A eta B puntuen artean integratuz: 

 
B

A B A
z

M dx
EI

θ θ− = ∫  (10.16) 

(10.16) ekuazioan zurruntasuna uniformea bada: 

 
,A BM

A B
z

S
EI

θ θ− =  (10.17) 

,A BMS  A eta B puntuen arteko momentu makurtzaile diagramaren azalera izanik. 

10.4.2 Bigarren teorema (M2) 
10.8 irudiaren arabera, B’ puntutik A’ puntuko ikutzaileraino dagoen distantzia 

bertikala kalkulatu nahi da. Horretarako, tarteko C’ puntu baten inguruko C’1 eta C’2 
puntuetako ikutzaileek sortutako distantzia determinatuko da lehenik: 

 ( )1 2 0 1 0 2 B B BB B B B B B x x d x dθ θ θ θ= − = − − =  (10.18) 

Bx  B-n sorrera eta A-ranzko norantza duen koordenatua izanik. EED (10.18) 

ekuazioan ordezkatuz: 

 1 2 B
z

MB B x dx
EI

= −  (10.19) 

Bx  eta x aldagaiek aurkako norantza dutenez, Bdx dx= −  betetzen da. B eta A artean 

integratuz, honakoa lortzen da: 

 ,

a B
B A BB

z

Mx dx
EI

δ = ∫  (10.20) 
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10.8 irudia 

zEI  zurruntasuna uniformea denean, (10.20) ekuazioa honela idatz daiteke: 

 
,

,

A BM
B

B A
z

Q
EI

δ =  (10.21) 

,A BM
BQ  A eta B puntuen arteko momentu diagramaren B-rekiko momentu estatikoa 

izanik. 

10.5. HABE KONJOKATUAREN METODOA 
Metodo hau pieza prismatiko batean zerrada baten oreka ekuazioen eta EED-ren 

artean dagoen parekotasunean oinarritzen da. Habe konjokatua *

z

Mq
EI

=  indar banatua 

jasaten duen habe irudikaria da, Estatikako ekuazioak erabiliz makurdurako 
desplazamendu eta angeluak determinatzeko erabil daitekeena. Beheko taulan ikus 
daitekenez, habe konjokatuan lortutako *T  indar ebakitzaile konjokatuak benetako 

xB 

θ 

A B 

A’ 

C 
C1 

C2 
B0 

B2 
B1 

BA 

B’ 

B1 
 

B2 
  

(θ−dθ) B0 

x 

y, v 

C 
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habearen θ angeluak dira. Habe konjokatuan lortutako *M  momentu makurtzaileak, 
benetako habearen v desplazamenduak dira.  

Oreka EED Habe konjokatua 

dT q
dx

= −   
z

d M
dx EI
θ

= −  
*

*dT q
dx

= −  

dM T
dx

=  dv
dx

θ=  
*

*dM T
dx

=  

2

2

d M q
dx

= −  
2

2
z

d v M
dx EI

= −  
2 *

*
2

d M q
dx

= −  

Ekuazioetako magnitudeak aldatzen direnez, ingurune baldintzak ere aldatu egiten 
dira. 10.9 irudian adibide batzuk azaltzen dira. 

Habea Habe Konjokatua 

BS 

 

0
0v

θ ≠
=

 
*

*

0
0

T
M

≠

=
 

 

BS 

MA 
 

0
0v

θ ≠
≠

 
*

*

0
0

T
M

≠

≠
 

 
LA 

LA 
 

0
0v

θ =
=

 
*

*

0
0

T
M

=

=
 

 
MA 
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TB 

 

1 2

0v
θ θ=

=
 

* *
1 2

* 0

T T
M

=

=
 

 

TG 

TG 

 

1 2

0v
θ θ≠

≠
 

* *
1 2

* 0

T T
M

≠

≠
 

 

TB 

10.9 irudia 

Beste berma baldintza batzuk prozedura bera jarraituz azter daitezke: alde batetik, 
benetako habean sortzen duten angelu eta desplazamendu baldintza aztertu. Ondoren, 
habe konjokatuko indar ebakitzaile eta momentu makurtzaile baldintzetan bihurtu, eta 
zein lotura motari dagozkion erabaki. 

Habe Konjokatuaren metodoan, indarren oreka ekuazioa erabiltzea Mohr-en 
lehenengo teorema (M1) aplikatzearen parekoa da. Beste alde batetik, momentuen 
ekuazioak erabiltzerakoan, indar banatu konjokatuak eragiten duen momentua Mohr-
en bigarren teorema (M2) aplikatzearen parekoa da.  

1 2 1 2 

1 2 1 2 





11. MAKURDURA: 

HIPERESTATIZITATEA 

11.1. SARRERA 
Makurdurako kasu hiperestatikoetan desplazamendu eta angelu badintzak ezarri 

behar dira, Estatikako ekuazioez gain indar eta momentu ezezagunak determinatu ahal 
izateko. Makurdurako desplazamendu eta angelu horiek determinatzeko “Makurdura: 
zurruntasuna” gaiko metodoak erabiliko dira. Metodo horiek sistema isostatikoetan 
erabili direnez, sistema hiperestatiko bat ebazteko garaian, lehen urratsa sistema 
isostatiko batean bihurtzea da, dituen lotura gehigarriak indar edo momentu 
egokiengatik ordezkatuz. Indar eta momentu hauek ezezagun hiperestatikoak deitzen 
dira. Desplazamendu eta angelu baldintzak kendutako lotura horiei dagokienak dira. 
Gai honetan habe jarraien hiperestatizitatea ebazteko metodo bat ere aztertuko da, hiru 
momentuen teorema, Clapeyron-ek (1799-1864) garatutakoa.  

11.2. TARTE BAKARREKO HABEAK 
Habearen ardatzean bi bermapuntu finko dituen habea eta soilki bermatua berdintzat 

hartuko dira desplazamendu txikien problemetan, 9.2 irudian azaltzen denez. Loturak 
habearen ardatzean ez badaude, indar normal haundiak sor daitezke. Izan ere, loturak 
dauden lerroa ez da deformatzen eta ondorioz gainazal neutrokoa da, makurdura 
konposatua sortuz. 
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11.1 irudia 

Sistema hiperestatikoa isostatikoan bihurtzeko bidea ez da bakarra. 11.2 irudian 
sistema bera isostatiko bihurtzeko bi aukera azaltzen dira. Habe konjokatuaren metodoa 
erabiltzen bada, gainjarmen printzipioa erabiltzea egokia da, karga bakoitzari 
dagozkion momentuak sistema isostatiko baliokidean adieraziz. 

 

Hiperestatikoa 

 

Isostatikoa 

Baldintza: 0Bv =  

 

Isostatikoa 

Baldintza: 0Aθ =  

11.2 irudia 

11.3. HIRU MOMENTUEN TEOREMA  
11.3 irudian (N+1) bermapuntu dituen habe jarraia azaltzen da. Jasaten dituen 

indarrak ez dira irudian adierazi. Bermapuntuak eta beren arteko tarteak zenbakien 
bidez izendatzen dira, (i-1) eta (i) bermapuntuen arteko tartea [i] izanik.  

P 

A B 

P 

X 
A B 

P 

B 

Y 

A 

A B A B 
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11.3 irudia 

Habearen hiperestatizitate maila (N-1) da, tarteko bermapuntu kopuruarena. Habe 
hori isostatiko bihurtzeko bide bat, bermapuntu gaineko biraketa ahalbideratzea da. 
Modu honetan, soilki bermatutako N habe isostatiko sortzen dira. Biraketari dagozkion 
loturak kendu direnez, momentu makurtzaile ezezagunak barneratu behar dira 
ezezagun hiperestatiko bezala, 11.4 irudian azaltzen den bezala. Ezezagun horiek 
determinatzeko baldintza bermapuntuetako angeluen jarraitasuna da. Habe 
konjokatuaren metodoa erabiliko da baldintza hori barneratzeko. 

 

11.4 irudia 

Habe jarraiaren sistema isostatiko baliokidea ezaugarri hauek dituzten N soilki 
bermatutako habez osatua dago: 

• Tarte bakoitzean inertzia momentua uniformea da, Ii izanik 
• Bermapuntuek δi desplazamenduak dituzte 

Tarte bakoitzean momentu makurtzaileen diagrama hiru zatiz osatua dago:  

• Ezkerreko momentuaren diagrama lineala 
• Eskuineko momentuaren diagrama lineala 
• Kanpoko indarrei dagokion diagrama, diagrama isostatikoa deitzen dena, 

soilki bermatutako habeari baitagokio. 

10.4 irudian [i] eta [i+1] tarteen habe konjokatuak azaltzen dira. Bermapuntuetako 
δi desplazamenduak momentu aplikatuak dira habe konjokatuaren muturretan. 
Bermapuntuen ordez, indar ebakitzaile konjokatuak adierazi dira. 

0 1 i-1 i i+1 N-1 N 
1 i i+1 N 

0 1 i-1 i i+1 N-1 N 
1 i i+1 N 

M1 MN-1 Mi-1 Mi Mi+1 
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11.5 irudia 

[i] tarteko ( )*
i i

T  indar ebakitzaile konjokatua (i-1) bermapuntuan momentuak hartuz 

determinatzen da, honakoa izanik:  

 ( )* 1 11 1
6 6

2i i i i i i i i
i i

i i i i i

M L M L A aT
EI EI EL I L

δ δ− −−
= − − − +  (11.1) 

[i+1] tarteko ( )*

1i i
T

+
 indar ebakitzaile konjokatua (i+1) bermapuntuan momentuak 

hartuz determinatzen da, honakoa izanik: 

 ( )* 1 1 1 1 1 11 1
6 61

1 1 1 1 1

2 i i i i i i i i
i i

i i i i i

M L M L A bT
EI EI EL I L

δ δ+ + + + + +

+
+ + + + +

−
= + + +  (11.2) 

Hiperestatikotasun baldintza angeluen jarraitasuna denez, (10.16) eta (11.2) 
ekuazioak berdinduz eta (6E) atalez atal biderkatuz, hiru momentuen ekuazioa lortzen 
da: 

 
( )1 1 1 1

1 1 1
1 1 1 1

1 1
1

1

2 6 6 6i i i i i i i i
i i i i i

i i i i i i i i

i i i i
i i

i i

L L L L A a A bM M M E
I I I I L I L I

L L

β β

δ δ δ δ
β β

+ + + +
− + +

+ + + +

− +
+

+

 
+ + + = − − − − 

 
− −

= =

 (11.3) 

Orain arte bermapuntu soilak aztertu dira. Hegalkin bat baldin badago, isostatikoa 
denez, bere eraginagatik ordezkatzen da. 11.6 irudian hegalkina ezker muturrean 
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+
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dagoeneko kasua azaltzen da. Bermapuntuko momentua (11.3) ekuazioan barneratzen 
da, kasu honetan 0M Pa= −  izanik. 

 

11.6 irudia 

Landapen bat baldin badago, I = ∞  duen tarte batengatik ordezkatzen da. 11.7 
irudian ezker muturreko hegalkina nola ordezkatzen den azaltzen da. (11.3) 
ekuazioaren arabera, I1 intertzia momentua barneratzen duten batugaiak nuluak dira.  

 
11.7 irudia 

Azkenik, bermapuntuetako desplazamenduak nuluak badira eta tarte guztietako 
inertzia momentuak berdinak badira, (11.3) ekuazioa honela gelditzen da: 

 ( ) 1 1
1 1 1 1

1

2 6 6i i i i
i i i i i i i

i i

A a A bM L M L L M L
L L

+ +
− + + +

+

+ + + = − −  (11.4)

0 
1 

1 

P 

a 0 
1 

1 

P Pa 

0 
1 

1 
2 2 

I1=∞ 





12. BIHURDURA 

12.1. SARRERA 
Gai honetan momentu bihurtzailea jasaten duten pieza prismatikoak aztertuko dira. 

Ardatz birakorrek adibidez, potentzia momentu bihurtzaileen bidez igortzen dute. 
Egituretan ere, momentu bihurtzaileak jasaten dituzten osagaiak azaltzen dira. Sekzio 
zirkularrak, errektangularrak eta lodiera txikiko sekzio irekiak eta itxiak aztertuko dira. 
Ikusiko denez, bihurdurarako sekzio egokienak lodiera txikiko itxiak dira. Sekzio ireki 
batean indar ebakitzailearen aplikazio puntua edo bihurdura zentrua non dagoen 
determinatuko da. Azkenik, makurdura eta bihurduraren eragin bateratua aztertuko da.  

12.2. SEKZIO ZIRKULARRA 
Coulomb-en hipotesiaren arabera, bihurduran sekzio lauek lau jarraitzen dute solido 

zurrun gisa biratuz. Ondorioz, sekzioko erradioek zuzen jarraitzen dute. 9.2 irudian y, 
z koordenatuak dituen P puntua deformatu baino lehen eta ondoren azaltzen dira. 

Deformatu baino lehen GP erradioa, GP r=  izanik, deformatu ondoren GP’ erradioan 
bihurtzen da, ϕ bihurdura angelua biratuz. x ardatzean desplazamendu osagaia nulua 
denez, desplazamendu bektorea honakoa da: 

 ˆˆPP vj wk′ = +


 (12.1) 

9.2 irudian ϕ angelua zenbaki txikia dela eta GP erradioa definitzen duen angelua 
1
20 β π< <  tartean dagoela azpimarratu behar da. 
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12.1 irudia 

GP erradioak ϕ angelu txikia biratzen duenez, arkua ikutzaileagatik ordezka daiteke 
eta honakoa betetzen da: 

 PP rϕ′ =  (12.2) 

(12.2) ekuazioak ematen duen desplazamenduaren modulua ardatzetan proiektatuz, 
honakoa lortzen da: 

 

0

sin

cos

u
zv r r z
r
yw r r y
r

ϕ β ϕ ϕ

ϕ β ϕ ϕ

=

− = = =

= = =

 (12.3) 

(12.3) ekuazioetako desplazamenduekin deformazio unitario normal eta 
tangentzialak determina daitezke: 
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, , , ,

, , ,

, , , ,

0

0 0

0

x x xy x y x

y y yz z y

z z zx z x x

u v u z
v v w
v u w y

ε γ ϕ

ε γ

ε γ ϕ

= = = + = −

= = = + =

= = = + =

 (12.4) 

Hooke-ren legea kontuan izanik, (12.4) ekuazioen arabera nuluak ez diren tentsio 
osagai bakarrak τxy eta τzx dira:  

 , ,xy x zx xGz Gyτ ϕ τ ϕ= − =  (12.5) 

Tentsio ebakitzailearen osagaiak (12.5) ekuaziokoak izanik, P puntuko tentsio 
ebakitzaile erresultantea honakoa da: 

 2 2
,xy zx xGrτ τ τ ϕ= + =  (12.6) 

12.2 irudian τxy eta τzx tentsio tangentzialak eta beren τ erresultantea azaltzen dira. 

Honek horizontalarekin osatzen duen λ angelua β-ren berdina da, tan tanz
y

λ β= =  

baita. Beraz, sekzioko edozein P punturen tentsioak osagai erradialik ez du.  

 

12.2 irudia 

G z 
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Gyϕ,x 

Grϕ,x 
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Momentu bihurtzailea sekzioko tentsio ebakitzaileen momentu erresultantea denez: 

 t A
M rdAτ= ∫  (12.7) 

(12.6) ekuazioa (12.7) ekuazioan ordezkatuz honakoa lortzen da: 

 2
, ,t x p xA

M G r dA GIϕ ϕ= =∫  (12.8) 

Ip inertzia momentu polarra izanik. (12.8) ekuazioa honela ere idatz daiteke: 

 ,
t

x
p

Md
dx GI
ϕϕ = =  (12.9) 

,xϕ  luzera unitateko bihurdura angelua deitzen da eta pGI  bihurdurako 

zurruntasuna da. (12.9) ekuazioa (12.6) ekuazioan ordezkatuz, tentsio ebakitzailearen 
eta momentu bihurtzailearen arteko erlazioa lortzen da: 

 t

p

M r
I

τ =  (12.10) 

Sekzioaren diametroa D bada, 41
32pI Dπ= . Tentsio ebakitzaile maximoa kanpoko 

puntuetan dago, 1
2r D=  denean: 

 max 3

16 tM
D

τ
π

=  (12.11) 

12.3 irudian sekzio zirkularrak diametro batean duen tentsio banaketa azaltzen da.  
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12.3 irudia 

Coulomb-en hipotesia, sekzio zirkular betearentzat ezezik sekzio hutsarentzat ere 
egokia da eta beraz (12.10) ekuazioa erabil daiteke. 12.4 irudian tentsio banaketa 
azaltzen da. Kanpo eta barne diametroak D eta d izanik hurrenez hurren, inertzia 

momentu polarra ( )4 41
32pI D dπ= −  da. (12.10) ekuazioaren arabera tentsio maximoa 

honakoa da: 

 max 4
3

4

16

1

tM
dD
D

τ
π

=
 

− 
 

 (12.12) 

 

12.4 irudia 

Zurruntasunari dagokionez, (12.9) ekuazioa A eta B sekzioen artean integratuz, bi 
sekzioen arteko angelu diferentzia lortzen da: 

G 

τmax 

G 

τmax 

τmin 



148 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA  
 

 
B t

B A A
p

M dx
GI

ϕ ϕ− = ∫  (12.13) 

pGI  bihurdura zurruntasuna uniformea bada, (12.13) ekuazioa honela idatz daiteke: 

 
,tA BM

B A
p

S
GI

ϕ ϕ− =  (12.14) 

 
12.5 irudia 

Tentsio ebakitzaile maximoak piezaren kanpo aldean daudenez, piezaren ardatzaren 
norabidean eta perpendikularrean ebakidura hutsezko egoera dago, 12.5 irudian ikus 
daiteken bezala. Material hauskorrak trakzioko tentsio maximoko planoetatik hausten 
direnez, haustura helikoidalak gertatzen dira 45ºra. Adibidez, klarionari bihurdura 
aplikatuz lortzen dena.  

12.3. SEKZIO LAUKIZUZENA 
Sekzioa laukizuzena denean Coulomb-en hipotesia ez da betetzen. Problema hau 

Saint-Venant-ek ebatzi zuen Elastikotasunaren Teoria erabiliz. Tentsio maximoak alde 
haundienaren erdian gertatzen dira, 12.6 irudian azaltzen den bezela. 

τmax 

Mt 
C 

x 

1 σn 

nτ
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12.6 irudia 

Tentsio maximoaren balioa honakoa da:  

 max 2
tM

bh
τ

α
=  (12.15) 

Luzera unitateko bihurdura angelua honakoa da: 

 3
,

t
x t

t

M I hb
GI

ϕ β= =  (12.16) 

tI  sekzio laukizuzenari dagokion bihurdurako inertzia momentu baliokidea izanik. 

α eta β parametroen balio batzuk ondorengo taulan ematen dira, h b≥  izanik. 

h/b 1 1,5 1,75 2 2,5 3 4 6 8 10 ∞ 
α 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,299 0,307 0,313 0,333 

β 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,299 0,307 0,313 0,333 

12.4. LODIERA TXIKIKO SEKZIO IREKIAK 
Prandtl-en analogiaren arabera, bihurdurako problema eta presioa jasaten duen 

mintz elastikoaren problemak analogoak dira, biak ala biak agintzen dituzten ekuazio 

τmax h 

b 
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diferentzialak analogoak baitira. Ondorioz, analogia hori erabiliz, problema batetik 
lortutako emaitzak bestean erabil daitezke. Mintz elastikoak diren xaboi pelikulekin 
egindako esperimentutetatik, bihurdurako problemetarako ondorioak atera dira. 

Analogia horren arabera, lodiera txikiko sekzio ireki baten kasuan sekzioaren 
formak ez du tentsio banaketa baldintzatzen eta sekzio laukizuzena bailitz analiza 
daiteke, lodiera uniformea duen kasuan 1

3α β= =  izanik. Lodieran zehar tentsio 

banaketa lineala dela suposatzen da. Sekzioaren lodiera aldakorra denean, maxτ  tentsio 

maximoa honakoa da: 

 max
t

t

M t
I

τ =  (12.17) 

(12.17) ekuazioaren arabera, tentsio maximoa lodiera maximoari dagokio. Luzera 
unitateko angelua honakoa da:  

 ,
t

x
t

M
GI

ϕ =  (12.18) 

(12.17) eta (12.18) ekuazioetan, lodiera txikiko sekzio irekiari dagokion tI  inertzia 

momentu baliokidea honakoa da:  

 3
t L

I t ds= ∫  (12.19) 

(12.19) ekuazioko integrala 12.7 irudian azaltzen den L erdiko lerroan hedatua 
egonik.  
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12.7 irudia 

Sekzioa ti lodiera uniformeko eta si luzerako n zatiz osatua dagoenean, (12.19) 
ekuazioa honela idatz daiteke: 

 3

1

n

t i i
i

I t s
=

= ∑  (12.20) 

12.5. LODIERA TXIKIKO SEKZIO ITXIAK 
Prandtl-en analogiaren arabera, tentsioak uniformeak dira lodieran zehar. 12.8 

irudian ikusten denez, piezaren dx luzerako elementu batetik zati bat isolatzen da, 
zatiaren ertzetako lodierak tA, tB izanik. dx luzeran tentsioak uniformeak direnez, x 
ardatzeko indarren oreka planteatuz: 

 0x A A B BF t tτ τ= ⇒ =∑  (12.21) 

(12.21) ekuazioaren arabera, tq tτ=  fluxu ebakitzailea uniformea da sekzioan 

zehar. 12.9 irudian dA tds= azalera elementu batean tentsio ebakitzaileari dagokion 
indarra azaltzen da. dF indar horrek eragindako momentu bihurtzailea honakoa da: 

 ( ) ( )tdM dFr dA r tds rτ τ= = =  (12.22) 

t 

L 
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12.8 irudia 

(12.22) ekuazioa integratuz, momentu bihurtzailea honakoa da: 

 t L
M t rdsτ= ∫  (12.23) 

(12.23) ekuazioan tτ  integraletik atera daiteke uniformea delako. Gainera, 12.9 

irudian azaltzen denez 1
2tdA rds=  eta ondorioz 1

2t L
A rds= ∫ , tA  erdiko lerroak 

barneratzen duen azalera izanik. Beraz, (12.23) ekuaziotik momentu bihurtzailearen eta 
tentsio ebakitzailearen arteko erlazioa honakoa da: 

 
2

t

t

M
A t

τ =  (12.24) 

(12.24) ekuazioaren arabera, tentsio maximoa lodiera minimoko puntuetan dago. 
Gainera, tentsioa jasateko sekzioaren hutsunea da garrantzitsuena, ez material kopurua, 
At-ren azalera gehiena hutsuneari dagokiona baita. Horregatik, lodiera txikiko sekzio 
itxiak bihurdurarako egokienak dira.  

tB 

dx 
tA 

G 
G 

τA 

τB 
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12.9 irudia 

Zurruntasunaren analisia garatzeko, momentu bihurtzaileak dx luzerako elementu 
diferentzial batean egindako dWt lanaren eta metatutako dUt deformazio energiaren 
berdintsuna erabiliko da. Elementuaren bi aldeen artean biratutako angelua dϕ  izanik, 

lana honakoa da: 

 1
2t tdW M dϕ=  (12.25) 

yz planoko tentsio ebakitzaileak bakarrik daudenez, bolumen unitateko deformazio 
energia honakoa da: 

 ( ) ( )
2

2 21 1
0 2 2 2xy xy zx zx xy zxGU

G
ττ γ τ γ τ τ= + = + =  (12.26) 

dx luzerako elementuaren deformazio energia honakoa da: 

 ( )
2

0 2t A L
dU U dA dx tds dx

G
τ 

= =  
 

∫ ∫  (12.27) 

(12.24) ekuazioa (12.27) ekuazioan ordezkatuz, honela gelditzen da: 

 
22

22 8
t

t L L
t

M dsdU tds dx dx
G A G t

τ   
= =   

   
∫ ∫  (12.28) 

t 
ds 

G dF=τtds 

dAt=½rds 

r 
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(12.25) eta (12.28) ekuazioak berdinduz, luzera unitateko bihurdura angelua 
honakoa da: 

 
2

,
4t t

x t
t

L

M Ad I dsdx GI
t

ϕϕ = = =

∫
 (12.29) 

(12.29) ekuazioan, It inertzia momentu baliokidean azaltzen den integrala 
batukariagatik ordezkatzen da sekzioa lodiera uniformeko zati zuzenez osatua 
dagoenean. Gainera, erdiko lerroak barneratutako At azalera azaltzen denez, materiala 
ez egoteak zurruntasuna handitzen du. 

12.6. BIHURDURA ZENTRUA 
Bihurdura zentrua indar ebakitzailearen aplikazio puntua da eta O letrarekin 

izendatuko da. Lodiera txikiko sekzio ireki batzuetan bihurdura zentrua eta grabitate 
zentrua ez dira puntu bera. Makurdura bakuna aztertzerakoan, fluxu ebakitzailearen 
teorema eta hipotesi sinplifikatzaileak erabiliz sekzioko tentsio banaketa determinatu 
da, indar ebakitzailea grabitate zentruan dagoela suposatuz, azken baldintza hau erabili 
ez bada ere. 

Sekzioak simetria ardatza badu, O bertan dago. Beraz, sekzioak bi simetria ardatz 
baditu O eta G puntu bera dira. Sekzio zati desberdinen erdiko lerroak puntu batean 
mozten badira, bihurdura zentrua puntu hori da, 12.10 irudian azaltzen den L 
sekzioaren kasuan bezala. 

 
12.10 irudia 

U erako sekzio baten kasua aztertuko da tentsio banaketaren erresultantea non 
dagoen determinatzeko. 12.11 irudian sekzioko tentsio banaketa eta tentsio horiek 
hegaletan eta ariman dituzten 1F  eta 2F  erresultanteak, hurrenez hurren, azaltzen dira. 
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Bektore horien erresultantea T indar ebakitzailea da eta O puntuan aplikatua dago. 
Simetriagatik, O z ardatzean dago eta bere kokapena Varignon-en teorema C puntuan 
aplikatuz lortzen da: 

 1 0TOC F h=  (12.30) 

 

12.11 irudia 

Fluxu ebakitzailea luzera unitateko indar banatua denez, hegaletako maximoa q1max 
izanik, 1F  indarra honakoa da: 

 1
1 0 1max2F b q=  (12.31) 

Fluxu ebakitzailearen teorema erabiliz, hegaletako fluxu maximoa honakoa da: 

 1
1max 0 1 02

z

Tq b t h
I

=  (12.32) 

(12.30)-(12.32) ekuazioak konbinatuz, honakoa lortzen da: 

 
2 2
0 0

14 z

b hOC t
I

=  (12.33) 

y 

z G 

b0 
 

h0 
 

t1 

G O C 

F1 

F2 
 

F1 
 

T 

q1max 
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T indar ebakitzailea bihurdura zentruan aplikatzeko sekzioari gehigarri bat erantsi 
beharko litzaioke. T sekzioko beste Q puntu batean aplikatua badago, Td  momentu 
bihurtzailea sortzen da, 12.12 irudian azaltzen den bezala. Adibidez, U erako edo L 
erako hegalin batek berezko pisua jasaten badu bihurdura gertatzen da, sekzio 
bakoitzeko bolumen indarren erresultantea sekzioaren grabitate zentruan baitago. 

 

12.12 irudia 

12.7. BIHURDURA-MAKURDURA 
Bihurdura eta makurdura batera gertatzen diren kasuetako bat ardatz zirkular 

birakorrena da. 12.13 irudiaren arabera, demagun D diametroko sekzioak M momentu 
makurtzailea eta Mt momentu bihurtzailea jasaten dituela.  

 
12.13 irudia 

Tentsio normal maximoak A eta B puntuetan daude eta bihurdurako tentsio 
ebakitzaile maximoak sekzioaren inguruneko edozein puntutan daude, A eta B barne. 
A puntuko tentsio normal eta ebakitzailea honakoak dira: 

d 

O T 

Q 

T 

Td 

τA 

M Mt 

A 

B 

σxA 
 

σx 
  

τ 
M 

Mt 
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 3 3

1632 t
xA A

MM
D D

σ τ
π π

= =  (12.34) 

Ardatzak normalean material harikorrez eginak daude eta hauetan tentsio 
ebakitzaile maximoaren erizpidea erabil daiteke. Tentsio ebakitzaile maximoa Mohr-
en zirkuluaren erradioa denez, (12.34)-ko tentsioak erabiliz: 

 
2

2 2 2
max 3

16
2
xA

A tM M
D

σ
τ τ

π
 = + = + 
 

 (12.35) 

(12.35) ekuazioko tentsio maximoa materialaren tentsio onargarriarekin berdinduz 
eta D diametroa askatuz, honakoa lortzen da: 

 2 2
3

16
t

on

D M M
πτ

= +  (12.36) 

 





13. TEOREMA ENERGETIKOAK 

13.1. SARRERA 
Elementu diferentzial batean desplazamenduak aldatzen direnean tentsioek 

egindako lana “Gorputz Elastikoa” gaian determinatu da eta Deformazio Energia deitu 
da. Gai honetan kanpoko indarrek egindako lana deformazio energian bihurtzen dela 
suposatuko da, marruskaduraren energia eta energia zinetikoa kontuan hartu gabe. 
Desplazamenduak aldatu ordez indarrak aldatzen badira, lan osagarria eta deformazio 
energia osagarria edo koenergia definituko dira. Kasu honetan ere, lan osagarria 
koenergian bihurtzen dela suposatuko da. Azken berdintasun honetan oinarrituz 
Engesser-Castigliano-ren teorema deduzituko da. Koenergia sekzio indarren bidez 
adieraziz eta Engesser-Castiglianoren teorema erabiliz, desplazamenduak 
determinatuko dira sistema isostatikoetan eta hiperestatizitatea ebatziko da sistema 
hiperestatikoetan. Gai honetan ”desplazamendua” eta ”indarra” hitzak esanahi 
orokortuan erabiltzen dira. Hau da, “desplazamendua” hitzak desplazamenduak eta 
angeluak barneratzen ditu eta “indarra” hitzak indarrak eta momentuak barneratzen 
ditu. Lana eta lan osagarria determinatzerakoan, indarra eta bere norabideko 
desplazamendua, edo momentua eta bere norabideko biraketa bidertzen dira. 

13.2. KANPOKO INDARREN LANA ETA LAN OSAGARRIA 

1, , nF F
 

  kanpoko indar sistema jasaten duen sistema isostatikoa analizatuko da. 

Indarren aplikazio puntuen desplazamenduak 1, , n∆ ∆
 

  dira, eta desplazamendu hauen 

osagaiak indarren norabidean 1, , nδ δ  dira, 13.1 irudian azaltzen denez. Indarrak 
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aldaketa txikien bidez edo kuasiestatikoki aplikatzen dira. Desplazamenduen aldaketa 
diferentziala suposatzen bada, W lanaren diferentziala honela definitzen da: 

 
1 1

n n

i i i i
i i

dW F d F dδ
= =

= ⋅ ∆ =∑ ∑
 

 (13.1) 

 
13.1 irudia 

Desplazamenduen ordez indarrak aldatzen direla suposatzen bada, *W  lan 
osagarriaren diferentziala honela definitzen da: 

 *

1 1

n n

i i i i
i i

dW dF dFδ
= =

= ∆ ⋅ =∑ ∑
 

 (13.2) 

13.2 irudian lanaren eta lan osagarriaren esnahiak azaltzen dira i puntuaren kasuan. 
Portaera elastiko ez lineala eta 0iF =  denean bere norabideko 0 0iδ ≠  desplazamendua 

dagoela suposatzen da. 

F1 
∆1 

Fn 

Fi 

F2 

∆2 δ1 

∆i 

∆n 

δ2 

δi 

δn 
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13.2 irudia 

A eta B konfigurazioen artean egindako lana eta lan osagarria 13.3 irudian azaltzen 
dira. Bi konfigurazioen artean integratuz lortzen dira, honakoak izanik: 

 *

1 1

n nB B

A B i i A B i iA A
i i

W F d W dFδ δ→ →
= =

= =∑ ∑∫ ∫  (13.3) 

 

13.3 irudia 

Sistema elastiko lineal batean, hasierako 0iδ  desplazamenduak nuluak direnean, 

lana eta lan osagarria berdinak dira, 13.4 irudian ikus daitekenez: 

 ( )* 1
2

1

n

A B A B iB iB iA iA
i

W W F Fδ δ→ →
=

= = −∑  (13.4) 

δi 
dδi 

Fi 

dW 

dW* 
dFi 

 
δi0 
 

  

δi 
δiA 

Fi 

W*
AB 

FiA 
 δi0 

WAB 

FiB 
 

δiB 
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13.4 irudia 

13.3. ELKARREKIKOTASUN TEOREMAK 
Hasierako desplazamendurik ez duen sistema isostatiko elastiko lineal batek 13.5 

irudian azaltzen diren bi indar aplikazio prozesuak jasaten ditu: 

I: 1 puntuan F1 indarra aplikatu ondoren 2 puntuan F2 indarra aplikatzen da.  

II: 2 puntuan F2 aplikatu ondoren 1 puntuan F1 indarra aplikatzen da. 

I karga prozesuan, indarrek egindako lana honakoa da: 

 1 1
1 11 2 222 2 1 12I FW F F δδ δ= + +  (13.5) 

(13.5) ekuazioan, F2 indarra aplikatzen denean F1 indarrak bere bukaerako balioa 
du eta ondorioz 1 12Fδ  lana egiten du. II karga prozesuan lana honakoa da: 

 1 1
1 11 2 222 2 2 21IIW F F F δδ δ= + +  (13.6) 

  

δi 
δiA 

Fi 

W*
AB 

FiA 
 

WAB 

FiB 
 

δiB 
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13.5 irudia 

Desplazamendu txikien kasuan lana indarren aplikazio ordenaren menpekoa ez 
denez, (13.5) eta (13.6) ekuazioak berdinduz Lanen Elkarrekikotasun Teorema (Betti) 
lortzen da: 

 1 12 2 21F Fδ δ=  (13.7) 

Indarrak berdinak badira, Desplazamenduen Elkarrekikotasun Teorema lortzen da 
(Maxwell): 

 12 21δ δ=  (13.8) 

13.4. CASTIGLIANO ETA ENGESSER-EN TEOREMAK 
W lana U deformazio energian bihurtzen dela suposatuz, (13.1) ekuaziotik honakoa 

lortzen da: 

 
1

n

i i
i

dW dU F dδ
=

= = ∑  (13.9) 

Gorputz elastikoan U diferentzial exaktoa dela onartzen da eta ondorioz egoera-
funtzioa da, iδ  desplazamendu independenteak egoera aldagaiak izanik: 

F1 
F2 

δ1,1 

δ2,2 δ1,2 
 

F1 F2 
δ2,2 

δ2,1 
 

δ1,1 
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1

n

i
i i

UdU dδ
δ=

∂
=

∂∑  (13.10) 

(13.9) eta (13.10) ekuazioak identifikatuz eta iδ  desplazamenduak independenteak 

direnez, honakoa betetzen da: 

 i
i

U F
δ

∂
=

∂
 (13.11) 

(13.11) ekuazioa Castiglianoren lehen teorema da. Sistema isostatiko batean, 
deformazio energia desplazamenduen menpe adieraziz, indar aplikatuak determina 
daitezke.  

*W  lan osagarria *U C=  deformazio koenergian bihurtzen dela suposatuz, (13.2) 
ekuaziotik honakoa lortzen da: 

 * *

1

n

i i
i

dW dF dU dCδ
=

= = =∑  (13.12) 

Gorputz elastikoan C koenergia diferentzial exaktoa dela onartzen da eta ondorioz 
egoera-funtzioa da, iF  indar independenteak egoera aldagaiak izanik: 

 
1

n

i
i i

CdC dF
F=

∂
=

∂∑  (13.13) 

(13.12) eta (13.13) ekuazioak identifikatuz, iF  indarrak independenteak direnez:  

 i
i

C
F

δ∂
=

∂
 (13.14) 

(13.14) ekuazioa Engesser-en lehen teorema da, Crotti-Engesser-en teorema ere 
deitzen dena. Castigliano-k Crotti eta Engesser-ek energia osagarria definitu aurretik 
U C=  betetzen duten sistema linealetan aplikatu zuenez, Engesser-Castiglianoren 
teorema deituko diogu. Sistema isostatiko batean, C koenergia indarren menpe 
adieraziz, desplazamenduak determina daitezke. Teorema hau (13.11) ekuazioko 
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Castigilanoren lehen teorema baino erabilgarriagoa da, koenergia indar aplikatuen 
menpe adieraztea energia desplazamenduen menpe adieraztea baino errazagoa baita. 

13.5. DEFORMAZIO ENERGIA ETA KOENERGIA 

13.5.1 Tentsioen menpe 
Bolumen unitateko U0 deformazio energia “Gorputz Elastikoa” gaian determinatu 

da, tentsioek elementu diferentzial batean egindako lana kalkulatzerakoan. Egoera 
linealean eta hasierako deformaziorik gabe, energia eta koenergia berdinak dira. 
Helburua pieza prismatikoetan erabiltzea denez, nuluak ez diren batugaiak idatziko dira 
bakarrik. Osagai hauek pieza prismatikoaren sekzioetan dauden hiru tentsio osagaiekin 
erlazionatuta daude: xσ , xyτ , zxτ . 13.6 irudian azaltzen diren bolumen unitateko 

deformazio energia eta koenergia, U0 eta C0 hurrenez hurren, honakoak dira: 

 ( ) ( )1 1
0 0 2 2x x xy xy zx zxU C σ ε τ γ τ γ= = + +  (13.15) 

 

13.6 irudia 

(13.15) ekuazioan, osagai normalen batugaia indar normalarekin eta 
makurdurarekin erlazionatuta dago. Osagai tangentzialen batugaia indar 
ebakitzailearekin eta momentu bihurtzailearekin erlazionatuta dago. 

Tenperatura aldaketa edo luzera erroreen ondorioz, hasierako 0ε  deformazio 

normalak egon daitezkela suposatuko da. 13.7 irudian ikus daitekenez energia eta 
koenergia ez dira berdinak. Tentsio-deformazio erlazioa honakoa da: 

 0
x

x E
σ

ε ε= +  (13.16) 

  

εi 

σi 

U*
0 

U0 

τij 

γij 
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13.7 irudia 

13.7 irudiaren arabera, 00x xε σ σ= ⇒ = . Ondorioz, (13.16) ekuaziotik   

lortzen da. Bolumen unitateko deformazio koenergia tentsioen menpe honakoa da: 

 
2

0 0 02
x

xU C
E

σ
σ ε≠ = +  (13.17) 

Osagai tangentzialen kasuan berriz, koenergia deformazio energiaren berdina da. 
(13.15) ekuaziotik, tentsioen menpe honela gelditzen da: 

 ( )2 2
0 0

1
2 xy zxU C
G

τ τ= = +  (13.18) 

13.5.2 Sekzioko indarren menpe 
Engesser-Castiglianoren teorema pieza prismatikoetan erabiliko denez, koenergia eta 
bere deribatuak sekzioko indarren menpe adieraziko dira.  

Indar normala 

Indar normalaren eta tentsio normalaren arteko erlazioa honakoa da: 

 x
N
A

σ =  (13.19) 

(13.17) ekuazioan ordezkatuz honakoa gelditzen da: 

0 0Eσ ε= −

 
 

εx 

σx 

U*
0 

U0 
ε0 
 σ0 
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2

0 022N
N NC
EA A

ε= +  (13.20) 

Pieza prismatikoan koenergia determinatzeko bolumenean integratu behar da. 
Integral hori gainazal integral batean eta luzerako integral batean bana daitekenez: 

 
2

0 022N NV L A L A

N NC C dV dl dA dl dA
EA A

ε= = +∫ ∫ ∫ ∫ ∫  (13.21) 

(13.21) ekuazioan L pieza prismatikoaren ardatza eta A sekzioa dira. 0ε  hasierako 

deformazioa sekzioan uniformea bada, (13.21) ekuazioa honela gelditzen da: 

 
2

02N L L

NC dl N dl
EA

ε= +∫ ∫  (13.22) 

Engesser-Castiglianoren teorema aplikatzeko, (13.22) ekuazioaren deribatua 
honakoa da: 

 0N L L

NNC dl N dl
EA

ε
′

′ ′= +∫ ∫  (13.23) 

(13.23) ekuazioan egin den bezala, indarrekiko deribatuak prima bidez adieraziko 

dira: 
i

HH
F

∂′ =
∂

, H kanpoko Fi indarren edozein funtzio delarik. 

n barrako egitura giltzatu baten kasuan, N, E, A, 0ε  integraletik biderkagai komun 

bezala atera daitezkenez, (13.23) ekuazioa honela gelditzen da: 

 
2

0
1 2

n
i i

N i i i
i i i

N LC N L
E A

ε
=

 
= + 

 
∑  (13.24) 

(13.24) ekuazioa deribatuz, honakoa lortzen da: 

 0
1 1

n n
i i

N i i i i i
i ii i

N LC N L N L
E A

ε
= =

 
′ ′ ′= + = ∆ 

 
∑ ∑  (13.25) 
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Momentu makurtzailea 

Sekzioko ardatzak nagusiak direnean eta Mz momentu makurtzaileak bakarrik 
eragiten duenean, momentuaren eta tentsio normalaren arteko erlazioa honakoa da: 

 z
x

z

M y
I

σ =  (13.26) 

(13.17) ekuazioan ordezkatuz honakoa gelditzen da: 

 
2 2

0 022z

z z
M

z z

M y M yC
EI I

ε= +  (13.27) 

(13.27) ekuazioa bolumenean integratuz honakoa lortzen da: 

 
2

2
0 022z z

z z
M MV L A L A

z z

M MC C dV dl y dA dl y dA
EI I

ε= = +∫ ∫ ∫ ∫ ∫  (13.28) 

Lehen batugaiko gainazal integrala Iz inertzia momentua dela kontuan izanik, 
(13.28) ekuazioa honela gelditzen da:  

 
2

02z

z z
M L L A

z z

M MC dl dl y dA
EI I

ε= +∫ ∫ ∫  (13.29) 

0ε  hasierako deformazioa sekzioan uniformea bada, (13.29)-ko bigarren batugaia 

nulua da. (13.29) ekuazioa deribatuz, honakoa lortzen da: 

 0z

z z z
M L L A

z z

M M MC dl dl y dA
EI I

ε
′ ′

′ = +∫ ∫ ∫  (13.30) 

Antzeko prozedura jarraituz, aplikatutako momentua My denean, koenergia eta bere 
deribatua, hurrenez hurren, honakoak dira: 

 
2

02y

y y
M L L A

y y

M M
C dl dl z dA

EI I
ε= +∫ ∫ ∫  (13.31) 
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 0y

y y y
M L L A

y y

M M M
C dl dl z dA

EI I
ε

′ ′
′ = +∫ ∫ ∫  (13.32) 

Indar ebakitzailea  

Sekzioko ardatzak nagusiak direnean eta Ty indar ebakitzaileak bakarrik eragiten 
duenean, 13.8 irudian ikusten denez fluxu ebakitzailea duen MN lerroaren luzera b 
bada, indar eta MN lerroarekiko elkartzutak diren tentsio ebakitzaileen arteko erlazioa 
honakoa da: 

 
c
z

y
z

QT b MN
bI

τ = =  (13.33) 

MN lerroa horizontala bada, (13.33) ekuazioan xyτ τ=  da eta MN lerroa bertikala 

bada, zxτ τ=  da. Adibidez, “Makurdura. Tentsioak” gaian ikusi denez, U erako sekzio 

baten hegaletan zxτ  eta ariman xyτ  tentsioak daude. 

 

13.8 irudia 

(13.18) ekuazioan ordezkatuz honakoa gelditzen da: 

 
( )22

0 2 22y

c
y z

T
z

T Q
C

Gb I
=  (13.34) 

(13.34) ekuazioa piezaren bolumenean integratuz honakoa lortzen da: 

G 

M N 
τxy 

y 

z 
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( )22

0 2 22y y

c
zy

T TV L A
z

QT
C C dV dl dA

GI b
= =∫ ∫ ∫  (13.35) 

(13.35) ekuazioan A azalera bidertuz eta zatituz: 

 
( )22

2 22y

c
zy

T L A
z

QT AC dl dA
GA I b

 
 =
 
 

∫ ∫  (13.36) 

(13.36) ekuazioa honela idazten da: 

 
( )22

2 22y

c
zy

T y yL A
z

QT AC dl dA
GA I b

χ χ= =∫ ∫  (13.37) 

yχ  ebakidura faktorea da eta sekzioaren formaren araberako parametroa da. 

Adibidez, sekzioa laukizuzena bada, 6
5yχ = . (13.37) ekuazioa deribatuz, honakoa 

lortzen da: 

 
y

y y
T y L

T T
C dl

GA
χ

′
′ = ∫  (13.38) 

Antzeko prozedura jarraituz, indarra Tz denean, koenergia eta bere deribatua, 
hurrenez hurren, honakoak dira: 

 
( )2

2

2 22z

c
yz

T z zL A
y

QT AC dl dA
GA I b

χ χ= =∫ ∫  (13.39) 

 
z

z z
T z L

T TC dl
GA

χ
′

′ = ∫  (13.40) 

Bihurdura 

Bihurduraren kasuan, momentu bihurtzailearen eta tentsio ebakitzaileen arteko 
erlazioa sekzio motaren araberakoa denez, koenergia beste modu batean determinatuko 
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da. Hasierako deformaziorik ez egoteagatik, koenergia deformazio energiaren berdina 
da eta hau kanpoko indarren lanaren berdina da. Sekzioa edozein motatakoa izanik ere, 
luzera unitateko angelua honakoa da: 

 ,
t

x
t

Md
dl GI
ϕϕ = =  (13.41) 

Mt momentua jasaten duen piezaren dl luzerako elementua hartuz, muturretako 
sekzioen artean biratutako angelua dϕ denez, momentu bihurtzailearen lana hau da: 

 1
2t t tM M M tdW dU dC M dϕ= = =  (13.42) 

(13.41) ekuazioa (13.42) ekuazioan ordezkatuz eta pieza prismatikoaren luzeran 
zehar integratuz: 

 
2

2t

t
M L

t

MC dl
GI

= ∫  (13.43) 

(13.43) ekuazioa deribatuz honakoa lortzen da: 

 
t

t t
M L

t

M MC dl
GI

′
′ = ∫  (13.44) 

Laburpena 

Sekzio bateko barne indar eta momentuen koenergiak independenteak direnez, 
koenergiak eta beren deribatuak determinatzerakoan gainjarpen printzipioa erabil 
daiteke. Ondorengo taulan barne indar eta momentu desberdinen koenergiak eta 
deribatuak azaltzen dira.  

Barne indarra Koenergia Deribatua 

N Orokorra 
2

02N L L

NC dl N dl
EA

ε= +∫ ∫  0N L L

NNC dl N dl
EA

ε
′

′ ′= +∫ ∫  
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Giltzatua 
2

0
1 2

n
i i

N i i i
i i i

N LC N L
E A

ε
=

 
= + 

 
∑  0

1 1

n n
i i

N i i i i
i ii i

N LC N L N
E A

ε
= =

 
′ ′ ′= + = 

 
∑ ∑  

M 

Mz 
2

02z

z z
M L L A

z z

M MC dl dl y d
EI I

ε= +∫ ∫ ∫  
z

z z z
M L L A

z z

M M MC dl dl y
EI I

ε
′ ′

′ = +∫ ∫ ∫  

My 
2

02z

y y
M L L A

y y

M M
C dl dl z d

EI I
ε= +∫ ∫ ∫  

y

y y y
M L L A

y y

M M M
C dl dl z

EI I
ε

′ ′
′ = +∫ ∫ ∫  

T 

Ty 
2

2y

y
T y L

T
C dl

GA
χ= ∫  

2y

y y
T y L

T T
C dl

GA
χ

′
′ = ∫  

Tz 
2

2z

z
T z L

TC dl
GA

χ= ∫  
2z

z z
T z L

T TC dl
GA

χ
′

′ = ∫  

Mt 
2

2t

t
M L

t

MC dl
GI

= ∫  
t

t t
M L

t

M MC dl
GI

′
′ = ∫  

 

Malgukiak 

k zurruntasuna duen malguki lineal baten kasuan, malgukiak jasaten duen indarra F 
izanik, koenergia eta bere deribatua honakoak dira: 

 
2

2k k
F FFC C

k k
′

′= =  (13.45) 

kθ biraketarekiko zurruntasuna duen biraketa malguki baten kasuan, malgukiak 

jasaten duen momentua M izanik, koenergia eta bere deribatua honakoak dira: 

 
2

2k k
M MMC C

k kθ θ
θ θ

′
′= =  (13.46) 
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13.6. SEKZIOKO INDARREN DERIBATUAK. INDAR 

UNITARIOAREN METODOA 
Atal honetan sekzioko indarren deribatuen esanahia azalduko da. 13.9 irudian 

1, , nF F  indar independenteak jasaten dituen sistema isostatikoa azaltzen da. Edozein 

barne indar B kanpoko indar independenteen funtzioa da, hau da, ( )1, nB B F F=  . 

Beraz, iF  indarra idF  aldatzen bada, barne indarra iB B dF′+  da. Gainera, 13.9 irudian 
azaltzen denez: 

 'I i IIB B B dF B B= + =  (13.47) 

 

13.9 irudia 

III konfigurazioko barne indarra, (13.47) ekuazioa eta gainjarmen printzipioaren 
arabera: 

 III I II iB B B B dF′= − =  (13.48) 

III konfigurazioak jasaten duen indar bakarra dFi denez, 1idF =  eginez lortutako 

sekzio indarrak hasierako sistemaren ( IIB B= ) sekzio indarren deribatuak dira, hau da, 

III
i

BB B
F

∂′= =
∂

. Indar unitarioaren metodoa 0iF =  denean ere erabil daiteke, 

determinatu nahi den desplazamenduaren norabideko indar unitarioa aplikatuz. 

 



174 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA  
 
13.7. ENGESSER-CASTIGLIANOREN TEOREMAREN APLIKAZIOA 
13.7.1 Sistema isostatikoak 

Engesser-Castiglianoren teorema (13.14) ekuazioan emana dago. Koenergiaren 
deribatuak sekzioko indarren menpe adieraziz, sistema isostatikoetan 
desplazamenduak lor daitezke. Sekzioko indarren deribatuak determinatzerakoan indar 
unitarioaren metodoa erabilgarria da.  

Indar bera jasaten duten bi puntuen arteko desplazamendu erlatiboa lor daiteke bi 
puntuak lotzen dituen zuzenaren norabidean. 13.10 irudian azaltzen diren i1 eta i2 
puntuen arteko desplazamendu erlatiboa honakoa da: 

 
1 2 1 2

1 2

i i i i
i i

C C
F F

δ δ δ ∂ ∂
= + = +

∂ ∂
 (13.49) 

 

13.10 irudia 

Bi puntuetan aplikatutako indarrak berdinak izanik, 
1 2i i iF F F= =  betetzen da. 

Beraz, independentea den indarra bakarra da eta (13.49) ekuazioa honela gelditzen da: 

 
1 2 1 2i i i i

i

C
F

δ δ δ ∂
= + =

∂
 (13.50) 

(13.50) ekuazioko emaitza sistema hiperestatikoetan erabiliko da. 

Fi2 

δi1 

δi2 

Fi1 
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13.7.2 Sistema hiperestatikoak 
Lehen urratsa sistema hiperestatikoa isostatiko baliokidean bihurtzea da, lotura 

gehigarriak ezezagun hiperestatikoengatik ordezkatuz. Xi aldagai hiperestatikoa hiru 
motatakoa izan daiteke: 

a/ Kanpo erreakzioa. Berari dagokion 0iδ  desplazamendua ezaguna izanik, 

baldintza honakoa da: 

 0i
i

C
X

δ∂
=

∂
 (13.51) 

Kasu askotan kanpo errekazioei dagokien desplazamendua nulua denez, honakoa 
betetzen da: 

 0
i

C
X

∂
=

∂
 (13.52) 

b/ Hasieran aldenduta dauden sistemako bi elementuren arteko lotura indarra. 
Lotura puntuen arteko hasierako desplazamendu erlatibo ezaguna 

1 20i iδ  izanik, (13.50) 

ekuazioaren arabera honakoa bete behar da: 

 
1 20i i

i

C
X

δ∂
=

∂
 (13.53) 

c/ Barne indarra. Kasu honetan, ondoz ondoko sekzioen arteko desplazamendu 
erlatiboa nulua da. Izan ere, sekzio indarrak ondoz ondoko sekzioen desplazamendu 
erlatiboak eragozten dituzten barne erreakzio bezala ikus daitezke. Honako baldintza 
bete behar da: 

 0
i

C
X

∂
=

∂
 (13.54)





14. EZEGONKORTASUNA. 

GILBORDURA 

14.1. SARRERA 
Pieza prismatiko batek konpresioa jasaten duenean, orekaren egonkortasunarekin 

erlazionatuta dagoen eta gilbordura deitzen zaion gertaera jasan dezake: indarraren 
balio kritiko batentzat, makurdurako desplazamenduak azaltzen dira eta indarra 
kentzen ez bada piezaren huts egitea gerta daiteke. Orekaren egonkortasuna honela 
sailka daiteke, perturbazio edo aldaketa txiki baten ondoren sistemak duen 
erantzunaren arabera: 

• Oreka egonkorra: perturbazio baten ondoren sistema hasierako oreka 
egoerara itzultzen da.  

• Oreka ezegonkorra: perturbazio baten ondoren sistema bere hasierako 
oreka egoeratik urruntzen da.  

• Oreka indiferentea: perturbazioaren ondoren sistema oreka egoera berri 
batera heltzen da. 

Konpresio uniformea jasaten duten piezen orekaren egonkortasuna aztertuko da. 
Horretarako piezaren egoera deformatuaren oreka eta kurba elastikoaren ekuazio 
diferentzial hurbildua erabiliko dira. Gaiaren bukaeran, prozedura bera erabiliz, zutabe 
lerdenen konpresio eszentrikoa aztertzen da. 
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14.2. EULER-en KARGA KRITIKOA 

P konpresio indarra jasaten duen soilki bermatutako zutabea aztertzen da, 14.1 
irudian ikus daitekeen bezala. Gilbordura eragiten duen karga kritikoa oreka 
indiferentearen baldintza aplikatuz determinatuko da. Horretarako, hasieran 
perturbazio bat aplikatu eta zutabea deformatuta gelditzen da. Egoera berri hau 
orekakoa bada, oreka indiferentea da. Kargaren balio handiagoentzat oreka 
ezegonkorra da eta balio txikiagoentzat oreka egonkorra da.  

 

14.1 irudia 

14.2 irudian perturbazioa aplikatu ondorengo zutabearen kurba elastikoa azaltzen 
da oreka indiferentea dela suposatuz, hau da, oreka egoera berria posizio deformatua 
dela onartzen da. Posizio horizontalean marrazten da, kurba elastikoaren ekuazio 
diferentziala deduzitzerakoan erabili diren ardatzak adieraziz. Aztertutako sekzioaren 
desplazamendua v da. A-ko apoioa irudia argitzeko irudikatu da, erreakzio bertikala 
nulua dela kontuan izanik.  

B 

P 

  

 

A 
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14.2 irudia 

Bermapuntutik x distantziara dagoen sekzioa kontsideratuz, momentu makurtzailea 
honakoa da: 

 M Pv=  (14.1) 

Kurba elastikoaren ekuazio diferentziala honakoa da: 

 
2

2
z

d v M
dx EI

= −  (14.2) 

(14.1) ekuazioa (14.2) ekuazioan ordezkatuz: 

 
2

2
2 0z

d v v
dx

α+ =  (14.3) 

(14.3) ekuazio diferentzial linealaren soluzio orokorra honakoa da: 

 ( ) ( )1 2sin cosz zv C x C xα α= +  (14.4) 

αz honakoa izanik: 

 z
z

P
EI

α =  (14.5) 

Ondorengo ingurune baldintzak bete behar dira: 

 
( )
( )

0
0

0
x

x L

v

v
=

=

=

=
 (14.6) 

A 
P 

 

y,v 

x 

 P 
M 

v 
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(14.6)-ko lehenengo baldintzatik 2 0C =  lortzen da. Bigarren baldintza betetzeko bi 

egoera gerta daitezke: 

• Oreka egonkorrari dagokiona, 1 0C =  izanik.  

• ( )sin 0z Lα = . Ondorioz, ,2z Lα π π=   bete behar da. Karga minimoa π-

ri dagokiona da. (14.5) ekuazioan ordezkatuz indarra honakoa da: 

 
2

2
zEIP

L
π

=  (14.7) 

zx planoan antzeko analisia egin daitekenez, karga kritikoa inertzia momentu 
minimoari dagokiona da: 

 
2

min
2krit

EIP
L

π
=  (14.8) 

(14.8) ekuazioaren arabera, karga kritikoa txikia izan dadin inertzia momentu 
minimoak haundia izan behar du. Hori lortzeko egoera egokiena inertzia momentu 
nagusiak berdinak izatea da. Ondorioz, sekzioko norabide guztiak nagusiak dira. 
Gainera, materiala ardatzetatik urruntzeak inertzia momentua haunditzen duenez, 
sekzioko norabide guztiak nagusiak dituzten lodiera txikiko sekzioak dira egokienak. 
Adibidez, sekzio karratu eta zirkular hutsak. 

14.3. LOTUREN ERAGINA 
Zutabearen muturretako loturen arabera karga kritikoa aldatu egiten da. Soilki 

bermatutako zutabean muturretako momentuak zero direnez, beste lotura baldintza 
batzurekin momentu makurtzaile nuluko puntuak bilatzen dira. Horrelako bi punturen 
arteko distantzia, Lg gilbordura-luzera bezala definitzen da. Puntu hauek, (14.2) 
ekuazioaren arabera kurba elastikoaren inflexio puntuak dira. 14.3 irudian L luzera 
duen zutabe batek izan ditzazkeen ohiko loturak azaltzen dira.  
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14.3 irudia 

Dagokien gilbordura-luzerak honakoak dira: 

Giltzatua-Giltzatua: Lg = L 

Landatua-Askea: Lg = 2L 

Landatua-Landatua: Lg = 0,5L 

Landatua-Giltzatua: Lg = 0,7L 

Edozein lotura baldintzentzat karga kritikoa honakoa da:  

 
2

min
2krit
g

EIP
L

π
=  (14.9) 

14.4. TENTSIO KRITIKOA ETA LERDENTASUNA 
Tentsio kritikoa gilbordurako karga kritikoari dagokiona da: 

 
2

min
2

krit
krit

g

P EI
A AL

πσ = =  (14.10) 

i biraketa erradioaren definizioa kontuan izanik: 2
min minI i A=  

    

 

          

P P P P 
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Beste alde batetik, λ lerdentasuna honela definitzen da:  

 
min

gL
i

λ =  (14.11) 

(14.11) ekuazioa (14.10) ekuazioan ordezkatuz: 

 
2

2
krit

krit
P E
A

πσ
λ

= =  (14.12) 

Egituren kalkuluko araudian, konpresioa jasaten duten egitura-elementuen 
lerdentasuna funtsezko parametroa da. (14.12) ekuazioa grafika batean adieraziz, 14.4 
irudian azaltzen den Euler-en kurba lortzen da.  

 
14.4 irudia 

σe limite elastikoa izanik, portaera elastikoa ziurtatzeko lerdentasunak 0λ λ>  

baldintza bete behar du. Baldintza hau betetzen duten piezak lerdenak deitzen dira. 

0λ λ<  denean, piezak laburrak deitzen dira eta Euler-en kurba ezin da erabili. 

14.5. ZUTABE LERDENEN KONPRESIO ESZENTRIKOA 
Mutur batean landatua eta bestean askea dagoen zutabe lerden batek konpresio 

eszentrikoa jasaten duenean, mutur askeko desplazamendua eszentrizitatearen 
mailakoa baldin bada, desplazamendu haundien problema sortzen da. Ondorioz, karga 
kritikoarentzat egin denaren antzeko analisia garatuko da, egoera deformatua eta kurba 
elastikoaren ekuazio diferentzial hurbildua erabiliz. 

 

 

σ 

λ λ0 

σe 
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14.5 irudia 

14.5 irudiaren ezker aldean P konpresio indarra ey eszentrizitatearekin jasaten duen 
zutabea azaltzen da, sekzioari dagokion erreferentzia sistemarekin. Eskuin aldean 
kurba elastikoa eta kargaren kokapena azaltzen dira, desplazamenduak determinatzeko 
erreferentzia sistemarekin. A landapeneko erreakzioak determinatu ondoren, 14.6 
irudian x distantziara dagoen sekzio baten mozketa azaltzen da, bertako momentu 
makurtzailea honakoa delarik: 

 ( )y yM Pv P e δ= − +  (14.13) 

 
14.6 irudia 

(14.2) ekuazioan ordezkatuz honakoa lortzen da: 

 ( )
2

2 2
2 z z y y

d v v e
dx

α α δ+ = +  (14.14) 

(14.14) ekuazioaren soluzio orokorra honakoa da: 

 

 

P(ey+δy) 
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 ( ) ( ) ( )1 2sin cosz z y yv C x C x eα α δ= + + +  (14.15) 

C1 eta C2 konstanteak eta δy desplazamendua determinatzeko ingurune baldintzak 
honakoak dira: 

 ,

0 0
0 0x

y

x v
x v
x L v δ

= =
= =

= =

 (14.16) 

(14.16)-ko baldintzak (14.15) ekuazioan aplikatuz, honakoa lortzen da: 

 
( )

( )
( )

2

1 0

1 cos
cos

y y

z
y y

z

C e

C

L
e

L

δ

α
δ

α

= − +

=

 −  =

 (14.17) 

(14.17)-ko emaitzak (14.15) ekuazioan ordezkatuz, desplazamenduen funtzioa 
honakoa da: 

 ( )
( )

1 cos
cos

z
y

z

x
v e

L
α

α
−

=  (14.18) 

(14.18) ekuazioa (14.13) ekuazioan ordezkatuz, momentu makurtzailea x-en menpe 
honakoa da: 

 ( )
( )

cos
cos

z
y

z

x
M Pe

L
α
α

= −  (14.19) 

(14.19) ekuazioaren arabera, momentu maximoa landapenean gertatzen da: 

 
( ) ( )max
1 sec

cosA y y z
z

M M Pe Pe L
L

α
α

= = − = −  (14.20) 
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(14.20) ekuazioan ( )sec z Lα  makurdura konposatuko ( )yPe−  momentuari eragiten 

dion faktore biderkatzailea da, ( )sec 1z Lα >  izanik.  

Ezegonkortasuna gertatzen denean landapeneko momentuak infiniturantz jotzen 
duenez: 

 
( )

2

max 22 2
z

z
EIM L P
L

ππα→ ∞ ⇒ → ⇒ =  (14.21) 

(14.21) ekuazioaren arabera, gilbordura eragiten duen karga kritikoa Landatua-
Askea kasuan lortutakoa da eta inertzia momentu minimoari dagokio. 

 


	1. IRAKASGAIAREN DESKRIBAPENA
	1.1. SARRERA
	1.2. ELASTIKOTASUNA
	1.3. MATERIALEN ERRESISTENTZIA

	2. TENTSIOAK
	2.1. SARRERA
	2.2. TENTSIO BEKTOREA ETA OSAGAIAK
	2.3. OREKA EKUAZIOAK
	2.4. TENTSIO EGOERA OROKORRA
	2.4.1 Tentsio tentsorea
	2.4.2 Bektoreen eta tentsoreen transformazioa
	2.4.3 Tentsio nagusiak
	Problemaren bi formulazio
	Problemaren ebazpena eta inbarianteak
	Tentsio nagusiak zenbaki errealak dira
	Norabide nagusiak elkartzutak dira
	Tentsio ebakitzaile maximoak

	2.4.4 Osagai eskerikoa eta desbideratze osagaia

	2.5. TENTSIO EGOERA LAUA
	2.6. MOHR-EN ZIRKULUA
	2.6.1 Tentsio egoera laua
	2.6.2 Tentsio egoera orokorra


	3. DEFORMAZIOAK
	3.1. SARRERA
	3.2. ELEMENTU DIFERENTZIALAREN DEFORMAZIOA
	3.3. DEFORMAZIO UNITARIOAK
	3.3.1 Deformazio unitario normalak
	3.3.2 Deformazio unitario tangentzialak

	3.4. DEFORMAZIO ETA ERROTAZIO TENTSOREAK
	3.5. DEFORMAZIO ETA ERROTAZIO BEKTOREAK
	3.5.1 Errotazio bektorea
	3.5.2 Deformazio bektorea

	3.6. TENTSIOEN ETA DEFORMAZIOEN ANTZEKOTASUNA
	3.7. FORMA ETA BOLUMEN ALDAKETAK
	3.8. BATERAGARRITASUN BALDINTZAK
	3.9. GALGA EXTENSIOMETRIKOAK

	4. GORPUTZ ELASTIKOA
	4.1. SARRERA
	4.2. DEFORMAZIOAK TENTSIOEN MENPE
	4.3. TENTSIOAK DEFORMAZIOEN MENPE
	4.4. TENPERATURAREN ERAGINA
	4.5. TENTSIO ETA DEFORMAZIO EGOERA LAUA
	4.5.1 Tentsio egoera laua
	4.5.2 Deformazio egoera laua

	4.6. DEFORMAZIO ENERGIA

	5. PROBLEMA ELASTIKOA
	5.1. SARRERA
	5.2. ELASTIKOTASUNAREN TEORIAKO EKUAZIOAK
	5.3. PROBLEMA ELASTIKOAREN PLANTEAMENDUA
	5.3.1 Desplazamenduak ezezagun bezala hartuta
	5.3.2 Tentsioak ezezagun bezala hartuta
	5.3.3 Materialen erresistentzia
	5.3.4 Metodo numerikoak


	6.  HUTSEGITE IRIZPIDEAK
	6.1. SARRERA
	6.2. TENTSIO MAXIMOAREN IRIZPDIEA: RANKINE
	6.3. DEFORMAZIO MAXIMOA: SAINT VENANT
	6.4. MOHR-EN EGOERA LIMITEAK
	6.5. TENTSIO EBAKITZAILE MAXIMOA: TRESCA
	6.6. DISTORTSIO ENERGIA MAXIMOA: VON MISES

	7.  PIEZA PRISMATIKOAK: SEKZIOKO INDAR ETA MOMENTUAK
	7.1. SARRERA
	7.2. SEKZIOKO INDAR ETA MOMENTUAK
	7.3. IKUR HITZARMENA
	7.4. ZERRADA DIFERENTZIALAREN OREKA
	7.5. SEKZIOKO INDAR ETA MOMENTUEN DIAGRAMAK
	7.6. ARDATZ KURBOKO PIEZA PRISMATIKOAK

	8.  TRAKZIOA ETA KONPRESIOA
	8.1. SARRERA
	8.2. DEFORMAZIOAK ETA TENTSIOAK
	8.3. LUZERA ALDAKETA
	8.4. EGITURA GILTZATUAK: BARREN DEFORMAZIO PROZESUA
	8.5. LODIERA TXIKIKO EGITURAK
	8.5.1 Biltegiak
	8.5.2 Eraztunak


	9.  MAKURDURA: TENTSIOAK
	9.1. SARRERA
	9.2. MAKURDURA HUTSA
	9.2.1 Kasu orokorra
	9.2.2 Mohr-en zirkulua inertzia momentuentzat
	9.2.3 Kasu partikularrak

	9.3. MAKURDURA BAKUNA
	9.3.1 Tentsio normalak
	9.3.2 Fluxu ebakitzailearen teorema
	9.3.3 Tentsio ebakitzaileak
	9.3.4 Tentsio nagusiak
	9.3.5 Habe konposatuak

	9.4. MAKURDURKA KONPOSATUA
	9.4.1 Tentsio normalak eta ebakitzaileak
	9.4.2 Trakzio eta konpresio eszentrikoa
	9.4.3 Sekzioaren Nukleoa


	10. MAKURDURA: ZURRUNTASUNA
	10.1. SARRERA
	10.2. KURBA ELASTIKOAREN EKUAZIO DIFERENTZIALA
	10.3. EED INTEGRAZIOA: BAKUNTASUN FUNTZIOAK
	10.4. MOHR-EN TEOREMAK
	10.4.1 Lehenengo teorema (M1)
	10.4.2 Bigarren teorema (M2)

	10.5. HABE KONJOKATUAREN METODOA

	11. MAKURDURA: HIPERESTATIZITATEA
	11.1. SARRERA
	11.2. TARTE BAKARREKO HABEAK
	11.3. HIRU MOMENTUEN TEOREMA

	12. BIHURDURA
	12.1. SARRERA
	12.2. SEKZIO ZIRKULARRA
	12.3. SEKZIO LAUKIZUZENA
	12.4. LODIERA TXIKIKO SEKZIO IREKIAK
	12.5. LODIERA TXIKIKO SEKZIO ITXIAK
	12.6. BIHURDURA ZENTRUA
	12.7. BIHURDURA-MAKURDURA

	13. TEOREMA ENERGETIKOAK
	13.1. SARRERA
	13.2. KANPOKO INDARREN LANA ETA LAN OSAGARRIA
	13.3. ELKARREKIKOTASUN TEOREMAK
	13.4. CASTIGLIANO ETA ENGESSER-EN TEOREMAK
	13.5. DEFORMAZIO ENERGIA ETA KOENERGIA
	13.5.1 Tentsioen menpe
	13.5.2 Sekzioko indarren menpe

	13.6. SEKZIOKO INDARREN DERIBATUAK. INDAR UNITARIOAREN METODOA
	13.7. ENGESSER-CASTIGLIANOREN TEOREMAREN APLIKAZIOA
	13.7.1 Sistema isostatikoak
	13.7.2 Sistema hiperestatikoak


	14. EZEGONKORTASUNA. GILBORDURA
	14.1. SARRERA
	14.2. EULER-en KARGA KRITIKOA
	14.3. LOTUREN ERAGINA
	14.4. TENTSIO KRITIKOA ETA LERDENTASUNA
	14.5. ZUTABE LERDENEN KONPRESIO ESZENTRIKOA


