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Hitzaurrea

Liburu honen edukia Euskal Herriko Unibertsitateko (UPV/EHU) Ingeniaritza
Mekanikoa Graduko Elastikotasuna eta Materialen Erresistentzia irakasgaiari
dagokio. Irakasgai honetan Egituren Kalkuluko eta Diseinu Mekanikoko oinarri batzuk
aztertzen dira. Bi atal nagusi ditu: alde batetik Elastikotasunaren Teoria eta bestetik
Materialen Erresistentzia. Lehen atalean, gorputz deformagarrien deskripzio
matematikoa egiten da eta hauek bete behar dituzten ekuazio orokorrak aztertzen dira.
Sortzen den problema matematikoaren zailtasuna dela eta, bigarren atala osatzen duen
Materialen Erresistentzian hipotesi sinplifikatzaileak erabiltzen dira, pieza
prismatikoen geometria duten gorputzetan.

Lehenengo gaia irakasgaiaren deskribapena da eta ondoren Elastikotasunaren
Teoriako lau gaiak datoz. Bigarren gaian tentsioak edo gainazal unitateko barne
indarrak aztertzen dira. Tentsioa bektorea, tentsio tentsorea eta bere osagaiak jorratzen
dira, beraiekin erlazionatutako autobalio eta autobektoreen problema ere barneratuz.
Tentsio egoera laua, duen garrantziagatik, berezituta aztertzen da eta Mohr-en
zirkuluaren erabilpena azaltzen da.

Hirugurren gaian deformazio unitarioak aztertzen dira. Hauek, luzera aldaketa
erlatiboak edo angelu zuzenen txikitzeak adierazten dituzte. Beren analisi matematikoa
tentsioen kasuan garatutakoaren parekoa dela ikusten da, eta ondorioz bigarren gaian
garatutako prozedura matematiko berak erabiliko dira deformazioen kasuan ere.

Laugarren gaian tentsioak eta deformazioak materialen ezaugarrien menpeko diren
ekuazio linealen bidez erlazionatzen dira, gorputz isotropoen kasuan. Elastikotasun edo
Young-en modulua eta Poisson-en koefizientea erabiliz, tentsioak eta deformazioak
erlaziona daitezke. Deformazio energia elastikoa ere gai honetan aztertzen da.
Bostgarren gaian, aurrekoetan lortutako ekuazioak elkartzen dira, problema elastikoa
eta bere zailtasun matematikoa deskribatzeko.

Seigarren gaian, pieza baten hutsegitea eragiten duten tentsio edo deformazio egoera
determinatzeko irizpideak aztertzen dira. Hutsegitean piezaren haustura da material
hauskorren kasuan eta isurpen plastikoa material harikorren kasuan. Zazpigarren gaian
pieza prismatikoen sekzioetan tentsioek sortzen dituzten erresultantearen eta momentu
erresultantearen osagaiak aztertzen dira, sekzioko indar eta momentu deitzen direnak.
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Sekzio indarrak indar normala eta ebakitzailean dira. Sekziko momentuak berriz,
momentu makurtzailea eta momentu bihurtzailea dira. Gai honetan Solido Zurrunaren
Estatikako ekuazioak erabiltzen dira bakarrik.

Zortzigarren gaian Materialen Erresistentzia hasten da, trakzioa eta konpresioa
jasten duten pieza eta sistemak hipotesis sinplifikatzaileak erabiliz aztertzen baitira. Gai
honetan, trakzioa eta konpresioa jasaten duten lodiera txikiko egiturak ere jorratzen
dira. Bederatzigarren gaian, momentu makurtzaileak jasaten dituzten pieza
prismatikoen tensio egoera aztertzen da, makurdura hiru kasutan sailkatuz: makurdura
hutsa, makurdura bakuna eta makurdura konposatua. Makurdura hutsean, sekzioari
momentu makurtzaileak bakarrik eragiten dio. Makurdura bakunean, momentu
makurtzaileaz gain indar ebakitzaileak ere eragiten dio eta makurdura konposatuan,
indar normalak ere sekzioari eragiten dio.

Hamargarren gaian, pieza prismatikoen makurduran sortzen diren desplazamendu
bertikalak eta sekzioek biratzen dituzten angeluak aztertzen dira. Hamaikagarren gaian,
aurreko gaian erabilitako metodoak sistema hiperestatikoetan baldintzak ezartzeko eta
horrela problemaren ezezagun guztiak determinatzeko erabiltzen dira. Hamabigarren
gaian, bihurdura aztertzen da, lau sekzio mota barneratuz: zirkularra, laukizuzena,
lodiera txikiko sekzio irikia eta lodiera txikiko sekzio itxia. Makurdurak eta bihurdurak
batera eragiten duteneko kasua ere aztertzen da.

Hamairugarren gaian deformazio energiarekin eta deformazio koenergiarekin
erlazionatutako kalkuluak burutuko dira, Engesser-Castigliano-ren teorema erabiliz
nagusiki. Honen bidez, aurreko gaietan kalkulatutako puntuen desplazamenduak eta
angeluak, teorema bakarrarekin determinatu ahal izango dira eta sistema
hiperestatikoetan, baldintza bezala erabili ahal izango da. Indar ebakitzaileek
makurdura bakuneko zurruntasunean duten eragina eta tenperaturak makudurako
kasuetan izan dezakeen eragina aztertzeko ere erabilgarria da.

Hamalugarren gaian konpresioa jasaten duten pieza prismatikoen oreka egonkorra
aztertzen da, oreka ezegonkorra edo gilbordura ekiditeko. Kasu honetan, problemaren
analisia egoera deformatuan egin behar da, karga kritikoa lortu ahal izateko. Bukatzeko,
zutabe lerdenen konpresio eszentrikoa ere aztertzen da, hemen ere, piezaren
konfigurazio deformatua erabiliz azterketarako.
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1. IRAKASGAIAREN
DESKRIBAPENA

1.1. SARRERA

Mekanika, gorputzen higidura aztertzen duen Zientziako adarra da. Higidura bere
zergatiak kontuan hartu gabe aztertzen dituen atala Zinematika da eta higidura eta bere
zergatiak, hau da indarrak, aztertzen dituena, Dinamika da. Ingeniaritzan, gorputz
isolatu bati eragiten dioten indar sistemaren erresultantea eta momentu erresultantea
nuluak direneko kasuak interes berezia du. Egoera honetan, gorputza orekan dagoela
esaten da eta orekan dauden gorputzak aztertzen dituen Mekanikako atala Estatika da.

Gorputz motaren ikuspuntutik, errealitateranzko lehen hurbilpena partikula aztertuz
egiten da, bere ezaugarri matermatikoak puntu baten koordenatuak eta bere masa
izanik. Hurrengo urratsa, jarraituak edo diskretoak izan daitezkeen partikula sistemak
jorratzea da. Ingurune jarraituek gainera solidoak edo fluidoak izan daitezke. Ingurune
jarraitu solido baten kasuan, errealitateranzako hurrengo urratsean, puntuen arteko
distantzia erlatiboak ez direla aldatzen onartzen da, Solido Zurrunera iritsiz. Puntuen
arteko distantziak aldatzen direla onartzen bada, Solido Deformagarriaren modelora
iristen da. Baina distantzia aldaketa erlatiboek solidoaren osotasunari aldaketa
nabarmenik ez badiote eragiten, solidoaren higidura orokorra edo oreka, Solido
Zurrunaren Mekaniko legeak erabiliz azter daitezke. Hau da, solidoa deformatuta
egonik ere, bere orobateko analisia deformatu gabeko konfigurazioarekin egin daiteke.
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Irakasgai honetako kasu gehienetan, Solido Zurrunaren legeak deformatu gabeko
konfigurazioari aplikatuko zaizkio, konfigurazio deformatuaren eta deformatu
gabekoaren alde txikiaren ondorioz. Beste alde batetik, gorputza orekan ez dagoenean,
D'Alembert-en printzipioa aplikatuko da, Dinamikako problema Estatikako batean
bihurtuz. Solido deformagarriko puntuen arteko distantzia aldaketa erlatiboak eta beren
zergatiak analizatzeko, bi magnitude definitzen dira: tentsioak eta deformazio
unitarioak.

Tentsioak, gainazal unitateko barne indarrak dira eta normalak edo tangentzialak
izan daitezke, gainazalarekiko elkartzut edo bertan barneratuak badira, hurrenez hurren.
Beste alde batetik, deformazio unitario normalek luzera aldaketa erlatiboak adierazten
dituzte eta tangentzialek, hasieran zuzenak ziren angeluen txikitzea. Tensioak
deformazioak eragiten dituzten zergatiak direla onartuz, batzuk eta besteak,
parametroak barneratzen dituzten ekuazioen bidez erlazionatuta daude matematikoki.
Parametro hauek, gorputza osatzen duen materialaren ezaugarri fisiko-kimikoen
menpekak dira.

Irakasgai honetan, tentsio eta deformazio unitarioak biunibokoki erlazionatuta
daudela suposatzen da, hau da, tentsio egoera bakoitzari deformazio egoera bat
dagokiola, eta alderantziz. Honen ondorioz, gorputz bat kargatzen bada eta ondoren
deskargatu, tentsioak eta deformazioak erlazionatzen dituzten kurbek ibilbide bera
jarraitzen dute karga eta deskargan. Portaera honi elastiko deritzo. Gainera, tentsioak
eta deformazioak erlazionatzen dituzten ekuazioak linealak direla suposatzen da.
Honen ondorioz gainjarpen prinzipioa erabil daiteke, zeinaren arabera, zergati multzo
baten ondorioa, zergati bakoitzak eragiten dituen ondorien batura den. Irakasgaia,
ondorengo ataletan azaltzen diren bi zati nagusitan banatzen da: Elastikotasuna eta
Materialen Erresistentzia.

1.2. ELASTIKOTASUNA

Tentsioak, deformazioak eta beren arteko erlazio legeak aztertzen dira. Tentsioen
analisitik oreka ekuazioak lortzen dira, Estatikako legeak aplikatuz. Deformazioen
analisian, deformazio prozesuaren geometria aztertzen da eta puntu bateko deformazio
unitarioak bertako desplazamenduen deribatuekin erlazionatzen dira. Tentsio eta
deformazioen arteko erlazioei konstitutibo deritze, materialaren propietateen menpeko
baitira. Beren azterketan, materiala, elastikoa eta lineala izateaz gain, isotropoa dela



TENTSIOAK 3

suposatzen da. Horrela, bi konstante elastiko independente behar dira tentsio eta
deformazioen arteko erlazio legeak ezartzeko.

Tentsioen, deformazioen eta ekuazio konstitutiboetatik lortutako ekuazio multzoak,
errealitateko kasu gehienetan ebazteko o0so zaila den ekuazio sistema bat osatzen dute.
Horregatik, geometria ezaugarri jakina duten pieza prismatiko, plaka eta oskolen
kasuan bezalako solidoetan, deformazioei eta tentsioei buruzko hipotesi
sinplifikatzaileak erabiltzen dira.

1.3. MATERIALEN ERRESISTENTZIA

Irakasgaiaren atal honetan, ingeniaritzan ohikoa den solido tipologia bat aztertuko
da: pieza prismatikoez osatutako sistemak. Pieza prismatikoa honela definitzen da:
gainazal lau baten grabitate zentruak kurba bat deskribatzerakoan sortutako bolumena,
gainazala eta kurbak elkartzut irauten dutelarik. Gainazal laua sekzio zuzena edo
sekzioa deitzen da eta kurba, zuzentzailea edo ardatza da. Gainera, piezaren luzera
sekzioaren dimentsioak baino nabarmenki handiagoa da. Aztertzen diren kasu
gehienetan zuzentzailea zuzena da, habe, zutabe eta ardatzetan gertatzen den bezala.

Sekzio bateko tentsioen erresultantea eta momentu erresultantea determinatzen dira
bertako grabitate zentruan. Irakasgaiaren garapenean, sekzioen deformazioari buruzko
hipotesi sinplifikatzaileak egin ondoren, sekzioko indar eta momentu bakoitzak berau
eragiten duten tensio banaketarekin erlazionatzen da. Analisi honen bidez, tentsio
maximoak materialaren tensio onargarriarekin konparatzen dira, eta erresistentzia
analisia deitzen zaio. Beste alde batetik, pieza prismatikoaren desplazamendu eta
biraketak aztertzen dira, zurruntasun analisia eginez. Azken gaian, konpresioa jasaten
duten piezen egonkortasuna aztertzen da, gilbordura. Hemen, oreka baldintzak
konfigurazio deformatuan ezartzen dira eta konpresio indarrek piezaren makurdura
ezegonkorra eragiten duten egoera aztertzen da.






2. TENTSIOAK

2.1. SARRERA

Gorputz batean diharduten gainazal unitateko barne indarrak tentsioak dira.
Tentsioa planoarekiko elkartzuta den osagai normalean eta banaketa gainazalean
barneratuta dagoen osagai tangentzialean deskonposa daiteke.

2.2. TENTSIO BEKTOREA ETA OSAGAIAK

Izan bedi indar sistema bat jasaten duen eta oreka estatikoan dagoen gorputz bat.
Plano baten bidez banatuta suposatzen bada, alde bakoitzaren oreka mantentzeko
ebaketa planoan barne indarrak azaltzen dira, 2.1 irudian ikus daitekenez.

2.1 irudia

fi bektore unitario normala duen planoko tentsio bektorea honela definitzen da:

S = lim— (2.1)
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Af barne indarra eta AA barne indarraren eragite azalera izanik. Ebaketa
planoarekiko normala den osagai batean eta plano horretan barneratuta dagoen beste
osagai batean deskonposa daiteke 2.2 irudian azaltzen den bezala. Osagai normala on
tentsio normala deitzen da eta plano barneko osagaia z tentsio ebakitzaile edo
tangentziala deitzen da. Osagai hauek erreferentzia sistema baten menpekoak ez
direnez, tentsio bektorearen osagai intrintsekoak deitzen dira.

2.2 irudia

2.2 irudiaren arabera, osagai intrintsekoak honakoak dira:

2.2)

t z ren norabideko bektore unitarioa izanik.

Erreferentzia sistema bat erabiliz, osagai tangentziala ardatzen norabidea duten
beste bitan deskonposatzen da, 2.3 irudian ikus daitekenez.
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2.3 irudia

o tentsio normalen kasuan, i azpiindizeak planoaren norabide normala adierazten
du. 7; tentsio ebakitzaileen kasuan i azpiindizeak norabide normala eta j azpiindizeak
osagaiaren norabidea adierazten du. Tentsio osagaien ikurrentzat honako hitzarmena
ezartzen da: plano positiboan norantza positiboa duenean edo plano negatiboan
norantza negatiboa duenean osagaia positiboa da. Plano positiboa normal positiboa
duena da, adibidez, 2.3 irudian azaltzen diren mozte planoak.

2.3. OREKA EKUAZIOAK

Solido baten barneko O(x,y,z) puntuaren inguruko paralelepipedo zuzen
diferentziala isolatuko da. Aurpegien zentruetan tentsio osagaiek eta grabitate zentruan,
2.4 irudian azaltzen ez diren bolumen unitateko indarrek dihardute. Tentsioak O
puntuaren koordenatuen menpeko funtzio bezala hartuko dira, eta funtzio jarraituak
direla onartuko da. Ondorioz, i (i = X, y, z) norabidearekiko elkartzut diren bi planoetan,
funtzioari i koordenatuari dagokion aldaketa gehitu behar zaio. Hau da, O-tik igarotzen
den planoan balioa f (x,y,z) izanik, plano paraleloko balioa f (x,y,z)+ f,(x,y,z)di

da. Bien arteko aldaketa honela izendatuko da: A, f = f di -



8 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA

|

R (N . (IO—:
- -
T | o W
o
- -(/ o ® )—V" A0,
] El it T A
- 4|0 AL | A X
ntAT, -
X
.G
V.
C
2.4 irudia

Indarren oreka ekuazioak erabiliz honakoa lortzen da;

> F.=0

(o, +0,,0x)dydz - o, dydz +(z,, + 7, dy)dxdz - 7,,dxdz + (7, + 7, 0z ) dxdy - 7, dxdy + F, dxdydz =0

> F,=0

(7, + 7y dX)dydz — 7, dydz + (o, + o, dy)dxdz - o, dxdz +(z,, + 7, ,dz ) dxdy — 7, dxdy + F, dxdydz = 0

>F,=0

(7,0 + 7,0, 0X)dydz - 7,,dydz +(z,, +7,, dy)dxdz — 7,,dxdz + (o, + o, ,dz ) dxdy — o, dxdy + F,dxdydz =0
(2.3)

(2.3) ekuazioetan eragiketak egin eta atalez atal dxdydz zatitu ondoren, honakoa
gelditzen da:
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Opx T Ty tTos T F =0
Tyx TO,, +Ty, + Fy =0 (2.4)

Tyax T Ty T 0, F F, =0

Momentuen oreka baldintzak planteatzeko, elementuaren grabitate zentruan sorrera
duen eta Oxyz sistemarekiko ardatz paraleloak dituen Gx’y’z’ erreferentzia sistema
aukeratzen da. Ardatzekiko momentuak hartuz, ardatza mozten duten edo berarekiko
paraleloak diren osagaiek momentu nulua ematen dute. 2.5 irudian x’ ardatzarekiko
elkartzuta den planoa eta ardatz horrekiko momentua ematen duten osagaiak azaltzen
dira.

[ A, rt <-IG 1 7,

A
v

2.5 irudia
X” ardatzarekiko momentuen oreka planteatuz:
> M, =0

r,dxdzidy +(z,, +7,, dy)dxdzidy -z, dxdyLdz - (z,, +7,,,dz)dxdy2dz =0
2.5)

Tentsio ebakitzaileen deribatuak zenbaki finituak direla onartuz, deribatuei
dagokien gaiak arbuiagarriak dira besteen parean. (2.5) ekuazioan dxdydz atalez atal
zatitu ondoren honako berdintasuna gelditzen da:

S (2.6)
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~— - X
\(6)
—
T, tAzL
Yz
2.6 irudia

2.6 irudian y’ ardatzarekiko momentua ematen duten osagaiak azaltzen dira.
Aurreko kasuaren antzera garatuz, honakoa lortzen da

.7)

r"l GL 1r“+J‘ T,

2.7 irudia

2.7 irudian 7z’ ardatzarekiko momentua ematen duten osagaiak azaltzen dira.
Honakoa lortzen da:

.z (2.8)

(2.6)-(2.8) ekuazioen arabera, tentsio osagai tangentzialak simetrikoak dira edozein
Oxyz erreferentzia sistemetan.
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2.4. TENTSIO EGOERA OROKORRA

2.4.1 Tentsio tentsorea

O-n sorrera duen erreferentzia sistema bat erabiliz, 2.8 irudian azaltzen den tetraedro
elementala isolatuko da, O puntutik igarotzen den edozein planoko tentsio bektorearen
osagaiak determinatzeko. Plano koordenatuei dagokien tentsio bektoreak osagai
normal batean eta ardatzen araberako bi osagai tangentzialetan deskonposatzen dira,
lehen esan den bezala:

S, =—r,i-o,j-r,k (2.9)

Q

2.8 irudia

Elementuak 2.8 irudian azaltzen ez den bolumen unitateko F indarra ere jasaten
du, F, Fy, F; osagaiak dituena. Indar hori grabitatorioa, elektromagnetikoa edo inertzia
indarra izan daiteke. Indarren oreka ekuazio bektoriala honakoa da:
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>F=0 §,ABC+5,0BC+S,0AC+S,0AB+FdvV =0  (2.10)

n

Ny, Ny eta n, i bektore normalaren osagaiak izanik, azaleren arteko honako erlazioak
betetzen dira:

OBC=n,ABC  OAC=n ABC  OAB=n,ABC (2.11)

(2.11) ekuazioko emaitzak justifikatzeko, ny-ren kasua azaltzen da 2.9 irudian. OP

eta BP zuzenkiak elkartzutak eta n, =cos 8 izanik:

(2.12)

(2.12) ekuazioko bi azalerak zatituz eta 2.9 irudia kontuan izanik, OAC = n, ABC

lortzen da. (2.11)-ko beste erlazioak antzera lor daitezke.

o— —>p

2.9 irudia
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(2.11) ekuazioa (2.10) ekuazioan ordezkatuz, ABC azaleragatik zatituz eta
ardatzen arabera deskonposatuz, tentsio bektorearen osagai kartesiarrak honakoak dira:

Sy =0,Nn, + T, N, +7,0N,
Sy =TyN +ouN, +7,0, (2.13)

S, =7,N, + 7N, +o,n,

(2.13) ekuazioan bolumen indarrei dagokien batugaiak ez dira barneratu,
arbuiagarriak baitira gai diferentzialagatik bidertuta egoteagatik. Matrize moduan

dv
ABC

honela gelditzen da:

nx O-X Ty)( TZX nX
Sw(=|Ty Oy Ty 1Ny {Sn} = [G]{n} (2.14)
nz TXZ TyZ O-Z nZ

(2.14) ekuazioaren arabera, Oxyz erreferentzia sisteman adierazitako {n} bektorea
{s,} bektorean transformatzen da [o] matrize simetrikoaren bidez. Erreferentzia

sistemaren menpekoa ez den adierazpena honakoa da:

S, =6h (2.15)

Transformazioari dagokion eragile matematikoa tentsorea deitzen da. (2.15)
ekuazioan & tentsio tentsorea da eta erreferentzia sistema kartesiar batean 3x3 matrize
baten bidez adierazten da. Tentsio bektorearen osagai intrintsekoak ez dira erreferentzia

sistemaren menpekoak eta honakoak dira:

=10} {Su) ={n} [o]{n)

~ 2
S

Q
[

(2.16)

2 2
Ty = — 0y

n

2.4.2 Bektoreen eta tentsoreen transformazioa

2.10 irudian Oxyz eta Ox’y’z’ erreferentzia sistemak azaltzen dira. Bektore baten
osagaien arteko erlazioa aztertzen lehenik. Edozein V bektoreren adierazpena bi
erreferentzia sistemetan honakoa da:
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V=V i+v j+vk (2.17)

V=" +v, J +v, K (2.18)

2.10 irudia

Erreferentzia sistema bakoitzeko bektore unitarioak beste erreferentzia sisteman
adieraz daitezkenez:

=gl + 0y ) + 1 K

J=r 0+, ] 1,k (2.19)
K=rl +1,] + 1K

V= d 41 ]+ 1k

I =r 4, gk (2.20)
K'=ri+ 1§ +1,K

rij eta rj koefizienteak bektore unitarioen norabidetako kosinu zuzentzaileak
direnez, honakoa betetzen da: r,, = r,.. (2.19) ekuazioa (2.17) ekuazioan ordezkatuz:
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k) (2.21)

(2.21) ekuazioko osagaiak (2.18) ekuaziokoekin berdinduz eta r, —r, dela

kontuan izanik, matrize moduan honakoa lortzen da:

Vx rx X r.x’y r.x 7 Vx
Vy’ = rY'X ry'y ry'Z VY = {V}Ox’y’z' = [R] {V}Oxyz (222)
Vz’ rz X rz'y rz 7 Vz

(2.22) ekuazioak bektorearen bi adierazpenak [R] matrizearen bidez erlazionatzen
ditu. Matrize honen errenkadak biratutako sistemaren bektore unitarioen osagaiak
biratu gabeko sisteman dira, (2.20) ekuazioan ikus daitekenez. (2.20) ekuazioa (2.18)
ekuazioan ordezkatuz eta lehen bezalako prozedura jarraituz honakoa lortzen da:

Vx rxx I’ly’x rz’x Vx

t
Vy = rX'y rY'y rZ'y VY' = {V}Oxyz = [R] {V}Ox'y’z’ (223)
Vz rx 7 ry’z rz’z Vz

(2.22) eta (2.23) ekuazioetatik honakoa ondoriozta daiteke:

[RT[RI=[RI[R] =[1]=[R] =[R]" (2.24)

(2.24) ekuazioaren arabera [R] matrizearen alderantzizkoa eta iraulia berdinak
direnez, ortogonala da.

Adibidea: x ardatzarekiko & angeluko errotazioa egiten bada, bektoren unitario
berrien adierazpena eta errotazio matrizea honakoak dira:
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=[R]=|0 cosé sin@

2 2 2 - 1 0 O
j'=cosd]+sinok }
0 -singd cosé

K'=—sin@] + cos ok

Aztertutako transformazioak tentsioen analisian aplikatukoa dira. (2.14) ekuazioa bi
erreferentzia sistemetan honela adierazten da:

{S” }Oxyz = [O-]Oxyz {n}oxyz (225)
{Sn }Ox’y’z’ = [G]Ox’y’z’ {n}Ox’y’z’ (226)

(2.25) ekuazioan [R] aurrebidertuz eta (2.22) kontuan izanik, {n}oXyZ bektore

normalarentzat (2.23) ekuazioa erabiliz eta (2.26) ekuazioarekin alderatuz, honakoa
lortzen da:

[0y =[RI[o]s,, [R] (2.27)

(2.26) ekuazioan [R] aurrebidertuz eta (2.23) kontuan izanik, {n}OX,y,Z, bektore

normalarentzat (2.22) ekuazioa erabiliz eta (2.25) ekuazioarekin alderatuz,
alderantzizko erlazioa lortzen da:

(7)o =[RT [0 oy [R] (2.28)

(2.28) ekuazioko erlazio bera (2.27) ekuazioan [R]t aurretik bidertuz eta [r] atzetik

bidertuz lor daiteke.

2.4.3 Tentsio nagusiak

Problemaren bi formulazio

(2.14) ekuazioko transformazioaren arabera, erreferentzia sistemari dagokion
tentsio matrizea ezagutuz, O puntutik igarotzen den edozein planotako tentsio
bektorearen osagaiak determina daitezke. Planoren batean osagai tangentziala nuloa
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den jakin nahi da. Horrela bada, tentsio bektoreak osagai normala du bakarrik eta
transformazioa honela gelditzen da:

7,=0=S, =0,i={S,}=0,{n} (2.29)

(2.14) ekuazioko transformazio orokorra ere bete behar duenez, Oxyz erreferentzia
sisteman honakoa betetzen da:

o, {n}=[e]{n}=([o] -, [1]){n} = {0} (2.30)

(2.30) ekuazioak autobalio eta autobektore problema adierazten du. Baldintza
betetzen duten hiru tentsioak tentsio nagusiak eta dagozkien norabideak norabide
nagusiak dira. Norabide nagusiekiko elkartzut diren planoak plano nagusiak dira eta
bertan tentsio nagusiek dihardute.

Beste alde batetik, norabideren batean o, tentsio normalak balio estazionariorik,
hau da, maximo eta minimo erlatiborik duen determinatu nahi da. Tentsio normala
(2.16) ekuazioan emanda dago eta bektore normalak modulu unitarioaren baldintza
bete behar du. Maximo eta minimo baldintzatuen problema da, aldagaia {n} bektorea

eta baldintza {n}t {n} =1 izanik. Funtzio lagrangearra honakoa da:

F({n}.2) = {n}' [o]{n} = A({n} {n} -1) (2:31)
Balio estazionarioak honako baldintzatik lortzen dira:
U)o, ofoTin) - 24fn) = (0] (2.32)

o{n}

(2.32) ekuazioan gaiak ordenatuz, (2.30) ekuazioko autobalio eta autobektoreen
problema bera lortzen da, 1 =o, izanik, hau da:

(le]-A[1]){n} ={0} (2.33)

Ondorioz, norabide nagusietan tentsio normalek balio estazionarioak dituzte.
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Problemaren ebazpena eta inbarianteak
(2.30) ekuazioko matrizeak garatuz:

(Ux — 0, ) z-><y T n>< 0
Ty (O'y - an) T, n, =40 (2.34)
T, 7, (o,—0,)| M 0

(2.34) ekuazioak sistema homogeneoa adierazten du eta soluzio nuluaz gain
besteren bat izan dezan, sistemaren determinanteak nulua izan behar du. Determinantea
garatuz, sistemaren ekuazio karakteristikoa honela gelditzen da:

cl— Lol +l,0,-1,=0 (2.35)

Ekuazio karakteristikoaren erroak tentsio nagusiak dira eta balio horiek ez dira
erabilitako erreferentzia sistemaren menpekoak. Ondorioz, I4, |2 eta I inbarianteak dira,
O puntuan sorrera duen edozein erreferentzia sistema kartesiarrentzat honakoak izanik:

l,=0,+0,+0,

o, T o, T o, T
X X) X X A
I, = Y v (2.36)
Ty Oyl |75 O, [f O
Oy z-xy T
I, = Ty O, Ty,
T Tyz o,

(2.35) ekuazioko hiru tentsio nagusiak determinatu ondoren, (2.34) sisteman
ordezkatzen dira norabide nagusiak determinatzeko. Norabide nagusiak 1, 2 eta 3
azpiindizeekin izendatzen dira eta eskuarki honela ordenatzen dira: o, > o, > o,.

(2.34) sisteman ekuazio bat gutxienez konbinazio lineala denez, norabide nagusi
bakoitzaren ny, ny eta n, kosinu zuzentzaileak determinatzeko modulu unitarioaren
baldintza erabiltzen da:

ne+n;+n =1 (2.37)
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Tentsio nagusiak zenbaki errealak dira

Ondoren, hiru tentsio nagusiak zenbaki errealak direla frogatuko da. (2.35) ekuazio
karakteristikoa kubikoa denez, bere erroak determinatzerakoan bi aukera daude:
hirurak errealak izatea edo bat erreala eta beste biak konplexu konjokatuak izatea.
Gutxienez erro batek erreala izan behar duenez, erro horri dagokion norabidea x dela
suposatuko da. x norabide nagusia denez, ekuazio karakteristikoa honako
determinantetik lortzen da:

(o,—0,) 0 0
0 (Gy —Gn) 7, |=0 (2.38)
0 7, (0'Z —crn)

Beste bi tentsio nagusiak lortzeko honakoa bete behar da:

=0 (2.39)

(2.39) ekuazioko determinantea garatuz honako ekuazio kuadratikoa lortzen da:

G;—(Gy+dz)dn—(fz -0 O'Z)=0 (2.40)

yz y

(2.40) ekuaziotik lortzen diren erroak honakoak dira:

o, :é[(o-y +O'Z)i\/(0'y +o, )2 + 4(15Z —ayaz)} (2.41)

Erroak errealak izan daitezen, (2.41)eko diskriminantearen ikurrak positiboa izan
behar du:

(O'y +o, )2 —4(0310'Z —z'jz)> 0 (2.42)

Eragiketak eginez, (2.42)ko baldintza beti betetzen dela ikusten da, bi karratuen
batura bezala adieraz baitaiteke:
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2 2
(Gy —O'Z) +(21yz) >0 (2.43)

Norabide nagusiak elkartzutak dira

1 eta 2 norabide nagusiak kontsideratuz:
o {n}=[c]{n} (2.44)

o {n,}=[o]{n,} (2.45)

(2.44) ekuazioa {nz}t gatik eta (2.45) ekuazioa {n,)" gatik aurrebidertuz, atalez atal

kenketa eginez eta eskalar baten iraulia zenbaki bera dela kontuan izanik, honakoa
lortzen da:

(0,~0,){n}{n,} =0 (2.46)
(2.46) ekuazioa bete dadin bi aukera daude:

e o, #0,= N A, =0 Hauda, 1eta 2 norabide nagusiak elkartzutak dira.

* o, =0, Ekuazioa identikoki betetzen da eta ondorioz 3 norabidearekiko
elkartzuta den edozein norabide nagusia da.

Frogapena 1 eta 3 edo 2 eta 3 norabideentzat antzera egin daitekenez, hiru tentsio
nagusiak desberdinak direnean hiru norabide nagusiak elkartzutak dira. Bi balio
berdinak badira, hirugarren balioari dagokion norabidearekiko elkartzuta den planoko
norabide guztiak nagusiak dira. Azkenik, hiru tentsio nagusiak berdinak badira,
norabide guztiak nagusiak dira.

O sorrera eta ardatzak norabide nagusiak dituen 0123 erreferentzia sistema
kartesiarra definitu daiteke. Tentsorearen adierazpena honakoa da:

oo 0 O
[0],;s=| 0 o, O (2.47)
0 0 o
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Tentsio ebakitzaile maximoak
Tentsio ebakitzailearen karratua honakoa da:

2

Tr? :{Sn}t{sn}_({n}t [6]{n}) (2.48)

Kosinu zuzentzaileak {n}t {n} =1 ekuazioagatik erlazionatuta daudenez, lagrangear

funtzioa honakoa da:
G({n},u) =z ({n}) - u({n} {n}-1) (2.49)

Balio estazionarioaren baldintza ezarriz, honakoa lortzen da:

S 10} ([o] - 20, 0]~ a[1])in} = 0} (250)

(2.50) ekuazioko sistema ez da lineala, on kosinu zuzentzaileen menpekoa baita. =,
ren balio maximoak plano noagusietatik 45°ra daudela froga daiteke.

2.4.4 Osagai eskerikoa eta desbideratze osagaia
Definizioz, tentsio esferikoa honakoa da:

o, =%(O‘X+O'Y+O'Z)=%|l (2.51)

Oxyz erreferentzia sistemari dagokion tentsio matrizea honela deskonposatzen da:

[e]=[c.]+[c4] (2.52)
[o.] Matrize esferikoa da:
c, 0 O
[6.]=| 0 o, 0 (2.53)
0 0 o
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[o,] desbideratze matrizea da. (2.52) ekuaziotik askatuz lortzen da:
[o4]= T (0' —ae) T (2.54)

Aurrerago ikusiko denez, material isotropo batean osagai esferikoa gorputzaren
bolumen aldaketarekin erlazionatua dago.

2.5. TENTSIO EGOERA LAUA

Tentsio osagai ez nuluak bakarrik xy planoan daudela suposatuko da, hau da
o,=t, =1, =0. Edozein planotako tentsio bektorearen osagaiak Oxyz sisteman,

(2.14) ekuazioaren arabera:

X

Snx O-X
Ty (2.55)

ny ny

S 0

7, O

o, 0

. 0 0Ofn,
(2.55) ekuazioaren arabera, edozein plano aukeratuta S,, =0. Beraz, analisia xy

planoan egin daiteke. 2.11 irudian azaltzen den prisma triangeluarra analizatzen da, x

eta y ardatzen araberako aldeak O_Azdx, @:dy izanik, hurrenez hurren. Aldeak

diferentzialak direnez, AB O puntutik igarotzen dela suposatzen da eta ondorioz AB
gainazalaren tentsio bektorea analizatzen da. Beste alde batetik, z norabideko luzera 1

da. Analisia 0< @ < r tartean egiten da. Izan ere, (6?+ 71') angeluari dagokion planoak

2.11 irudian azaltzen denarekiko, bektore normala eta tentsio bektorea aurkakoak ditu.
Plano hori, 2.1 irudian azaltzen den mozketaren beste aldeari dagokiona da.
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»i
X1
™ f A
2

'.:1:1:1:1:1:1:1:-:1:15:1:1:1:1:1:1:1:1:1:-. A )i
0] Tyx<:I B}

U

2.11irudia

n, =cosd eta n =sind denez, (2.55) ekuazioa honela idatz daiteke:
Sw| _|Ox Ty |[cOSO
= it (2.56)
Syl |7y Oy |lSiNG

norabide normaleko eta f norabide tangentzialeko

~

2.11 irudian ikusten denez, n
bektore unitarioak Oxy erreferentzia sisteman adieraziz honakoak dira:

A=cosOi +sind j
- - A (2.57)
t =—sin@i +cosd j
Tentsio bektorearen osagai intrintsekoak honakoak dira:
o, =S, =S, cos0+S,sind
(2.58)
Sisind+3S, cosd

6, =S, f=-

(2.56) ekuazioko Snyx, Sny 0sagaiak (2.58) ekuazioan ordezkatuz honakoa lortzen da
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o, =0,c08"0+0,sin’ 6+ 27, sindcosd
. . (2.59)
7, =(0, —0, )sinfcosd + 7, (cos* 0 —sin” 0)

(2.59) ekuazioak erabiliz, oy, oy, 5y tentsio osagaiak eta @ angelua ezagutuz, O-tik
igarotzen den edozein planori dagokion tentsio bektorearen osagai normala eta
tangentziala determina daitezke. Ondoren, angelu bikoitzarekin erlazionatutako
identitate trigonometriko batzuk azaltzen dira:

Coszgzw €0s26 = cos? @ —sin* 0
L oo (2.60)
sinzez% sin 260 = 2sin#cos O

(2.60) ekuazioak (2.59) ekuazioetan ordezkatuz, tentsio bektorearen osagai normala
eta tangentziala honakoak dira:

o :
o, = +——2>c0s260 +1,,5in 20
2 Yy

_o,+0, O,-

(2.61)
o,—0, .
T, = 2 sm29+rxyc0320

n

Ondoren tentsio egoera jakin batzurekin zerikusia duten bi alde interesgarri
planteatzen dira:

1. on estazionarioak direneko 6 angeluak. (2.61); deribatuz eta zerora berdinduz
honakoa lortzen da:

27,
tan 26, = (2.62)

o,—0,

(2.62) ekuazioei dagokien norabideak norabide nagusiak dira. (2.62) ekuazioko
angelua (2.61), ekuazioan ordezkatuz, norabide nagusietan z, tentsio ebakitzailea nulua
dela ikus daiteke. g eta 7z angeluek tangente bera izanik eta angeluak bikoitzak
direnez, norabide nagusiak elkartzutak dira.
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2. 7w maximoa direneko & angeluak. (2.61), deribatuz eta zerora berdinduz, honakoa
lortzen da:

tan2g, = -2~ 1 (2.63)

27, ~tan 6,

(2.63)-n azaltzen den baldintza betetzeko angeluen arteko erlazioa honakoa izan
behar da:

20,=20,+ir=0,=6,+1x (2.64)

(2.64) ekuazioaren arabera, norabide nagusiek 45° osatzen dute tentsio ebakitzaile
maximoko norabideekin.

Tentsio normalen kasuan, ikurrak esanahi fisikoa du. Orohar, ez da berdin material
batek trakzioan edo konpresioan lan egitea. Adibidez, material hauskor baten kasuan
haustura trakzioko tentsio maximoen ondorioz gertatzen da. Material harikorren
kasuan, haustura tentsio ebakitzaile maximoko norabideen inguruan gertatzen da, beren
norantza edozein delarik ere.

Tentsio normal eta ebakitzaile maximoen arteko angelua 45° dela ikusteko, klarion
zilindriko baten bihurdurazko haustura ikus daiteke. Bihurdurako tentsio ebakitzaile
maximoak zirkunferentzialak dira. Klarionaren materiala hauskorra denez, trakzio
maximoko planoetatik haustea aurrikusten da. Bihurdura aplikatzen zaionean, haustura
helize moduan gertatzen da, trakzio maximoko plano nagusien arabera. Aplikatutako
momentuaren norantza aldatzen bada, haustura aurrekoarekin 90° osatzen dituen
helizearen arabera gertatzen da.

2.6. MOHR-EN ZIRKULUA

2.6.1 Tentsio egoera laua
(2.61) ekuazioak honela idatz daitezke:

o,to, O,—

c :
o- = ~-c0520 +7,,,5in 20
2 2

(2.65)

o,—0, .
T= 2 sin20 + 7, cos20




26 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA

(2.65) ekuazioak zirkunferentzia baten ekuazio parametrikoak dira, parametroa 26
izanik. Bi ekuazioak karratura jasoz eta atalez atal batuz honakoa lortzen da:

2 2
+ -
o, - i’ +7° = %9 +72 (2.66)
n 2 n 2 Xy

(2.66) ekuazioa honela idatz daiteke:

(o, -0 )2 +72 =R’ (2.67)

Oy

A

2.12 irudia

Abzisa artatz bezala on eta ordenatu ardatz bezala z, balio absolutuan hartuz, (2.67)
ekuazioa bere zentroa abzisa ardatzean duen zirkunferentzia bati dagokiona da.
Zentroaren posizioa eta erradioa honakoak dira:

(2.68)

212 irudian o, >0,>0 eta 7, >0 direneko tentsio egoera azaltzen da.

Zirkunferentziako puntu bakoitzak on, 7 o0sagai intrintsekoek eragiten duten
planoarekiko norabide elkartzuta adierazten du. (2.62) eta (2.63) ekuazioetako
informazio bera lor daiteke. Honela, 1, 2 norabideetan tentsio normalak hurrenez hurren
maximoa eta minimoa direla ikusten da, eta puntu horietan tentsio ebakitzailea nulua
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dela. Norabide hauek norabide nagusiak dira eta dagozkien tentsioak tentsio nagusiak
dira. Norabide nagusiak 90°-ra daude, zirkuluko angeluak bikoitzak baitira. Tentsio
ebakitzaile maximoak erradioaren balioa duela ikusten da. Zirkunferentziaren goi eta
behe aldean hurrenez hurren dauden t; eta t, norabideak Mohr-en zirkuluan norabide
nagusietatik 90°-ra daude eta ondorioz errealitatean 45°-ra.

Mohr-en zirkuluaren marrazte prozedura honakoa da:

1. (2.68) ekuazioan azaltzen diren zirkuluaren zentroa eta erradioa kalkulatzen dira.
2.12 irudiaren arabera, tentsio nagusiak honakoak dira:

=o0.+R
%1=% (2.69)

o,=0.—-R

2. Zirkunferentzia eta on abzisa ardatza marrazten dira. Tentsio ebakitzaileen |2'n|

ardatz bertikala O sorreran kokatzen da, zentruaren oc posizioa kontuan izanik. o
abzisa bezala eta zy ordenatu bezala hartuz, x ardatzari dagokion puntua zirkuluan
adieraz daiteke. Baina honako arazoa sortzen da: x ardatza goiko aldean badago y
ardatza beheko aldean dago eta alderantziz. Beraz, badirudi zy-ren ikur berarentzat
balio positiboa eta negatiboa daudela. Horregatik, tentsio ebakitzaileen ardatza balio
absolutuan adierazten da, |z'n| deituz. Mohr-en zirkuluaren erabilpenerako dagoen

arazo nagusia honakoa da: zein da (ox, 7y) balio pareari dagokion ardatza zirkuluaren
goi edo beheko erdian kokatzeko irizpidea?

(2.62) ekuazioaren arabera, norabide nagusiak ematen dituen tan(26,) positiboa edo
negatiboa izan daiteke, zenbakitzailearen eta izendatzailearen ikurren arabera. 2.13
irudian egon daitezkeen lau kasuak azaltzen dira. 2.11 irudiaren arabera tangentea
positiboa bada angelua erlojorratzen kontrakoa da eta tangentea negatiboa bada angelua
erlojorratzen aldekoa da. 2.13 irudian tentsio egoerak ere azaltzen dira, gezi lodiz
erlojorratzen aldeko pareak eragiten dituzten tentsio ebakitzaileak adieraziz. Kasu
guztietan erlojorratzen aldeko parea eragiten duten tentsio tangentzialekiko ardatz
perpendikularra zirkuluaren goiko erdian kokatuta dago.
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7, >0

o, >0,

tan 249p >0

7, <0

o,<0o,

7, <0

o,>0

tan 219p <0

7, >0

o,<0o,

2.13 irudia

2.13 irudia aztertuz, honako irizpidea ezar daiteke puntu bat zirkuluaren goi edo
behe aldean kokatzeko: plano paralelotan eragiten duten tentsio ebakitzaileei dagokien
parea erlojorratzen aldekoa denean, plano hauekiko ardatz elkartzuta zirkuluaren
goiko erdian kokatzen da. Horregatik, 2.12 irudian x ardatza beheko aldean eta y ardatza
goiko aldean daude. Alderantziz, ardatz bat zirkuluaren goi edo behe aldean egoteak,
tentsio ebakitzaileen norantzari buruzko informazioa ematen du.
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2.6.2 Tentsio egoera orokorra

Tentsio egoera orokorrean, hiru zirkulu azaltzen dira: 1-2, 2-3 eta 3-1 plano nagusiei
dagokiena hain zuzen ere, 2.14 irudian ikus daitekenez. O puntutik igarotzen den
edozein planotako tentsio bektorearen osagai intrintsekoak ilundutako azaleran daudela
froga daiteke. Tentsio ebakitzaile maximoa zirkulu handienaren erradioa da.

ia

On

2.14 irudia

Tentsio egoera lauean, z norabidea norabide nagusia da eta 2.15 irudian azaltzen
diren hiru egoerak gerta daitezke. Tentsio ebakitzaile maximoa ez dago beti Oxy
planoan. z norabideko tentsio nagusia nulua denez, 3 zenbakiarekin izendatu da. Kasu
bakoitzean, Oxy planoari dagokion zirkuluak 1 eta 2 norabide nagusiak ditu eta grisez
marraztuta dago.

il

a/ Tmax :%(O-l _O-Z)
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i

C/ Toex :%(0-3 _0'2) :%(_O-z)

2.15 irudia



3. DEFORMAZIOAK

3.1. SARRERA

Indarren eraginpean dagoen gorputza deformatu egiten da. Gorputz barneko O
puntuaren inguruko elementu diferentziala kontsideratuz, elementuren ertzek luzera
aldaketa jasaten dute eta hasierako angelu zuzenak aldatu egiten dira. Gainera,
elementuak solido zurrun gisako translazioa eta errotazioa ere jasaten ditu. Gai honetan
deformazio unitario normalak eta tangentzialak aztertuko dira. Bukaeran, analisia
tentsioen gaian garatutakoaren parekoa dela ikusiko da.

3.2. ELEMENTU DIFERENTZIALAREN DEFORMAZIOA
Gorputzaren O(x,y,z) puntuaren inguruan bolumeneko elementu diferentziala
analizatzen da. 3.1 irudian ikus daitekenez, deformatu aurretik bere ertzak O—A, OB eta

OC bektoreak eta bere diagonala OP dira. Atal honetan, gorputza deformatzen denean
ertzek jasaten dituzten aldaketak aztertuko dira.
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y

’B

‘ P

| x

A
/c
z

3.1 irudia

Deformatu ondoren, puntuak primadun posizioetara mugitzen dira eta ertz berriak

O'A’", O'B' eta O'C’'dira, 3.2 irudian ikus daitekenez. O puntuaren desplazamendu
bektorea honakoa da:

00" =6 (xy,2)=u(xy,2)i +Vv(x,y,2) J+w(xy,2)k (3.1)
y
'r,,,vB’
X
A

3.2 irudia
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(3.1) ekuazioaren arabera, u, v eta w ardatzen norabidetako desplazamendu osagaiak
dira. Gutxienez hirugarren deribaturarte funtzio jarraituak direla onartuko da. x
ardatzeko ertza aztertuz, deformatu ondoren A puntua A’ igarotzen da. O-tik A-rako
aldaketa bakarrik x ardatzean gertatzen denez, desplazamendua honakoa da:

AR =5 +A,8 =(u+u,dx)i +(v+v,dx) J+(w+w,dx)k (3.2)
Hasierako ertza OA =dxi izanik, 3.2 irudia kontuan hartuz, honakoa betetzen da:
OA+ AA'=00' +O'A’ (3.3)

(3.3) ekuaziotik, deformazioaren ondoren x ardatzeko ertzari dagokion bektorea
honakoa da:

O'A'=0A+AA - 00’ =(L+u,, )dxi +(v, )dxj +(w, ) dxk (3.4)

OB =dyj eta OC =dzk deformazioa baino lehen y eta z ardatzei dagokien ertzen
bektoreak izanik, B eta C puntuen desplazamenduak honakoak dira:

BB'=5+A,6 =(u+u,dy)i+(v+v dy)j+(w+ Wyydy)lz (3.5)

CC'=5+A,8 =(u+u,dz)i +(v+v,dz) j+(w+w,dz)k (3.6)

Deformazio ondorengo bektoreak, 3.2 irudia eta (3.1), (3.5) eta (3.6) ekuazioak
kontuan izanik honakoak dira:

O'B'=0B+BB'-00'=(u, )dyi +(1+v, )dyj +(w, )dyk (3.7)
0'C’'=0C +CC'~00' = (u, )dzi +(v, )dzj +(1+w, )dzk (3.8)

Irudian ertz berriak eta beren osagaiak 3.3 irudian azaltzen dira. Paralelepipedo
zuzena paralelepipedo zeiharrean bihurtzen da.
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3.3 irudia

3.3. DEFORMAZIO UNITARIOAK

3.3.1 Deformazio unitario normalak
Definizioz, puntu bateko norabide baten deformazio unitario normala, norabideak
puntu horretan jasaten duen luzera aldaketa erlatiboa da. O puntuan, x norabidean:
O'A’-OA

x oA (3.9)

Zuzenkien luzerak bektoreen moduluak direnez, (3.9) ekuazioak honakoa ematen
du:

&, =1+ U, ) (v, ) +(w, ) -1 (3.10)

Erroketa barnean, 1 zenbakia batzen duen « zenbakia honako aproximazio erabili
ahal izateko nahiko txikia dela onartuko da: 1+« =1+« . Beraz, (3.10) honela

gelditzen da:

£ =t 3 (u )+ (v,) + (w,) | (3.11)
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y eta z ardatzetako deformazio unitarioak, antzera, honakoak dira:
1 2 2 2
£,=V, +3[(u’y) +(v'y) +(wy) } (3.12)

e =W 43 (0,) + (v,) ()| (3.13)

Desplazamenduen deribatuek ez dute dimentsiorik. Zenbaki txikiak direla
suposatzen bada, 0,02 baino txikiagoak, bigarren mailako gaiak arbuiagarriak dira
lehen mailakoen parean eta deformazio unitario normalak honela gelditzen dira:

& =Uu g, =V &, =W (3.14)

Desplazamenduen deribatuak txikiak izatearen baldintza betetzen denean,
desplazamendu gradiente txikien problema edo desplazamendu txikien problema dela
esaten da. Deformazio txikien problema batean aldiz, &, g eta & zenbaki txikiak dira,
baina baliteke desplazamenduen deribatuen karraturen bat arbuiagarria ez izatea.

3.3.2 Deformazio unitario tangentzialak

3.4 irudian deformatu ondorengo ertzen arteko angeluak azaltzen dira. Deformazio
tangentzial edo ebakitzaile unitarioa, hasieran elkartzutak diren bi norabideren arteko
angelu zuzenaren txikitzea bezala definitzen da. x eta y norabidei dagokien deformazio
tangentzial unitarioa honakoa da:

Vg =27 = Py (3.15)
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3.4 irudia

x eta y norabideek deformatu ondoren osatzen duten angelua ¢y izanik. Beraz,
honakoa betetzen da:

O'A'-O'B’=(O'A')(0'B')cos g, (3.16)

(3.15) ekuaziotik askatuz, cosg =siny,, dela ikusten da. (3.16) ekuazioa kontuan

izanik:

O'A’-O'B’

W (3.17)

siny,, =

(3.17) ekuazioan (3.4) eta (3.7) ekuazioak ordezkatuz eta izendatzailean
V1+a =1+1a sinplifikazioa egin daitekela onartuz:

(1+u,)u, +v (1+v )+W W,

siny,, = (3.18)

[1+uyx+%(u +V2 W XJ[Hv +3(ud +v + W) )]
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Desplazamendu txikien problema batean, bigarren mailako eta maila altugoko gaiak
arbuiatuz:

u,+v,

siny,, = ( (3.19)

l1+u, +v,y)

(3.19) ekuazioan, izendatzaileko deribatuak 1 baino askoz ere txikiagoak direnez,
honako hurbilpena aplika daiteke: E%:l—aa..j. Berriro 2. mailatik gorako
+a

gaiak arbuiatuz:

siny,, =u, +V, (3.20)

Azkenik, deribatuak txikiak izanik siny, =y, betetzen da. Beste angelu

zuzenentzat antzera jokatuz, desplazamendu txikien problema batean deformazio
unitario tengentzialak honakoak dira:

Vo =U, +V, Y=V, +W, Vo =W, +U, (3.21)

3.4. DEFORMAZIO ETA ERROTAZIO TENTSOREAK
Orain arte, 3.1 irudian azaltzen den elementu diferentzialaren ertzen aldaketak

aztertu dira. Oraingoan elementuaren OP diagonala aztertuko da. Deformatu baino
lehen, diagonala honakoa da:

OP =dF =dxi +dyj + dzk (3.22)

Deformatu ondoren, diagonala O'P’ =dr’ izango da. O eta P puntuen arteko

koordenatu aldaketak hiru norabidetan gertaten direnez, P puntuaren desplazamendua
honakoa da.

PP'=6+d6 =0 +6,dx+4 dy+3,dz (3-23)

Bektoreen arteko erlazioa kontuan izanik:
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OF + PP =00 + 0P’ (3.24)
(3.24), (3.1) eta (3.23) ekuazioetatik, honako erlazioa lortzen da:
OP'-OP=PP'-00'=dé5 (3.25)

(3.25) ekuazioa honela idatz daiteke:

(3.26)

(3.26) ekuazioa honela idatz daiteke matrize moduan Oxyz erreferentzia sisteman:
{dr'} ={dr}+[g]{dr} (3.27)

(3.27) ekuazioan [g] desplazamenduen gradiente matrizea deitzen da eta ez da

simetrikoa;

u, u, u,
[9]=] v, v, v, (3.28)
WX Wy WyZ

Erreferentzia sistemarekiko menpekotasunik ez duen adierazpena erabiliz, §
desplazamendu gradienteen tentsorea azaltzen da:

dF ' = dr + gdr (3.29)

3x3 mailako edozein matrize, matrize simetriko eta ez simetriko baean deskonposa
daiteke. [g] -ren kasuan, gij edozein elementu izanik, honakoa betetzen da:

;=€ +o, (3.30)
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eij elementu simetrikoa eta wj elementu antisimetrikoa izanik:

& z%(gij + gji) (3.31)
@y :%(gij - gji) (3.32)

[e] eta [w] matrizeak (3.28), (3.31) eta (3.32) ekuazioak kontuan hartuz, honakoak

dira:
€y exy € U %(u'y +va) %(UZ +WX)
[e]: €y €y € |= %(V +u,y) Vy %(V,z +W,y) (3.33)
o B Cal |i(w +u,) F(w,+v,) w,
0 —a)yx a@,, 0 %(u,y _Vx) %(u,z _W,x)
[0]=| ®, 0 -o,|= %(V’X —u'y) 0 %(V’Z —w'y) (3.34)
—0, @y 0 L(w,-u,) w,-v,) 0

Desplazamendu txikien problema bati dagokien (3.14) ekuazioko deformazio
unitario normalak eta (3.21) ekuazioko deformazio unitario tangentzialak kontuan

izanik, [e] matrize simetrikoa deformazio unitarioekin erlazionatua dago:

1 1
€ exy € &y 27 Xy 27 i
_ _| 2 1
[e]=|e, &, €.|=|37y & 37 (3.35)
1 1
€ eyz €, 27 i Eyyz &,

[e] matrize simetrikoa, [¢] deformazio matrizea deitzen da. (3.34) ekuazioko [w]

matrize antisimetrikoa solido zurrun gisako errotazio batekin erlazionatua dago,
ondorengo atalean ikusiko denez, eta errotazio matrizea deitzen da. (3.29) ekuazioa
honela idatz daiteke:

dF'=dr + (& +a)dr (3.36)
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3.5. DEFORMAZIO ETA ERROTAZIO BEKTOREAK

3.5.1 Errotazio bektorea
(3.36) ekuazioko transformazioaren zati antisimetrikoa hartuz:

dF ' = dr + &dr (3.37)

(3.37) ekuazioko 2. batugaia, (3.34) ekuaziko matrizea kontuan hartuz honakoa da:

0 -0, o, ||d 0,07 — o, dX
[o[{dr}=]| &, 0 -w,|{dyr=1 o,dx-ae,dz (3.38)
—w, , 0 ||dz ~0,dX + o, dy

(3.38) ekuazioko emaitza honako biderketa bektorialari dagokiona da:

o,,0z - o, dx ]k
[o]{dr} =1 o,dx-w,dz =|0, o, o,|=oxdF (3.39)

7y Xz

-~0,dx+o,dy| (dx dy dz

d=w,i +o,]+ok izanik. Beraz, (3.37) ekuazioa honela idatz daiteke:

dr' = dr + @x dF (3.40)

Ondoren, desplazamendu txikien problema batean transformazio antisimetrikoa
solido zurrun gisako errotazioa dela frogatuko da. Horretarako, honako bi aldeak
frogatu behar dira:

e Elementuaren luzera ez da aldatzen
o Bi elementuren arteko angelua ez da aldatzen

Elementuaren luzera ez da aldatzen

Luzera berria dr’ denez, (3.40) ekuazioa erabiliz bere moduluaren karratua
determina daiteke:

dF’-di =dr”” = (dF + @x dF’)-(dF + @x dF) =dr’ +(e’sin*0)dr*  (3.41)
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@ eta dr bektoreek osatzen duten angelua & izanik. (3.41) ekuazioa honela idatz
daiteke:

dr' =drv1+o®sin’@ (3.42)

Desplazamendu txikien problema batean, erro barneko bigarren batugaia
arbuiagarria denez, dr'=dr. (ged).

Bi elementuren arteko angelua ez da aldatzen

Hasierako dF, eta dF, elementuek deformazio aurretik ¢ angelua eta df, eta dr,

elementuek deformazio ondoren ¢’ angelua osatzen dutela suposatuko da. Elementuen
transformazio ekuazioak honakoak dira:

!

|
|
|

d
d

-

oxd

-
=

1 1

: (3.43)

=dr +
'=d2+cT)><d?2

o
ol

(3.43) ekuazioko elementu transformatuen arteko biderketa eskalarra eginez:
dr,’ - dr, cosg'=drdr, cos¢g + (wdr, sin g, )(wdr, sin 6, )cos A (3.44)

oxdr, eta @xdr, bektoreek osatzen duten angelua S izanik. Elementuen luzera

aldatzen ez dela frogatu denez, hau da, dr, =dr, eta dr,” =dr, atalezatal (dr,dr, ) -gatik

zatituz:
cosg’ =Ccosg -+’ sind,sin d, cos B (3.45)

Desplazamendu txikien problema batean (3.45) ekauzioko bigarren batugaia
arbuiagarria denez, cosg’=cos¢. (qed).

3.5.2 Deformazio bektorea
Trasformazioaren zati simetrikoa hartuz;

dr'=dr + £dF (3.46)
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Definizioz, deformazio bektorea honakoa da;

- dr'—dr (3.47)

(3.46) ekuazioa kontuan hartuz, (3.47) ekuazioa honela gelditzen da:

B, = &0 (3.48)

dr bektorearen norabideko bektore unitarioa L]:d—r izanik. Matrize moduan,
r

(3.48) ekuazioa honakoa da:

{Bu) =[]{u} (3.49)
(3.49) ekuazioa modu hedatuan honela gelditzen da:
gx %7xy %72)( ux
(3.50)
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Duy =27y &y 2V Yy
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3.5 irudia
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3.6 irudia

(3.50) ekuazioko deformazio bektorearen osagaiek, deformazio unitario normalek
eta tangentzialek ardatz bakoitzean eragiten dituzten deformazio ekarpenak barneratzen
dituzte. 3.5 irudian U bektore direktorearen osagaiak deformazio normalen ondorioz
nola aldatzen diren azaltzen da. 3.6 irudian bektore unitarioaren osagaiak deformazio
tangentzialen ondorioz nola aldatzen diren azaltzen da. Ardatz bakoitzean 3.5 irudian
eta 3.6 irudian marra bikoitzez azaltzen diren ekarpenen batura, ardatz horretako
deformazio bektorearen osagaia da.

D, deformazio bektorea bere osagai intrintsekotan deskonposa daiteke. G-ren

norabidean projektatuz, norabidearen &, deformazio unitario normala lortzen da:
g, =D, -0 (3.51)

(3.51) ekuazioa matrize moduan adieraziz eta (3.49) ekuazioa kontuan izanik:

£, =)' (D)= (u}'[]{u} (352)
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Deformazio bektorearen osagai tangentzial intrintsekoa honakoa da:

1 _ 2 2
2V = Du —&

u

(3.53)

Norabide bateko deformazio normalaren formula galga extensiometrikoekin
deformazioak neurtzerakoan erabiltzen denez, (3.51) ekuazioa garatuz honakoa lortzen

da:

2 2 2
&= gxux +‘9yuy +gzuz + j/xyuxuy +7/yzuyuz +}/zxuzux (354)

Neurketa planoa xy bada, u, =0 eta (3.54) ekuazioa honela gelditzen da:

2 2
g, =&U, +e U +y uu

(3.55)

3.6. TENTSIOEN ETA DEFORMAZIOEN ANTZEKOTASUNA

(3.48) ekuazioak, tentsioen §n =g&N transformazioaren parekoa adierazten du.

Beraz, tentsioen analisian garatutako atalak deformazioetan aplika daitezke.

Parekotasuna ondorengo taulan azaltzen da:

Tentsioak Deformazioak
Transformazioa S, =gsn D, =&l
Osagai kartersiar normalak o, &
Osagai kartesiar tangentzialak Tij 37
Osagai intrintseko normala o, =S, - g, =D, 0
Osagai intrintseko tangentziala T, =4S’ -0o? Ly, =Dl =&
Mohr-en zirkuluko ardatzak o, |z A

Mohr-en zirkulua marrazterakoan, deformazio tangentzialen ondorioz ardatzak
erojorratzen alde biratzen badu, zirkuluaren goiko aldean adierazten da.
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3.7. FORMA ETA BOLUMEN ALDAKETAK

3.1 irudian azaltzen den elementuaren deformatu ondorengo bolumena
determinatzeko, deformazio ondorengo ertzen arteko biderketa mistoa eginez:

(1+ uyx) v, w,
dv'=OA-(OB'x0C)=| u, (l+v,) w, |dV (3.56)
u, v, (1+ wz)

Hasierako bolumenadV =dxdydz izanik. (3.56) ekuazioko determinantearen

garapenean bigarren mailatik gorako gaiak arbuiatuz eta (3.14) ekuazioko deformazio
normalak kontuan hartuz:

dV'=(1+¢)(1+¢, )1+, )dV (3.57)
(3.57) ekuazioan lehen mailako gaiak bakarrik hartuz:
dV'=(1+& +é&, +¢,)dV (3.58)

Deformazio bolumetriko unitarioa bolumen aldaketa erlatiboa bezala definitzen da. e-
rekin izendatzen da eta (3.58) ekuaziotik, honakoa da:

o_AdV _dv-dv
v v

=g+, te, (3.59)

Gorputz osoaren bolumen aldaketa honakoa da:

AV = jv AdV = jv edV (3.60)

Bolumen aldaketa deformazio normalen ondoriozko ertzen luzera aldaketagatik
gertatzen da, 3.5 irudian azaltzen denez. Elementuaren forma aldaketa, deformazio
tangentzialen ondorioz gertatzen da. Hauek elementuaren angelu zuzenen aldaketa
eragiten dute, elementuak bolumen aldaketarik gabeko distortsioa jasaten duelarik, 3.6
irudian azaltzen denez.
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Orain arte azaldutakoagatik, 3.1 irudian azaltzen den elementuak desplazamendu
txikien problema batean jasaten dituen aldaketak honakoak dira:

e Translazio hutsa, 5 desplazamendu bektorearen arabera.
e Solido zurrun gisako errotazoa, @ bektorearen arabera.
e Deformazio hutsa:
o Deformazio normalak, & : bolumen aldaketa eragiten dute.

o Deformazio tangentzialak, y; : distortsioa edo forma aldaketa eragiten dute.

3.8. BATERAGARRITASUN BALDINTZAK

Deformazio hutsa adierazten duten deformazio tentsorearen 6 o0sagaiak
desplazamenduaren 3 osagaiekin erlazionatuta daude. Desplazamenduak deformazioak
integratuz lortu ahal izateko, integragarritasun baldintza batzuk bete behar dira.
Baldintza hauek bateragarritasun ekuazioak deitzen dira. Desplazamenduak eta
errotazioak diferentzial exakotak izatearen baldintzatik lor daitezke. Honen arabera,
desplazamenduak eta errotazioak puntuaren funtzioak dira eta ez integratzeko
ibilbidearen menpekoak. Frogapena xy planorako garatzen da, baina antzekoa da 3
dimentsioen kasuan. Desplazamendu osagaien diferentzialak deformazio unitario eta
errotazioen menpe honakoak dira:

du=g,dx+(17,, +, )dy (3.61)
= (37, a1, )05,

(3.61) ekuazioko bi diferentzialak exaktoak izan daitezen, deribatu gurutzatuek
berdinak izan behar dute. Baldintza hau inposatuz errotazio osagaien deribatuak lortzen
dira:

1
gx,y _nyy,x

wxy,x
o, ., =+ -¢
Wy =27 %y ¥, X

(3.62)

Errotazioa diferentzial exaktoa izan dadin deribatu gurutzatuek berdinak izan behar
dute. Baldintza hau (3.62) ekuazioko lehen deribatuei aplikatuz, honakoa lortzen da:
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& wtE (3.63)

X, Yy Y, XX = 7xy,xy

woy = Exyy DEtetzen dela onartu da. Baldintza hori

(3.63) ekuazioa lortzeko ¢
betetzeko deformazioen bigarren deribatuek jarraiak izan behar dute, Schwarz-en
teoremaren arabera. Edo beste modu batera esanda, desplazamenduen hirugarren
deribatuek jarraiak izan behar dute. Espazioko bateragarritasun baldintzak antzera

lortzen dira:

— 1

gx,yy +6y,xx - 7xy,><y gx,yz _E(_yyz,x + 7/zx,y +7/xy,z)x
— _1

gy,zz + 8z,yy - yyz,yz gy,zx _7(_7/zx,y + 7><y,z + yyz,x ),y (364)
— 1

&7 xx +8x,zz =7 mx 8z,xy _7(_7xy,z + 7/yz,>< + yzx,y)Z

3.9. GALGA EXTENSIOMETRIKOAK

Deformazio unitario normalak esperimentalki neurtzeko erabiltzen diren gailuak
dira. Piezen gainazalean itsasten diren erresistentzia elektrikoak dira, 3.7 irudian ikus
daitekenez. Deformazioak galgaren erresistentzia aldaketa eragiten du eta gailu
elektriko batekin neurtzen da. Erresistentzia aldaketa galgaren deformazioarekin
erlazionatuta dagoenez, neurketa elektrikoa deformazio unitario normal batean
bihurtzen da.

J y
1L )

3.7 irudia

Galgen bidez bakarrik deformazio unitario normalak neurtzen direnez, hiru galgez
osatutako konfigurazioak erabiltzen dira puntu baten inguruko deformazio egoera
determinatzeko. Erabilienak galgak 45° eta 120°ra dituztenak dira. 3.8 irudian 120°
dauden hiru galgako konfigurazioa azaltzen da.
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\ 200
—4— X
1200
3.8 irudia

b eta ¢ galgen norabideentzat (3.55) ekuazioa erabiliz:

-1 3, _B
& =56 T TE, ~ Ty (3.65)
_1 3 3 '

E. =& +Zgy+77xy

c 4 %X

(3.65) emandako ekuazioak atalez atal batu eta kenduz eta ¢, = ¢, kontuan izanik,

& eta yy lortzen dira:

g, =12(5+2)-¢ |

: (3.66)
Yy :ﬁ(gc _gb)



4. GORPUTZ ELASTIKOA

4.1. SARRERA

Tentsio eta deformazioen gaietan, materialaren homogenotasuna eta jarraitasuna
bakarrik suposatu dira. Homogeneoa izanik, puntu guztietan propietateak berdinak
dira. Gai honetan tentsio eta deformazio osagaien arteko erlazioak aztertuko dira
material isotropo, elastiko eta lineal baten kasuan. Materiala isotropoa izateagatik,
puntu bateko propietateak berdinak dira edozein norabidetan. Elastikoa izateagatik,
materiala deformatu gabeko egoerara itzultzen da jasaten dituen indarrak kendu
ondoren. Linealtasunak, tentsio eta deformazioen arteko erlazioak linealak direla
adierazten du. Deformazio unitario normal eta tangentzialak txikiak dirlea onartuko da,
0,02 baino txikiagoak. Tentsio eta deformazioen arteko erlazioak materialaren
propietate fisiko-kimikoen menpekoak dira. Erlazioak linealak izateagatik,
gainezarpenaren printzipioa betetzen da, hau da: eragin batzuri dagokion ondorioa,
eragin bakoitzari dagokion ondorioen batura da.

4.2. DEFORMAZIOAK TENTSIOEN MENPE

Material isotropoetan, portaera elastiko lineala denean, x norabidean trakzioa
eragiterakoan, deformazio tangentzialak nuloak dira eta honako deformazio normalak
sortzen dira:

g == g, =&, =—v—= (4.1)
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E luzetarako elastikotasun modulua edo Young-en modulua da eta bere unitateak
tentsioarenak dira. v Poisson-en koefizientea da, adimentsionala izanik. Tentsio
normalek hiru ardatzetan eragiten badute, deformazioak honako taulan adierazten dira:

Gx Gy Uz
O (o} O
gX X —V _y -V —Z
E E E
O, O O
gy —y—=x _y —y—Z
E E E
O, (of (o
E E E

Gainezarpenaren printzipioaren arabera errenkada bakoitzeko gaiak batuz, ardatz
bakoitzeko deformazioak lortzen dira:

& :é[ax —v(ay +0, )]

& =é[0y -v(o, +o, )] (4.2)

y

:, :é[az ~v(o,+0,)]

Tentsio ebakitzaileak aplikatzerakoan, deformazio normalak nuluak dira eta
bakarrik tentsioaren planoko deformazio tangentzialak sortzen dira:

yxyzi yyz:i }/zx:i (43)

G ebakidurako modulu elastikoa edo modulu tangentziala izanik. (4.2) eta (4.3)
ekuazioek Hookeren legea osatzen dute.

Ondoren E, G eta v -ren arteko erlazioa deduzitzen da tentsio lau egoera batentzat.
Erlazioa, materialaren propietatea izanik, edozein tentsio egoerarentzat egokia da. xy
planoko tentsioen norabide nagusiak honakoak dira:



GORPUTZ ELASTIKOA 51

2
tan (26,., ) = i (4.4)

Oy — 0y

Deformazioen norabide nagusiak plano berean honakoak dira:

7/xy

& &,

tan (26, ) = (4.5)

(4.3) ekuazioen arabera deformazio tangentzialak nuluak dira tentsio tangentzialak
nuluak direnean eta alderantziz. Ondorioz, material isotropo batean tentsio eta

deformazioen norabide nagusiak berdinak dira, hau da, tan(29ldef )= tan(26,,, ). (4.2)

eta (4.3) ekuazioak (4.5) ekuazioan ordezkatuz eta hau (4.4)-rekin berdinduz honakoa
lortzen da:

(4.6)
Tentsio tangentzial batek ikur bereko deformazio tangentziala sortzen duenez, G-k

positiboa izan behar du eta, ondorioz:
v>-1 (4.7)

4.3. TENTSIOAK DEFORMAZIOEN MENPE

(4.2) ekuazioak atalez atal batuz honakoa lortzen da:

(ax +o,+o0, ) (4.8)

(4.8) ekuaziotik tentsioen batura askatuz:

E
(1-2v)

(O'X to,+o, ) = e (4.9)
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e=¢, +¢,+¢&, deformazio bolumetriko unitarioa izanik. (4.2); ekuazioko eskuin

atalaean vo, gaia batuz eta kenduz, eta (4.9) ekuazioa ordezkatuz honakoa lortzen da:

£ _L o,(1+v)-v

X X

e (4.10)

(4.10) ekuaziotik o, askatuz:

o, = E g + vE e
X (1+V) X (1+V)(1—2v)

(4.11)

Beste ardatzetan antzera eginez, tentsio normalak deformazio normalen menpe
honakoak dira:

o, =2Ge, + de
o, =2Ge, + A8 (4.12)
o, =2Ge, + e

A:L Lamé-ren Kkoefizientea izanik. Tentsio tangentzialak

(1+v)(1-2v)

deformazio tangentzialen menpe zuzenean (4.3) ekuazioetatik lortzen dira:

Txy = nyy Tyz = nyz T = G]/zx (413)

“Tentsioak” gaian ikusi denez, tentsio esferikoa o, =%(c,+0,+0,)da.

“Deformazioak” gaian, bolumen aldaketa e deformazio bolumetrikoarekin erlazionatua
dagoela ikusi da. Beraz, (4.8) ekuazioa honela idatz daiteke:

3 3(1—2v)

e= o (4.14)

E e
(4.14) ekuazioaren arabera, gorputzaren bolumen aldaketa tentsio esferikoarekin

dago erlazionatua eta ondorioz, distortsioa tentsio tentsorearen desbideratze
osagaiarekin erlazionatua dago.
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Tentsio egoera hidrostatiko batean, o, =o, =0, =p izanik, (4.14) ekuazioa

honela idatz daiteke:

E
=———¢ 4.15
P 3(1— 21/) ( )
(4.15) ekuaziotik, k bolumeneko elastikotasun modulua honela definitzen da:
E
Kke—— 4.16
3(1-2v) (4.16)

p presioa positiboa bada bolumena handitzen da eta e positiboa da. Aldiz, p
negatiboa bada bolumenta txikitu egiten da eta e negatiboa da. Ondorioz, (4.16)
ekuazioko bolumeneko elastikotasun moduluak positiboa izan behar du eta honakoa
bete behar da:

1-2v>0=v<0,5 (4.17)

(4.7) eta (4.17) ekuazioetako baldintzak elkartuz, Poisson-en koefizientearen mugak
honakoak dira:

-1<v<0,5 (4.18)

4.4. TENPERATURAREN ERAGINA

Tenperatura aldaketak deformazio unitario normalak eragiten ditu. Deformazio
hauen balioa oAT da, « dilatazio koefizientea eta AT temperatura aldaketa izanik,
erreferentziatzat deformazio termikorik gabeko egoera hartutua. « konstantea dela eta
gainezarpenaren printzipioa erabil daitekela suposatuko da. Ondorioz, deformazio
normalak honakoak dira:

™
<
Il

|:O'X —V(O'y +0, )] +aAT

&, = [ay -v(o, +GZ):|+C¥AT (4.19)

R
I

~<
mi~ m|~= m|+~

|:O'Z —V(O'X +o, ):|+0[AT
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(4.19) ekuazioak honela idatz daitezke:
, 1
&, =&, —aAT =—|:O'x —V(O'y +0, )}
, 1
g, =&, —aAT :E[Gy -v(o, +az)] (4.20)

&, =¢,—alAT zé[az _V(GX +Gy)]

(4.20) ekuazioetatik, aurreko ataleko prozedura jarraituz, tentsioak deformazioen
menpe honakoak dira:

o, =2G¢, + 1€
o, =2Ge, + 1€’ (4.21)
o, =2Ge, + 1€’

(4.21) ekuazioan e’ honakoa izanik:

€' =g +e +&, =&, +&, +¢&, —30AT =e—3aAT (4.22)

45. TENTSIO ETA DEFORMAZIO EGOERA LAUA

45.1 Tentsio egoera laua
Tentsio egoera lauean, honakoa betetzen da:

o,=7,=1,=0 (4.23)

Tentsio egoera laua, lodiera txikiko piezetan eta orohar, gorputzen kanpo aldean
gertatzen da, z norabide normalean ez baitago deformazioa eragozten duen tentsiorik.
(4.20) ekuazioetatik, deformazioak tentsioen menpe honakoak dira:

~vo, ) (4.24)
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Galga extensiometrikoekin egiten diren neurketetan tentsio egoera laua kontsidera
daiteke. (4.21) ekuazio orokorrak erabili ordez, egokiagoa da zuzenean tentsio
normalak analitikoki determinatzea. (4.24) ekuazioetako lehen bietatik honakoa lortzen
da:

(4.25)

Tenperaturaren eragina kontuan hartu gabe, (4.24) ekuazioan o, =-o, bete behar

da &, =0 lortzeko.

452 Deformazio egoera laua
Deformazio egoera lauean honakoa betetzen da:

6'2:]/zx=]/y220 (426)

Deformazio egoera laua, lodiera handiko gorputzen barne aldean gertatzen da,
deformazio askatasunik ez dagoenean. Deformazioa eragozteko, z norabideko tentsio
normalak sortzen dira. Deformazio eta tentsioen arteko erlazioak lortzeko, ekuazio
orokorrak erabiltzen dira ¢, =0 baldintzarekin. Tenperaturaren eragina kontuan hartu

gabe, (4.12) ekuazioan o, =0 lortzeko, ¢, =—-¢, bete behar da.

4.6. DEFORMAZIO ENERGIA

F indarra jasaten duen malguki lineal batean, bere luzapena edo laburpena x izanik,
indarraren eta desplazamenduaren arteko erlazioa F =kx da. Deformatu gabeko
egoeratik indarrak egindako W lana U energia potentzial elastikoan bihurtzen da:

W =U =1Fx (4.27)

+ gaia erlazio linealaren ondorio da. Gorputz elastiko baten kasuan, elementu

diferentzial batean tentsioek eta bolumen indarrek egiten duten lana determinatuko da.
4.1 irudian elementu diferentziala eta bere aurpegietako tentsioak azaltzen dira.
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Ezkerreko 1 aurpegian, tentsioen eta desplazamenduen norantzak aurkakoak izanik,
lana honakoa da:

(o)1)

—%[(axu)l +(rxyv)l +(rxzw)l]dydz (4.28)
R (0y)a
4 (Tyx)4
Ayzﬁ
(t2)s A o)s (Txy)2
(sz)ls :
1 (tzy)6 )5 2 | (042
6 (sz)z
v sz)s
(TXY)l 02)6
0] _ X
(s .3;“""’(1)’2)3
"(oy)s
4.1 irudia

2 aurpegian, 1 aurpegiarekiko aldaketa x ardatzean gertatzen da eta tentsioek eta
desplazamenduek norantza bera dute. Ondorioz, lana positiboa da:

%[(axu)l +(ou), dx+ (V) + (TXVV),X dX+(z,W), +(z,W) dx} dydz (4.29)
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(4.28) eta (4.29) ekuazioetatik, 1 eta 2 aurpegietan tentsioek egindako lana honakoa
da.

%[(UXU),X dx + (rxyv)'X dx+ (7, W), dx} dydz (4.30)

Beheko aurpegia 3 eta goikoa 4 izanik, bertako tentsioek egindako lana antzera
determina daiteke, aldaketak y ardatzean direlarik:

%[(ryxu)’y dy + (ayv)‘y dy + (ryzw)’y dy} dxdz (4.31)

Atzeko aurpegia 5 eta aurrekoa 6 izanik, tentsioek egindako lana honakoa da:
%[(TZXU)YZ dz + (TZVV),Z dz+ (TVZW),Z dz}dxdy (4.32)

Azkenik, 4.1 irudian azaltzen ez diren bolumeneko indarren lana honakoa da:
L(Fu+Fy+Fw)dv (4.33)
Elementu osoan indarrek egindako lana determinatzeko, (4.30)-(4.33) gaietako

ekarpenak batu behar dira. Desplazamenduen deribatuak dituzten batugaiak
desplazamenduak dituzten batugaietatik bereiziz:

to,,+T,,+ Fy)v+(r +T,,+t0,,+ FZ)W]

N

XY, X Xz,X

dv |:(O-x,x F Tyt Tp, + Fx)u +(r
+1dv [O'XU,X oV, +o N, +1, (v, +uy )+, (W v, )+, (W, +u'Z)J

(4.34)

“Tentsioak” gaian ikusitako orekaren ekuazio diferentzialen arabera, (4.34)-ko
lehen lerroko batugaiak nuluak dira. Bigarren lerroan berriz, “Deformazioak” gaian,
desplazamendu txikien problema batean, aztertutako deformazio normal eta
tangentzialak azaltzen dira. Beraz, elementu diferentzialean tentsoek egindako lana
honakoa da:
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_1
dW _E(O-ng + Gygy + ngz + 2-><y7/><y + Tyz}/yz + szyzx)dv (435)

Malgukiaren kasuan bezala, lan hori U deformazio energia elastikoan bihurtzen dela
onartzen da, hau da: dU =dwW . (4.35) ekuaziotik, bolumen unitateko energia
potentzial elastikoa edo deformazio energia honakoa da:

— dU 1

= —(axgx +0,6,+0,6,+Ty 7y tT,7, + szﬂ’zx) (4.36)

U =—
0 dV 2

Gorputz osoaren energia potentzial elastikoa edo deformazio energia honakoa da:

U= jvuodv (4.37)



5.PROBLEMA ELASTIKOA

5.1. SARRERA

“Tentsioak” gaian oreka ekuazioak lortu dira. “Deformazioak” gaian,
desplazamenduen eta deformazio unitarioen arteko erlazioez gain, bateragarritasun
ekuazioak lortu dira. “Gorputz Elastikoa” gaian, tentsioen eta deformazioen arteko
erlazioak aztertu dira. Gai honetan, ekuazio guztiak bildu eta Elastikotasunaren
Teoriako problema orokorra nola plantea daitekeen azalduko da.

5.2. ELASTIKOTASUNAREN TEORIAKO EKUAZIOAK

“Tentsioak” gaian, elementu diferentzial batean indarren oreka planteatuz, honako
ekuazioak lortu dira:

Oux t Ty tTn, t F. =0
Toyx T Oy, + Ty, + Fy =0 (5.1)

Tux Ty t0,,+ F,=0
Momentuen oreka ekuezioetatik, tentsio ebakitzaileak simetrikoak direla

ondorioztatu da, hau da rz; = ;. Ekuazio diferentzial hauek ingurune baldintzak bete

behar dituzte. Gorputzaren ingurunean eragiten duten gainazal indarrak T, eta

gainazalaren normala f izanik, baldintza horiek honakoak dira:
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T,=0,n + TN, +7,N,
T, =t N, +o,n, +7,0, (5.2)

T,=7,0 + 7N, +0o,n,

“Deformazioak” gaian honako erlazioa lortu da desplazamendu osagaien eta
deformazio unitarioen artean:

& =u, Yy =U, +V,
&=V, Y=V, +tW, (5.3)
‘92 :V,z ]/zx = W,x + u,z

Gainera, (5.3) ekuazioetako 6 deformazioak integratuz 3 desplazamendu osagaiak
lortzeko baldintzak deduzitu dira. Hauek bateragarritasun ekuazioak dira:

— _1

Exyy + Sy = Viyy Ex.yz _E(_j/yz,x + Vaxy + V.2 ) «
— 1

gy,zz +gz,yy - 7yz,yz gy,zx _3(_72x,y +7xy,z +7/yz,x ),y (54)
— _1

€ Y€z = Vo & xy _7(_7/xy,z + Y vz x + Vaxy ) 2

Hooke-ren legeak tentsioak eta deformazioak erlazionatzeko beste 6 ekuazio ematen
ditu. Deformazioak tentsioen menpe ematen dituztenak honakoak dira:

£, =é[o-x —v(ay + 0, )] Yy =%
&, =—[O'y —v(o,+o0, )] Yy :% (5.5)
gzz—[a —v(ax+ay)] }/zx:%

Tentsioak deformazioen menpe ematen dituztenak honakoak dira:

o, =2Gg, + e 7y =Gry
o,=2Geg, + e 7, =Gy, (5.6)
o, =2Gg, +1e 7, =Gy,
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Beraz, problema elastikoaren ezezagunak honakoak dira:
e Gtentsioosagai: 0,,0,,0,,7,,7,,,7,

o 3 desplazamendu osagai: u, v, w
e 6deformazio osagai: &,,&,,&,,7, ¥y s Vx

15 ezezezagunentzat beste 15 ekuazio ditugu:

e (5.1) ekuazioak: 3 oreka ekuazio

o (5.3) ekuazioak: desplazamenduen eta deformazio unitarioen arteko 6
erlazio

e (5.5) edo (5.6) ekuazioak: tentsioen eta deformazioen arteko 6 erlazio

5.3. PROBLEMA ELASTIKOAREN PLANTEAMENDUA

5.3.1 Desplazamenduak ezezagun bezala hartuta

Ingurune baldintzak desplazamendu baldintza bezala ematen direnean,
desplazamenduak ezezagun bezala hartzea da egokiena. Tentsioak deformazioen
menpe ematen dituzten (5.6) ekuazioak (5.1) oreka ekuazioetan ordezkatuz, hauek
deformazioen menpe adierazten dira. Desplazamendu eta deformazio unitarioak
erlazionatzen dituzten (5.3) ekuazioak erabiliz, 3 oreka ekuazioak 3 desplazamendu
ezezagunen menpe gelditzen dira. Lortzen diren ekuazioak Navier-en ekuazioak
deitzen dira eta honakoak direla froga daiteke:

F +(/1+G)(u’X +V, +WZ),X +G(uyXX +U,, +u_zz)=0

F,+(4 +G)(u,X +V, +WYZ) +G(v,XX +V,, +V,zz) 0 (5.7)

Y

F, +(/”L+G)(u'X +V, +vvyz)v +G(WXX +vvyyy+wyzz)=0

5.3.2 Tentsioak ezezagun bezala hartuta
Ingurune baldintzak kanpo indarren moduan ematen direnean, ezezagun bezala
tentsioak hartzea da egokiena. (5.5) ekuazioak erabiliz, deformazioak tentsioen menpe
lortzen dira. Hauek (5.4) bateragarritasun ekuazioetan ordezkatuz eta (5.1) oreka
baldintzak barneratuz, Beltrami-Michell-en 6 ekuazioak lortzen direla froga daiteke:
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1 1%
Oy xx +O—x,yy + Oy, +m Il,xx = _1_V(Fx,x + I:y,y + Fz,z)_ 2Fx,x
L Y (F 4F +F )-2F
Uy,xx +Gy,yy + Gy,zz + 1+v Ly — _1—1/( X, X + v,y + z,z)_ v,y
1
azyxﬁazywmz‘u+—1+Vlm= V(F +F,, +F,,)-2F,
Tyzxx + Tyayy + z-yz,zz 1+ v 1 vz = I:y . T Fz y)
T, xx +Tyz,yy +Tyz,zz 1z>< = Fz x T F )
Ty xx +Txy,yy +Txy,zz 1+V lxy Fx y + F )

l, =0, + 0, +0, tentsio tentsorearen lehen inbariantea izanik.

Materialen erresistentzia
Kasu askotan, gorputzaren ezaugarri geometrikoek hipotesi sinplifikatzaileak egitea

ahalbideratzen dute. Adibidez:

(5.8)

Pieza prismatikoak: luzera beren sekzioko dimentsioak baino nabarmenki

handiagoa dute

Kableak: trakzio tentsioak bakarrik jasan dezaketela suposatzen da

Plakak: gainazal lauak dira, azaleraren dimentsioak lodierarenak baino

nabarmenki handiagoak izanik

Oskolak: gainazal kurbatuak dira, azaleraren dimentsioak lodierarenak

baino nabarmenki handiagoak izanik

Mintzak: lodiera txikiko oskolak dira. Trakzio edo konpresioan lan egiten

dute

honetan, pieza prismatikoak eta mintzak aztertuko dira.

Pieza

prismatikoetan, sekzioko tentsio eta deformazioei buruzko hipotesi sinplifikatzaileak
egiten dira. Horrela, Elastikotasunaren Teoriako ekuazioak sinplifikatu egiten dira.
Hipotesi sinplifikatzaile horiek erabilita sortzen den ebazpen eremuari Materialen
Erresistentzia deitzen zaio.
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5.3.4 Metodo numerikoak

Konputagailuen garapenari esker, problema elastikoa metodo numeriko
desberdinak erabiliz ebatz daiteke modu hurbilduan. Ingeniaritzan hedatuen dagoen
metodoa Elementu Finituen Metodoa da: ingurune jarraitua elementu finituetan
zatitzen da eta elementuen arteko korapiloen desplazamenduak hartzen dira ezezagun
bezala. Deformazio energiarekin erlazionatutako metodoak erabiliz, oreka baldintzak
ezartzen dira eta korapilo horietako desplazamenduak lortzen dira ekuazio sistema bat
ebatziz. Elementu baten edozein puntutako desplazamendua interpolazio funtzioen
bidez determinatzen da. Desplazamendu horiek deribatuz, deformazio unitarioak
lortzen dira eta Hooke-ren legea erabiliz tentsioak lortzen dira. 5.1 irudian azaltzen den
adibidean, gorputzaren ezkerreko aldeko inguruneak desplazamendua eragotzita du eta
eskuin aldeko ingurunean 0,1 mm-ko desplazamendua inposatzen da.

Displacement in X
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5.1 irudia






6. HUTSEGITE IRIZPIDEAK

6.1. SARRERA

Trakzio saiakuntza batean, oz muga elastikoa determina daiteke. Material harikor
batean, muga horren ondoren materialak egoera plastikoan deformatzen jarraitzen du
eta material hauskor baten kasuan hautsi egiten da. Bi egoera horietan, materialak huts
egin duela esaten da, material harikorraren kasuan hautsi ez bada ere. Tentsio egoera
orokor batean, hutsegitea noiz gertatzen den jakitea zailagoa da. Edozein punturen
tentsio egoera 3 tentsio nagusiekin adieraz daiteke. Honako galdera plantea daiteke:
tentsio nagusien zein konbinaziorentzat iristen da materiala bere hutsegite egoerara?
Galdera horri erantzuteko irizpide desberdinak erabil daitezke, baina denek ezaugarri
komun bat dute: tentsio egoera orokorra norabide bakarreko egoeran bihurtzen dute,
oval tentsio baliokidea definituz. Ondoren, kasu guztietan tentsio baliokide hori
norabide bakarreko saiakuntzan lortutako muga balioarekin alderatzen da. Ondorioz,
o,, <O, betetzen bada, hutsegiterik ez da gertatzen.

Gai honetan, huts egitetik zein urrun gauden adierazteko, edozein irizpidetan
Segurtasun Faktorea (SF) honela definituko da:

e (6.1)

Ohal

SF =

Segurtasun faktorea determinatzeko tentsio egoera ezagutu behar da eta ondorioz
konprobaketa kalkuluetan erabiltzen da.
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Segurtasun Koefizientea (SK = n) aldiz, diseinuko kalkuluak egiterakoan erabiltzen
den zenbakia da. Kalkuluetan bi eragin izan ditzazke: materialaren propietateak
murriztu edo sistemak jasaten dituen kargak handitu. Ikasgai honetan, materialaren
propietateak murriztuko dira, tentsio onargarria oo, honela definituz:

o, =2 n>1 (6.2)
6.2. TENTSIO MAXIMOAREN IRIZPDIEA: RANKINE

Tentsio normalen balio absolutu maximoa muga elastikora iristen denan, hutsegitea
gertatzen da. Tentsio baliokidea honakoa da:

O-bal = |Gmax| (63)
(6.3) ekuazioko tentsio maximoa honakoa izanik:
|0'max| = maX(|0'1|,|0'2|,|0'3|) (6.4)

Trakzio eta konpresioko muga elastikoak desberdinak badira, o, eta o,, hurrenez
hurren, (6.3) ekuazioko irizpidea honela idatz daiteke:

Gmax > 0 Gbal < Get (6 5)
O-max < O O-bal > O-ec

(6.5) ekuazioaren arabera, tentsio maximoa trazkiokoa bada, muga trakzioko limite
elastikoa da eta tentsio maximoa konpresiokoa bada, muga konpresioko limite elastikoa
da. Irizpide honek tentsio nagusien arteko elkarrekintzarik ez du kontuan hartzen.
Irizpide hau material hauskorretan, o, tentsio baliokidea beste tentsio nagusiak baino

nabarmenki handiagoa denean erabil daiteke.

6.3. DEFORMAZIO MAXIMOA: SAINT VENANT

Deformazio unitario normalen balio absolutu maximoa balio kritikora iristen denan,
hutsegitea gertatzen da. Tentsio baliokidea honakoa da:

(6.6)

O-bal =E |‘9max |
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Deformazio nagusiak honakoak izanik:

R ——
& =é[02 ~v(oy,+0;)] (6.7)
TR

Deformazio maximoa balio absolutuan honakoa da:
6] = Max(le,] || (6.8)

Deformazio maximoaren irizpidea honela idatz daiteke:

gmax > 0 O-bal < O-et (6 9)

gmax < O Gbal > Gec
Irizpide hau material hauskorretan deformazio nagusi bat besteak baino nabarmenki
handiagoa denean da erabilgarria.

6.4. MOHR-EN EGOERA LIMITEAK

Hutsegitea gertatzen denean tentsio nagusien konbinazioa egoera kritikora heltzen
da. Tentsioen egoera horri Mohr-en zirkulu maximo bat dagokio. Haustura eragiten
duten tentsio egoera desberdinei dagokien Mohr-en zirkuluak marrazten badira, zirkulu
horiek guztiak inguratzen dituen kurbari, kurba intrintsekoa deitzen zaio, 6.1 irudian
azaltzen denez. Tentsio egoera edozein izanik ere, dagokion Mohr-en zirkulu maximoa
kurba intrintsekoaren barnean baldin badago, ez da hausturarik gertatzen.



68 ELASTIKOTASUNA ETA MATERIALEN ERRESISTENTZIA

Kurba intrintsekoa

NANL®

6.1 irudia

Kurba intrintsekoa lortzeak tentsio egoera kopuru desberdin batzuk aztertzea
dakarrenez, kurba hori erresistentzia intrintsekoko zuzenagatik ordezkatzen da, trakzio
hutsa eta konpresio hutsa egoerei dagokien zirkuluak erabiliz, 6.2 irudian azalzen
denez.

6.2 irudia

Zuzen intrintsekoaren ekuazioa honakoa da:

|z’n|=&—0'n tang (6.10)
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6.2 irudian ikusten denez:

. 2 )
Sinp=——=2\"ec_ Tet) 6.11
v==5 (6.11)

k =2t izanik, (6.11) ekuazioa honela idatz daiteke:

ec

sin(pzﬂ (6.12)
+k

[=Y

Tentsio baliokidea lortzeko, tentsio egoerari dagokion eta onal tentsioari dagokion
zirkuluen ikutzaile komunak horizontalarekin zuzen intrintsekoaren ¢ angelu bera
osatzen duela suposatzen da, 6.3 irudian ikus daitekenez. Bertan, tentsio egoerari
dagokion zirkulu maximoa bakarrik adierazi da.

il

6.3 irudia

6.3 irudia aztertuz, honakoa betetzen da:

(6.13)

(6.13) ekuazioko zuzenkien luzerak, 6.3 irudiaren arabera honakoak dira:
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@ = %[O-bal - (0-1 — 03 )J

o (6.14)
QS =0 —Ocpa :%[(0'1 +O—3)_O-ba|]

(6.14) ekuazioak (6.13) ekuazioan ordezkatuz eta (6.12) ekuazioa kontuan izanik,
honakoa lortzen da:

O, =0, — Ko, (6.15)
Hutsegitea ez gertatzeko baldintza honakoa da:

Opa < O (6 16)

(6.16) ekuazioak konpresio hutseko egoera ere kontuan hartzen du, o, bakarrik
azaltzen bada ere. lzan ere, konpresiozko hutsegitean tentsio egoera o, =0 eta
o, =-0, Izanik, (6.15) ekuaziotik o, =o, lortzen da. Irizpide hau material
harikorrentzan eta hauskorrentzat erabil daiteke.

6.5. TENTSIO EBAKITZAILE MAXIMOA: TRESCA

Irizpide honen arabera, tentsio ebakitzaile maximoak balio kritikoa hartzen duenean
hutsegitea gertatzen da.

6.4 irudia



HUTSEGITE IRIZPIDEAK 71

Tentsio nagusiak o, > o, > o, izendatuz 6.4 irudian azaltzen den bezala, tentsio
ebakitzaile maximoa Mohr-en zirkulu maximoaren erradioa denez:

max 2

Toax = 3(0,—03) (6.17)

Tentsio baliokidearen kasuan tentsio ebakitzaile maximoa honakoa da:

Tmax = %Gbal (618)
(6.17) eta (6.18) ekuazioak berdinduz:
Opat =01 =03 (6.19)

(6.19) ekuazioaren arabera, Trescaren irizpidea Mohr-en irizpidearen kasu
partikularra da, k = 1 denean. Kasu honetan, trakzio eta konpresio zirkuluek erradio
bera dutenez, zuzen intrintsekoa horizontala da. (6.12) ekuazioaren arabera ere
singp =0 dela ikusten da. Irizpide hau material harikorrentzat da erabilgarria.

6.6. DISTORTSIO ENERGIA MAXIMOA: VON MISES

Irizpide honen arabera, distortsio energia balio kritikora iristen denean, hutsegitea
gertatzen da. “Gorputz Elastikoa” gaian esan bezala, gorputzaren bolumen aldaketa

osagai esferikoarekin dago erlazionatua. Bolumen unitateko

tentsio tentsorearen &

e

deformazio energia bolumen aldaketari eta distortsioari dagozkion batugaietan
banatuko da:

U, =UP +U¢ (6.20)

U¢ bolumen aldaketari dagokiona eta U distortsioari dagokiona izanik. (6.20)
ekuaziotik, distortsio energia honakoa da:

ud=u,-U; (6.21)
Bolumen unitateko deformazio energia elastikoa honakoa da:

,=0,6,+0,6,+0,6, +T, 7, +T,V 0 +7,7y, (6.22)
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(6.22) ekuazioan deformazioak tentsioen menpe idatziz:

2U, =é[af +0'§ + 0'22 — 21/(0'X0'y +0,0,+0,0, )] +é(rfy + 152 + TZZX) (6.23)

Tentsio esferikoari dagokion tentsio matrizea honakoa da:

Q

[Ge]:

e

o o
ol o

0
0 o =%(ax +o, +az) (6.24)
O-e

(6.24) ekuazioko matrizea kontuan izanik eta osagaiak (6.23) ekuazioko adierazpen
orokorrean barneratuz, bolumen aldaketari dagokion deformazio energia honakoa da:

3(1-2v) (1-2v) 2
2Up = = ol = 3E (O‘X to, +0'Z) (6.25)

Distortsio energia determinatzeko, (6.23) eta (6.25) ekuazioak (6.21) ekuazioan
barneratuz:

2Ug _ (1;—EV)[(GX o, )2 +(O'y _O_Z)z +(O'z o, )2} +é(75y + 752 +122X) (6.26)

(6.26) ekuazioa tentsio baliokidearen egoerari aplikatuz, o, = o,,, eta beste guztiak
nuluak direnez:

2(1+v
(2u9),, = (3E )aga, (6.27)

Egoera orokorrak eta tentsio egoera baliokideak distortsio energia bera izan behar
dutenez, (6.26) eta (6.27) ekuazioak berdinduz, honakoa lortzen da:

Ol 2%\/(0'X -0, )2 +(0y -0, )2 +(GZ -0, )2 + 6(Tfy + rfz +TZZX) (6.28)

(6.28) ekuazioa norabide nagusietan honakoa da:
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Cal =%\/(0'1 -0, )2 +(o, —03)2 + (o, _0'1)2 (6.29)

Tentsio egoera laua denean (6.28) ekuazioa honela gelditzen da:

Cpal = \/65 -o0,0,+ 0'5 + 3rfy (6.30)

Xy planoko tentsio nagusiak o, eta o, izanik, (6.29) ekuazioa honela gelditzen da:

Opy =A\O) — 0,0, + O (6.31)

6.4 irudian Tresca eta Von Mises-en irizpidea adierazten da tentsio egoera lau
batean. Hexagonoaren barnean dauden puntuek Trescaren irizpidea betetzen dute eta
elipsearen barnean daudenak VVon Mises-en irizpidea betetzen dute. Grisez azaltzen den
gainazaleko tentsio egoerek VVon Mises-en irizpidearen arabera ez dute huts egiten
baina Trescaren irizpidearen arabera huts egiten dute. Ondorioz, Tresca-ren irizpidea
segurtasunaren aldekoa da.

—Oe 01

Y

6.5 irudia






7. PIEZA PRISMATIKOAK:
SEKZIOKO INDAR ETA
MOMENTUAK

7.1. SARRERA

Gainazal lau baten grabitate zentruak kurba baten zehar ibiltzerakoan sortzen duen
bolumena, gainazala eta kurba elkartzutak izanik, pieza prismatikoa bezala definitzen
da. Gainazalari pieza prismatikoaren sekzio zuzena edo sekzioa eta kurbari, piezaren
ardatza deitzen zaio. Pieza prismatikoan, luzera dimentsioa sekzioko dimentsioak
baino nabarmenki handiagoa da. Egituretan, orientazio nagusia horizontala denean,
habea deitzen zaio. Orientazio nagusia bertikala denean, zutabea deitzen zaio. Makinen
potentzia transmisioko ardatzak eta egitura giltzatuetako barrak ere pieza prismatikoak
dira.

Gai honetan, pieza prismatikoaren sekzio batean diharduten barne indarren
erresultantea eta momentu erresultantea grabitate zentrura laburbilduko da. Bi bektore
horien osagaiak, sekzioko indar eta momentuak dira hurrenez hurren. Tentsioak
gainazal unitateko barne indarrak direnez, sekzioko indar eta momentuak sekzioko
tentsio eremuaren erresultantearen eta momentu erresultantearen osagaiak direla
esango dugu.
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7.2. SEKZIOKO INDAR ETA MOMENTUAK

7.1 irudian F, F,... F, kanpoko indar sistema jasaten duen pieza prismatikoaren

Solido Askearen Diagrama (SAD) azaltzen da. Indar horien artean, piezak izan
ditzaken loturei dagozkien erreakzioak ere barneratzen dira.

F

F

7.1 irudia

Pieza prismatikoa sekzio batetik mozten badugu, | eta 11 zatiak lortzen dira. Mozte
gainazalean barne indarrak azaltzen dira, zati bakoitzaren oreka baldintzak bete
daitezen. Barne indar sistema hori sekzioaren grabitate zentruan laburbilduz, 7.1

irudian azaltzen diren R erresultantea eta M, momentu erresultantea lortzen dira,
i=1,1l izanik. | zatia orekan egon dadin honako ekuazioak bete beha dira:

(7.1)

Il zatia orekan egon dadin, honakoa bete behar da:
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(7.2)

(7.1) eta (7.2) ekuazioetako batukarien esanahia honakoa da:

(Z Fkan) : . F, kanpoko indarren erresultantea i zatian

(Z MGkan) - R, . F, kanpoko indarren momentu erresultantea i zatian

Kanpoko indarrak ezagunak direnez, (7.1) eta (7.2) ekuazioen arabera, zati
bakoitzaren oreka planteatuz barne indarren erresultantea eta momentu erresultantea
determina daitezke. Kalkulu prozedura honi A prozedura deituko zaio.

Akzio-erreakzio printzipoaren arabera honakoa betetzen da:

R, = _ﬁu (7.3)
Mg =—Mg,
(7.3) ekuazioak (7.1) ekuazioan ordezkatuz:
(z IEkan )I = Iill
(7.4)

(ZMGkan)l = Meu

(7.4) ekuazioen arabera, | aldeko kanpo indarren erresultantea eta momentu
erresultantea Il aldeko barne indarren erresultantearen eta momentu erresultantearen
berdinak dira, hurrenez hurren. Orain (7.3) ekuazioak (7.2) ekuazioetan ordezkatuz,
honakoa lortzen da:

(2R
(Z)

\_/
||
el

(7.5)

||
§1
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(7.5) ekuazioen arabera, Il aldeko kanpo indarren erresultantea eta momentu
erresultantea | aldeko barne indarren erresultantearen eta momentu erresultantearen
berdinak dira, hurrenez hurren. (7.4) eta (7.5) ekuazioek barne indarren erresultantea
eta momentu erresultantea determinatzeko beste bide bat ematen dute, alde bateko
kanpo indarren eta beste aldeko barne indarren arteko baliokidetasuna ezarriz.
Prozedura honi B prozedura deituko zaio.

Aurrerantzean ezker aldea hartuko da eta | azpiindizea ez da erabiliko. Honako
baldintzak bete behar dituen Gxyz erreferentzia sistema definitzen da:

e Sorrera sekzioaren G grabitate zentruan du

e X ardatza piezaren ardatzarekiko ikutzailea, hau da, sekzioarekiko
elkartzuta da

e yetaz ardatzak sekzioaren planoan daude

Barne indarren erresultantea eta momentu erresultantea ardatzen arabera
deskonposatzen dira, 7.2 irudian azaltzen denez:

] (7.6)

7.2 irudia
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(7.6) ekuazioan azaltzen diren barne indarren erresultantearen eta momentu
erresultantearen osagaiak sekzioko indar eta momentuak dira. Izendapena eta esanahi
fisikoa honakoa da:

¢ N:indar normala, axiala. Ondoz ondoko bi sekzioen desplazamendu axial
erlatiboa eragotzen du

e Ty, T, indar ebakitzaileak, tangentzialak. Ondoz ondoko bi sekzioen
desplazamendua eragozten dute sekzioaren planoan, y, z norabidetan,
hurrenez hurren

e M momentu bihurtzailea. Bi sekzioen arteko x ardatzarekiko biraketa
erlatiboa eragozen du

e My, M; momentu makurtzaileak. Bi sekzioen arteko y, z ardatzekiko
biraketa erlatiboak eragozten ditu, hurrenez hurren

Tentsioak gainazal unitateko barne indarrak direnez, sekzioko indar eta momentuak
bertako tentsio banaketarekin erlaziona daitezke. 7.3 irudian sekzioko indar eta
momentuak eta y, z koordenatuak dituen dA azalera elementu batean diharduten
tentsioak azaltzen dira, sekzioaren planoan. N indar normala eta ox tentsio normala
planoarekiko elkartzutak dira, kanporantz.

7.3 irudia
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Tentsioen erresultantearen eta momentu erresultantearen osagaiak kalkulatuz,
sekzioko indar eta momentuen eta tentsioen arteko erlazioak honakoak dira:

N=[ odA M =] (r,y-7,2)dA
T,=[ A M, =] ozdA (7.7)
T,=[7dA  M,=[oydA

(7.7) ekuazioetan, M, momentu makurtzailea z ardatzaren aurkako norantzan da
positiboa, ox tentsioek norantza horretako momentua ematen baitute.

7.3. IKUR HITZARMENA

7.4 irudian azaltzen diren sekzioko indar eta momentuak positiboak direnaren
hitzarmena ezarriko da. Eskuin sekzioan erreferentzia sistema zuzena da eta ezker
sekzioan alderantzizkoa. Beraz, sekzioak eskuin edo ezker sekzio deituko dira bertan
duten erreferentzia sistemaren arabera, pieza prismatikoaren orientazioa bertikala bada
ere. 7.4 irudiak ez du elementu diferentziala adierazten, hitzarmena adierazteko bi
sekzio baizik. Hain zuzen ere, eskuin sekzioa 7.1 irudian azaltzen den | zatiari
dagokiona eta ezker sekzioa Il zatiari dagokiona da.

7.4 irudia
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7.5 irudian momentu hitzarmena xy, xz planoetan proiektatuta azaltzen da. Momentu
makurtzaileak biraketa bezala adierazi dira, eskuin eskuaren arauaren arabera. X
ardatzeko N indarra eta M momentu bihurtzailea ez dira barneratu.

MZ MZ Ty Ty

7.5 irudia

z ardatzaren norabideko indarrik ez dagoenean T, =M =0. Ondorioz, bakarrik xy

planoa aztertu behar da. Orduan, T, =T eta M, =M izendapena erabiliko dugu.

7.4. ZERRADA DIFERENTZIALAREN OREKA

Ardatz zuzena duen pieza prismatikoarem dx luzerako zerradaren oreka ekuazioak
lortuko dira. 7.6 irudian ikus daitekenez, elementu diferentzialak jasaten dituen
indarrak honakoak dira:

® Qx Qy, O luzera unitateko indar banatuak. gx piezaren ardatzean aplikatzen
da eta qy, .-k piezaren ardatza mozten dute.
e m¢ luzera unitateko momentu bihurtzailea.

Indar eta momentu banatu hauek uniformetzat har daitezke dx luzera
diferentzialean. Momentuak G, puntuan hartuko dira. x ardatzeko indar eta momentuen
oreka planteatuz honakoa lortzen da:

ZFX=O:(N+dN)+qux—N=O:>c;—';|=—qx (7.8)

M,
=-m
X

ZMGZX:O:(Mt+th)+mtdx_Mt:0:> (7.9)

t
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y ardatzeko indarren eta z ardatzeko momentuen oreka ekuazioak

determinatzerakoan, xy planoa erabil daiteke, momentuak biraketa moduan adieraziz.
Oreka ekuazioak honakoak dira:

ZFy=0:»(Ty+dTy)+qydx—Ty=o:»dl:—qy

7.10
™ (7.10)
dMm
ZMGZZOZ(MZ+dMZ)—Tde—MZ+qde%dX=O:> Z:Ty (711)
s X
x+dx
- >
\
My 4
A
4
Gy
M=V - -
.~/
y 3 T,

qW My +dM,

7.6 irudia

(7.11) ekuazioan, gy duen batugaia bigarren mailakoa da eta ondorioz arbuiagarria.
Azkenik, z ardatzeko indarren eta y ardatzeko momentuen oreka ekuazioak
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determinatzerakoan, xz planoa erabil daiteke, momentuak biraketa moduan adieraziz.
Oreka ekuazioak honakoak dira:

L (7.12)

> F,=0=(T,+dT,)+q,dx-T,=0= g
X

dM
> Mg, =0=(M, +dM, )-T,dx—M, +q,dxtdx=0=> el

z

(7.13) ekuazioan g, duen batugaia bigarren mailakoa da eta ondorioz arbuiagarria.
Kasu askotan, z norabidean indarrik ez dago eta analisia xy planoan egin daiteke. Hau
da, q,=0 T,=0 M, =0 betetzen da. Horrelakoetan, q,=q T,=T M,=M

izendapena erabiltzen da eta (7.10) eta (7.11) oreka ekuazioak honela gelditzen dira:

a_ (7.14)
dx

™ _; (7.15)
dx

7.5. SEKZIOKO INDAR ETA MOMENTUEN DIAGRAMAK

Atal honetan indarrak y ardatzaren norabidea duteneko kasua aztertuko da bakarrik
Ondorioz, T, =T indar ebakitzaileen eta M, =M momentu makurtzaileen diagramak

aztertuko dira. Nagusiki erabiliko diren indar banatuak hiru motatakoak dira:

e (=0; indar banatua nulua da. Indar bilduak egon daitezke
e (=(,; indar banatua uniformea da

e (=0,X+0,; indar banatua lineala da

Indar linealaren kasuak beste biak barneratzen ditu; izan ere, g, =0 bada, indarra
uniformea da; g, =q, =0 bada, indar banatua nulua da. Beraz, indar lineala aztertuz

beste birentzat ondorioak atera daitezke. (7.14) ekuazioa integratuz, indar ebakitzalea
honakoa da:
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__1 2
T=-20X—qx+T, (7.16)

To integrazio konstantea izanik. (7.15) ekuazioa integratuz, momentu makurtzaileen
ekuazioa honakoa da:

M =-1g,x° —=1q,x* +T)x+ M, (7.17)

Mo integrazio konstantea izanik. (7.16) eta (7.17) ekuazioak T eta M-ren ezaugarti
nagusiak aztertzeko erabil daitezke, ondorengo taulan ikus daitekenez.

q T M
q=0 T T,x+ M,
q=q, —QoX+T, —1g, ¢ +Tyx+ M,
q=0,X+0d, —1g,x* —qx+T, —Lgx* =1, X* +Tyx+ M,

Beheko taulan, T eta M zein funtzio mota diren azaltzen da:

q T M
g=0 Uniformea Lineala
q=q, Lineala Parabola
q=0,X+0, Parabola Funtzio kubikoa

Diagramen beste ezaugarri batzuk honakoak dira:

e (7.15) ekuazioaren arabera, puntu batean T =0 bada, M-k ikutzaile
horizontala du

e Indar bildu bat aplikatuta dagoenean, T-ren diagraman aplikatutako
indarraren balioko lehen mailako ezjarraitasuna dago

e Momentu bildu bat aplikatuta dagoenean, M-ren diagraman aplikatutako
momentuaren balioko lehen mailako ezjarraitasuna dago

7.6. ARDATZ KURBOKO PIEZA PRISMATIKOAK

7.7 irudian ardatz kurbo planoa duen pieza prismatiko baten elementu diferentziala
azaltzen da. N, T eta M indarrak eta momentua € angeluaren menpeko funtzioak direla
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suposatzen da. R kurbadura erradioa da eta hau ere &-ren menpekoa da. Pieza
kurbatuak gy eta ge indar banatu erradiala eta tangentziala jasaten ditu bere ardatzean,
hurrenez hurren. Indar hauek piezaren ardatzean banatuta daude.

qr

M+dM
N-+dN

0
7.7 irudia

Norabide erradial eta tangentzialean indarren oreka ekuazioak aplikatuz eta
sin(4d@)=1d6 eta cos($d@)=1 dela kontuan izanik, honakoa lortzen da.

Zngo:d—N:T—qu (7.18)
dé
dT
F=0=>-—=-N-qR 7.19
> F =7 g (7.19)

O rekiko mometuak hartuz honakoa lortzen da:

dm dN )
M,=0= —=R—+¢,R 7.20
z o = 40 40 Qs (7.20)
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(7.20) ekuazioan (7.18) ekuazioa ordezkatuz honakoa lortzen da:

M g (7.21)
do
(7.18)-(7.21) ekuazioek adierazten dutenez, pieza prismatiko kurboetan indar

normala momentu makurtzaile eta indar ebakitzailearekin erlazionatua dago.

Pieza prismatiko batek jasaten duen karga kasu askotan luzera horizontal unitateko
g indar bertikala da. Ondoren, karga banatu horrek qr, ge-rekin duen erlazioa aztertuko
da.

7.8 irudia

7.8 irudian, alde batetik piezaren ds luzera elementua, jasaten duen g indarra eta
lortu nahi diren qr, qe azaltzen dira. q horizontalean banatutako indarra eta gr, Qo
piezaren ardatzean banatutako indarrak direnez, ezin dira zuzenean deskonposatu.
Horregatik, 7.8 irudian honako indarren hirukia barneratu da:

df =qdx df, =q,ds df, =—q,ds (7.22)

(7.22) ekuazioan, df norabide erradial eta tangentzialean deskonposatzerakoan df,
indarrak q,-ren aurkako norantza duela ikusten denez, ikur negatiboa barneratu da. ds
eta dx luzeraren arteko erlazioa ikusteko hirukia ere barneratu da, hau da:

dx =sin@ds (7.23)
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7.8 irudiaren arabera, indar erradial eta tangentziala df deskonposatuz lor daitezke,
honakoak izanik:

df, =df sin@

(7.24)
df, = df cos@

(7.22)-ko df eta (7.23)-ko erlazioa (7.24) ekuazioetan barneratuz, honakoa lortzen
da:

df, =qgsin®ads

: (7.25)
df, = gsin&cosds

Azkenik, (7.25) ekuazioa (7.22)-ko df. eta dfgrekin alderatuz, indar banatu
tangentziala eta erradiala g-ren menpe lortzen dira:

g, =qsin®é

7.26
g, =—Qsinécosé (7.26)






8. TRAKZIOA ETA KONPRESIOA

8.1. SARRERA

Gai honetan trakzioa eta konpresioa jasaten duten pieza prismatikoak aztertuko dira.
Sekzioko indar bakarra N indar normala da, egitura giltzatuetan gertatzen den bezala.
Presio jasaten duten lodiera txikiko sistemak ere aztertuko dira, bertako hormek
trakzioan edo konpresioan lan egiten baitute. Gai honetan, Materialen Erresistentzia
atalean sartzen gara, deformazioei eta tentsioei buruzko hipotesi sinplifikatzaileak
erabiliko baititugu. Materialen Erresistentzian, orohar, bi sistema mota aztertzen dira:

Sistema isostatikoak: Estatikako ekuazioak nahikoa dira indar ezezagunak
determinatzeko. Sistemak orekan egoteko lotura kopuru minimoa du. Hiru
hankako mahai bat sistema isostatikoaren adibidea da.

Sistema hiperestatikoak: Estatikako ekuazioak ez dira nahikoa indar
ezezagunak determinatzeko. Sistemak orekan egoteko behar dituen baino
lotura gehiago ditu. Lau hankako mahai bat sistema hiperestatikoaren
adibidea da. Estatikako ekuazioez gain, deformazio prozesuarekin
erlazionatutako ekuazioak erabili behar dira. Ekuazio hauei,
desplazamenduen bateragarritasun ekuazioak deitzen zaie.

Materialen Erresistentzian, orohar, Saint Venant-en printzipioa erabiltzen da: indar
bilduen inguruan sortzen diren tensio egoera partikularrak desagertu egiten dira
indarren aplikazio puntutik distantzia batera. Distantzia hori sekzioaren dimentsioen
ordenakoa da. 8.1 irudian 100 mm-luzera eta 10x10 mm?-ko sekzio karratua duen pieza
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zuzen baten tentsioak azaltzen dira 1400 N-eko karga jasaten duenean. Indarraren
aplikazio puntutik 2,5 mm-ra, 5 mm-ra eta 10 mm-ra dauden sekzioetako tentsioak
azaltzen dira. Elementu Finituen Metodoa erabiliz ebatzi da, 0,5 mm-ko aldea duten
tentsio laueko 4000 elementu karratu erabiliz.

7 1400 N
10 mm| —>

! 100 mm

¢ »

dist. 2,5 mm
dist. 5 mm
dist. 10 mm

75

h(mm)

25

0 70 140 210 280 350 420
sigma-x (MPa)

8.1 irudia

2,5 mm-ko distantziara karga bilduaren eragina nabarmena da, baina 10 mm-ra
dagoen sekzioan tentsio banaketa uniformetzat har daiteke. 5 mm-ra tarteko egoera bat
ikus daiteke.

8.2. DEFORMAZIOAK ETA TENTSIOAK

Bernouilli-ren hipotesiaren arabera, sekzioek lau eta beraiekiko paralelo jarraitzen
dute deformazio ondoren. Ondorioz, deformazio unitario normal eta tangentzialek
uniformeak izan behar dute sekzioan, honek lau eta paralelo jarrai dezan. Deformazio
tangentzialak nuluak izan behar dutela frogatuko da: sekzioan xy, 7%x deformazioak
badaude eta uniformeak badira, tentsio ebakitzaileek ere uniformeak izan behar dute,
7y =Gy, 7, =Gy, erlazioen arabera. Baina indar ebakitzaileak nuluak direnez:
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T,=0=[ r,dA=0
’ Jus (8.1)
T,=0= [ 7,dA=0

(8.1) ekuazioan, tentsio ebakitzaileak uniformeak direnez, integraletatik biderkagai
komun bezala atera daitezke:

7. A=0=7_ =0=> =0
Xy Xy 7xy (82)
7, A=0=>7,=0=y,=0

(8.2) ekuazioaren arabera, absurdo bidezko frogaz, deformazio tangentzialek nuluak
izan behar dutela ondorioztatu da. Gainera, y, z norabidetan deformazio askatasuna
dagoela suposatuko da eta ondorioz o, =o, =0. Deformazio unitario normalak,

Hooke-ren legea aplikatuz, honakoak dira:
g, = % +& (8.3)

&, hasierako deformazio izanik, sekzioan uniformea suposatzen dena. Tenperatura

aldaketaren kasuan, ¢, =aAT . L luzerako barra baten kasuan, hasieran h luzeagoa

bada fabrikazio errore baten ondorioz, &, =% . Tentsioa askatuz honakoa gelditzen da:

o,=E(&,—¢) (8.4)

X

(8.4) ekuazioan deformazioak uniformeak direnez, tentsio banaketa ere uniformea
da. Sekzioko indar bakarra N indar normala denez:

N=[ odA=c,A= o, _N (8.5)
A A

(8.5) ekuazioaren arabera tentsio banaketa uniformea da, 8.1 irudian 10 mm-ko
distantziara ikusten den bezala.
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8.3. LUZERA ALDAKETA

L luzera duen eta bere sekzioetan N indar normala jasaten duen barra baten kasuan,
hasieran dx luzera duen zatiaren deformazio unitarioa honakoa da:

AdX
e =

X _K (86)

Luzera aldaketa osoa determinatzeko, zati guztien luzera aldaketen batura eginez:

AL = IOLAdx=IOLAd—(::(dx= [ edx ©8.7)

(8.3) eta (8.5) ekuazioak (8.7) ekuazioan ordezkatuz:
Cx= [Nt 8.8
AL:IOSXXZIO a-ﬁ-go X (8.8)

N indar normala, A sekzioaren azalera eta ¢, hasierako deformazioa uniformeak
badira barran zehar, luzera aldaketa honakoa da:

NL
AL=—+¢,L 8.9
EA &y (8.9)

8.4. EGITURA GILTZATUAK: BARREN DEFORMAZIO
PROZESUA

Egitura giltzatuetan (8.9) ekuazioko kasua betetzen da. Barra baten deformazio
prozesuan, barrak translazioa, luzera aldaketa eta solido zurrun gisako errotazioa
jasaten ditu, 8.2 irudian azaltzen denez.
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8.2 irudia

Deformazio prozesua honakoa da:

(BC) barra (B’C,) posiziora igarotzen da translazio bidez

(B’Cy) eta (B’C,) posizioen artean deformazio hutsa gertatzen da, barra luzatuz
(B’Cy)-tik (B’Cs)-ra: barrak B’-ren inguruan solido zurrun gisa errotatzen du
(C2Cs) arkua (C2C’) ikutzaileagatik ordezkatzen da

> w b RE

Barraren luzera aldaketa determinatzeko, bukaerako barraren posizioa
hasierakoaren gainean projektatzen da, £ angelua txikia dela kontuan izanik. 8.3
irudiaren arabera:

AL=B'C'-BC =B,C, -BC (8.10)

(8.10) ekuazioko berdintasuna angeluaren txikitasunaren ondorio da, hau da:
B,C, =B'C'cos f=B'C’ (8.11)

8.3 irudiaren arabera, bukaerako luzera hasierako luzeraren menpe idatziz, (8.10)
ekuazioa honela gelditzen da:

AL—BIC] —BC —BC - BB, + CC —BC —CC, — BB (8.12)
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Cloo

8.3 irudia

8.5. LODIERA TXIKIKO EGITURAK

8.5.1 Biltegiak

p barne presioa jasaten duen biraketa-biltegia aztertuko da. Bere hormen t lodiera
gainazalaren kurbadura erradioekin alderatuz txikia bada, biraketa ardatzarekiko
elkartzutak diren zirkuluetan (paraleloak) eta beren norabide elkartzutetan
(meridianoak) tentsio normalak daude bakarrik. Hau da, 8.4 irudian azaltzen diren t
lodierako eta dsi, ds. luzerako elementuetan, hurrenez hurren. Ondorioz, norabide
horiek nagusiak dira. 8.4 irudian azaltzen den elementua isolatuz eta oreka planteatuz
tentsioek presioarekin duten erlazioa lor daiteke.

8.4 irudia
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8.5 irudian, elementuaren bi projekzio ikusten dira, dsi;, ds, arkuei dagokien
planoetan, hurrenez hurren. Oreka planteatzerakoan, bi irudietako tentsioak hartu behar
dira kontuan:

pds,ds, = 20,ds,tsin(3d6, )+ 20,ds,tsin(1dé6,) (8.13)

(8.13) ekuazioan adierazten denez, ou tentsioak ds, luzerako elementuan eta o>
tentsioak ds; luzerako elementuan eragiten dutela azpimarratu behar da.

8.5 irudia

Angeluak txikiak direla eta ds, =rdé dela kontuan izanik, (8.13) ekuaziotik
honakoa lortzen da:

(8.14)

Beste tentsio nagusiaren balioa o, =—p da hormaren barne aldean eta o, =0

kanpo aldean. Beste bi tentsio nagusiak baino nabarmenki txikiagoa denez, nulua dela
suposatuko da.

Esfera baten kasuan kurbadura erradioak berdinak dira, hau da, r=r,=r.

Tentsioak ere berdinak dira edozein puntutan, simetriagatik. (8.14) ekuazioan
ordezkatuz:

o= g—tr (8.15)
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Zilindro baten kasuan r, =R, =0 denez, (8.14) ekuazioan ordezkatuz:

o, =% (8.16)
o, lortzeko, zilindroa bere ardatzarekiko elkartzuta den plano batetik mozten da,

8.6 irudian ikus daiteken bezala. Oreka planteatuz eta hormaren lodiera txikia dela
kontuan hartuz honakoa lortzen da:

prr? = 271t0, = O, =% (8.17)

8.6 irudia

8.6 irudian azaltzen den presioa kendutako zatiak isolatu denari eragindako presioa
da. Beraz, isolatutako zatian presioa eragiten duen jariakina barnean utzi da.

8.5.2 Eraztunak
Barne edo kanpo presioa jasaten duten zilindro irikiak dira. Ondorioz, o, =0.
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8.7 irudia

Tentsioentzat ez da azpiindizerik erabiliko. 1 eta 2 azpiindiezeak barne eta kanpo
erradioentzat erabiliko dira, hurrenez hurren, 8.7 irudian azaltzen denez. Presioak r;

barneko erradioan eragiten duenean, tentsioak trakziokoak dira eta deformazioak
positiboak dira:

pr pr

S S e 8.18

o= ETg T4 (8.18)
Presioak r, kanpoko erradioan eragiten duenean tentsioak konpresiokoak dira eta

deformazioak negatiboak dira.

pr, pr,
P2 .__ VP2, 8.19
o " 2 Et & ( )

¢ deformazioak zirkunferentziaren luzera aldaketa erlatiboa adierazten du.
Ondorioz, 8.8 irudian azaltzen den bezala, A eta B zilindroak bata bestearen barnean
elkarren arteko presioa jasanez daudenean, presio hori determinatzeko baldintza
kontaktuko erradioari dagozkion deformazioak berdinak izatea da:

Xr Xr
eh=e® = - tep=——+¢l (8.20)
A E,t

A*A
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X

8.8 irudia



9. MAKURDURA: TENTSIOAK

9.1. SARRERA

Sekzioko tentsio normalen momentu erresultantea nulua ez denean, My, M, osagaiak
ditu eta pieza makurduran dagoela esaten da. Jasaten diren sekzio indar eta momentuen
arabera, makurdurako kasuak honela sailka daitezke:

1. Makurdura hutsa: nuluak ez diren sekzioko indar eta momentu bakarrak My, M,
momentu makurtzaileak dira. Indar ebakitzaileak nuluak direnez, momentuak
uniformeak dira piezaren luzeran zehar.

2. Makurdura bakuna: My, M, momentuez gain, Ty, T, indar ebakitzaileak ere ez dira
nuluak. Kasu honetan, momentu makurtzaileak aldatu egiten dira piezaren luzeran
zehar.

3. Makurdura konposatua: Aurreko bi kasuetako bati N indar normala gehitzen
zaionean.

Aipatutako hiru kasuetan tentsio normal eta ebakitzaileen banaketak aztertuko dira,
deformazio eta tentsioei buruzko hipotesi sinplifikatzaileak eginez. Gai honetan,
sekzioko indar eta momentuak ezagunak izango dira. Helburu nagusia, indar
ebakitzaileak eta momentu makurtzaileak sekzioko tentsio normal eta ebakitzaile
banaketekin erlazionatzea da.
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9.2. MAKURDURA HUTSA

9.2.1 Kasu orokorra

Navier-Bernouilli-ren hipotesiaren arabera, deformazioaren ondoren sekzioek lau
eta pieza prismatikoaren ardatzarekiko elkartzut jarraitzen dute, sekzioko ardatz
batekiko biratuz. Ardatz hori Ardatz Neutroa da. Sekzio desberdinetako ardatz neutroek
pieza prismatikoan zehar osatutako gainazala, Gainazal Neutroa da. Gainazal neutroko
puntuek ez dute deformaziorik jasaten. 9.1 irudian dx luzerako elementu batean eskuin
sekzioko momentu makurtzaileak, Ardatz Neutroa eta berarekiko elkartzuta den eta G-
tik igarotzen den norabidea azaltzen dira.

Ardatz Neytroa

9.1 irudia

9.1 irudian azaltzen den elementua Ardatz Neutroarekiko G-tik igarotzen den plano
elkartzutean proiektatuz, 9.2 irudian elementu hori deformatu baino lehen eta ondoren
azaltzen da.

dx

9.2 irudia
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Gainazal neutroaren kurbadura erradioa p eta deformatu ondorengo angelua dé
izanik, dx = pd@ betetzen da, gainazal neutroa ez baita deformatzen. Bertatik &

distantziara dagoen zuntzaren deformazioa honakoa da:

; z(p+§)d9—pd9:£ ©.1)

" pdé p

(9.1) ekuazioaren arabera, & -ren balio positiboentzat ¢, positiboa da eta & -ren
balio negatiobentzat &, negatiboa da. Beraz, gainazal neutroa laburtzen diren eta
luzatzen diren gainazalen arteko muga da.

y, Z norabidetan deformazio askatasuna suposatzen da eta ondorioz o, =o, =0.

Hooke-ren legea aplikatuz eta trakzio eta konpresio moduluak berdinak direla
suposatuz:

o,=E¢g, = Eé (9.2)
o)
N indar normala nulua denez, honakoa bete behar da:
N=0= jAadi: 0 (9.3)
(9.2) ekuazioa (9.3) ekuazioan ordezkatuz:
E
[ o dA=0==] EdA=0=¢A=0= & =0 (9.4)
A p A

(9.4) ekuazioaren arabera, ardatz neutroa sekzioaren grabitate zentrutik igarotzen
da. 9.3 irudian sekzioa, Ardatz Neutroa eta azalera elementu diferentziala azaltzen dira.
Ardatz Neutroan eta bere norabide elkartzutean 7, & ardatzak definitzen dira,

hurrenez hurren. Ardatz horien bektore unitarioak honakoak dira:

G. =cose] +sinok
. =C0sp]+sing 95)

~

u, =-sing] +cospk
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9.3 irudia

9.3 irudiaren arabera, Ardatz Neutrotik elementu diferentzialeraino dagoen ¢&
distantzia honakoa da:

&=GP-U, =ycosp+zsing (9.6)

(9.6) ekuazioa (9.2) ekuazioan ordezkatuz, sekzioko tentsio normal banaketa
honakoa da:

o, =E(y003¢+ zsing)=C,y+C,z 9.7)
2,

E E . - . .
C,=—cosp C,=—sing izanik. Momentu makurtzaileak tentsio normalen
p P

ardatzekiko momentu erresultanteak direnez, (9.7) ekuazioa kontuan izanik:

M, = Laxszz Cle yzdA + Cszzsz 08
M, =] o,ydA=C, [ y’dA+C,[ yzdA
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Gainazalen inertzia momentu eta inertzia biderkaduren definizioak erabiliz, (9.8)
ekuazioa honela gelditzen da:

M, =C]l,+C,l,
(9.9)
Mzzcll +C2Iy2
C; eta C; ezezagunak dituen (9.9) ekuazio sistema ebatziz:
M I —-MI M I M. I
C, = % C,= # (9.10)
I, =11, I, =11,

(9.10) ekuazioko Ci, C, (9.7) ekuazioan ordezkatuz, sekzioko tentsio normalen
banaketa honakoa da:

ML, -M, I, Ml M,
o = iy ey (9.11)
12 1,1 12 -1

y'z yz y'z

(9.11) ekuazioa honela ere idatz daiteke:

I
M,-M, 2 M,
Mz, M),’ ! Z ’ Iy ' My MZ Iz
o =—ty+—Lz M=—FY M/ =— 1 (912
Iz Iy 1— yz 1— yz
11, 1,1,

Ardatz Neutroaren ekuazioa determinatzeko, (9.12) ekuazioan deformazio nuluaren
baldintza ezarriz:

& =020,=0>=-—1L"2 (9.13)

Ardatz Neutroa ezagututa, tentsio maximoko puntuak bertatik urrunen daudenak
dira. Puntu horiek Ardatz Neutroarekiko paraleloak marraztuz lor daitezke, 9.4 irudian
azaltzen den bezala. A eta B puntuak trakzio eta konpresiozko tentsio maximoak
dituztenak dira, hurrenez hurren. Ardatz Neutrotik & distantziara dagoen MN lerroan
tentsioek balio bera dute.
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9.4 irudia

9.2.2 Mohr-en zirkulua inertzia momentuentzat

M modulua duen momentu makurtzailea & 7 ardatzetan ere deskonposa daiteke, 9.5
irudian azaltzen den bezala. Modu horretan, momentu makurtzailea Ardatz Neutroaren
eta bere norabide elkartzutaren arabera deskonposatzen da.

9.5 irudia

Momentu makurtzaileak &, » norabidetan dituen osagaiak, o, tentsio normalen
ardatzekiko momentu erresultanteak direnez:
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=I o,ndA
A (9.14)
M, = [ o.&dA
(9.2) ekuaziotik o, ordezkatuz, (9.14) honela gelditzen da:
M,=—1I,
4 p) én
(9.15)
M, =—1,

Beste alde batetik, (9.9) honela idatz daiteke matrize moduan:

M, I, 1, |[cos
M| pll, |, |[[sing
Momentu makurtzailea 9.3 irudian edo 9.5 irudian azaltzen diren osagaietan

deskonposa daitekenez:

k

M
(9.17)
M

M,j-M,
M0, -M,d

(9.17) ekuazioa eta (9.5) ekuazioko bektore unitarioak erabiliz, momentu
makurtzailea &, n ardatzetan projekta daiteke:
M,=M-d, =M cosp—M,sin
R v (9.18)
M, =-M-u, =M sing+M,cosp

(9.16) ekuazioak (9.18)n ordezkatuz eta (9.15) ekuazioekin berdinduz, honako
erlazioak lortzen dira angelu bikoitzaren menpe adierazi ondoren:

L =5(1,+1.) =30, ~1,)c0s2p+1,,5in 20 (9.19)
1, =31, = 1,)sin2p+ 1, cos2¢p
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(9.19) ekuazioak, 9.6 irudian azaltzen den Mohr-en zirkuluaren ekuazio
parametrikoak dira. y, z ardatzak kokatzerakoan, 1, > 1, eta |, >0 suposatu da. I,

ardatzari IM (Inertzia Momentuak) eta 1, ardatzari IB (Inertzia Biderkadurak) deituko

zaie. Zentrua, erradioa eta norabide nagusiak adierazten dituen angelua honakoak dira:

OC =l =%(1,+1,)

R=2(1, 1,2 +12 (9.20)

2
tan 2¢, = I

9.6 irudia

Beraz, tentsioen eta deformazioen kasuan bezala, gainazal lauen inertzia
momentuak planoko Mohr-en zirkuluaren arabera transformatzen dira. Ardatzak
zirkuluaren goi edo behe aldean kokatzerakoan, Iy, positiboa bada, y ardatza zirkuluaren
goiko aldean dagoela froga daiteke. Tentsioen, deformazioen eta inertzia momentuen

antzeko ezaugarri nagusiak honakoak dira:

Tentsioak Deformazioak Gainazalak
o &, IM(1,)

n

: 37, B(1.,)
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(9.15) ekuazioaren arabera, M§=O<:>I§,7=O. Beraz, momentu makurtzailea
norabide nagusi batean aplikatzen denean, norabide hori Ardatz Neutroa da,
M =M,{, baita.

9.2.3 Kasu partikularrak

Inertzia ardatz nagusien kasuan |, =0 betetzen da. (9.12) ekuazioen arabera

y

M;=M, M/ =M, etaondorioz:

M
ale\l/lz y+|—yz (9.21)

z y

Kasu honetan Ardatz Neutroaren ekuazioa, (9.21) ekuaziotik lor daiteke:

M
o 0=t Dyl 9.22)
z M, I,

M, momentuak bakarrik eragiten duenean, (9.21) ekuazioaren arabera:

o, = I Ly (9.23)
Sekzioko tentsio maximoa honakoa da:
(ox) = M, W, = l (9.24)
e WZ ymax

W, makurdurako modulu erresitentea da eta profil laminatuen tauletan dagoen datua
da. W, haundia izatea nahi denez, sekzioaren altuera jakin batentzat I, haundia izatea
nahi da, hau da, materiala z ardatzetik urruntzea. Horregatik IPN, IPE profilak
makurdurako kasu honetan egokiak dira. M, momentua jasaten duen pieza
erresistentziaz  dimentsionatzeko, M, maximoari dagokion tentsio maximoa
onargarriarekin berdinduz honakoa lortzen da:
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Gy = sy, — Moo (9.25)
W

W; ezagutuz, profil laminatuen tauletatik profil egokia aukera daiteke.

9.3. MAKURDURA BAKUNA

9.3.1 Tentsio normalak

Makurdura bakunean tentsio normalez gain tentsio ebakitzaileak daude eta ondorioz
deformazio tangentzialak azaltzen dira sekzioan. Hala ere, hauen eragina arbuiagarria
da tentsio normalak determinatzerakoan. Beraz, tentsio normalak determinatzeko
makurdura hutsean lortutako formulak erabiliko dira.

9.3.2 Fluxu ebakitzailearen teorema
dx luzerako elementu batean, A oina duen zilindroa isolatzen da, Ac-ren ingurune
kurba ¢ izanik, 9.7 irudian azaltzen denez. A. azalera sekzioko zatia da. Zilindroaren

alboko gainazalean r_ tentsioek dihardute. Ezker sekzioan, dA elementuan diharduen

o, tentsio normala eta c lerroarekiko elkartzuta den eta Ac-tik irtetzen den 7, tentsio
tangentziala azaltzen dira. Eskuin sekzioan, dA elementuan diharduen (Ux +0X'de)

tentsio normala eta c lerrokarekiko elkartzuta den eta ds-n sartzen ari den 7, tentsio
tangentziala ikus daitezke.

------- ass C

[ .
B <— <q\£cx
Tex
1 O /oy xdX

dx

9.7 irudia

Isolatutako zilindroan x ardatzeko oreka planteatuz:
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J‘Ab(ax +0,,dx)dA- jAC o, dA- | 7, dsdx =0 (9.26)
(9.26) ekuaziotik honakoa lortzen da:
( I, o-X’XdA)dx =(] 7. ds)dx 9.27)
gc fluxu ebakitzailea, definizioz, honako integrala da:
g, = 7, ds (9.28)

gc eskuin sekzioan positiboa da A. gainazalean sartzen denean, 9.7 irudiaren
arabera. (9.27) eta (9.28) ekuazioetatik honakoa lortzen da:

g, = jAC o, A (9.29)

(9.12) ekuaziotik, tentsio normalen deribatua, inertzia momentuak aldatzen ez direla
suposatuz, honakoa da:

M’ M’ T/ ’
GX,X: IZ,X y+ vaxZ:I—yy+-Ir—ZZ (930)

z y z y

(9.12) ekuazioko M/, M. deribatzerakoan, indar ebakitzaileen eta momentu

makurtzaileen arteko erlazioak gogoratuz, (9.30) ekuazioko T, T, honakoak dira:

T/ = LoTs ! (9.31)
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9.8 irudia

(9.30) ekuazioa (9.29) ekuazioan ordezkatuz, honakoa lortzen da:
T! T’
= —z
q, = ] jAc ydA + ] j% 2dA (9.32)

(9.32) ekuazioko integralak A; azaleraren momentu estatikoak dira. 9.8 irudiaren
arabera honakoak dira:

Q; =, ydA=y.A

(9.33)
Q =jAC zdA =7, A,

Y., Z. Ac azaleraren grabitate zentruaren koordenatuak izanik. (9.33) ekuazioa
(9.32) ekuazioan barneratuz, fluxu ebakitzailea honakoa da:

de T’? +T’? (9.34)

y

Y, Z inertzia ardatz nagusiak badira, (9.31) ekuazioaren arabera T/ =T, T/=T,.

Gainera, T, =0 bada, (9.34) ekuazioa honela gelditzen da:
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q. =T, |_ (9.35)

c lerroaren zati bat sekzioaren ingurunekoa denean, zati horretan fluxu ebakitzailea
nulada, 7, =0 denez piezaren kanpoko gainazalean.

9.3.3 Tentsio ebakitzaileak

Fluxu ebakitzailearen teoremarekin c lerroarekiko elkartzutak diren tentsio
tangentzial osagaien batura lortu da, ¢ lerroan zehar. Lerro horretan dagoen tentsio
banaketa determinatzeko beste hipotesi batzuk erabili beharko dira. Honako adibideak
aztertuko dira: sekzio laukizuzena, sekzio zirkularra eta lodiera txikiko sekzio irekia,
T, =T indar ebakitzailea jasaten dutenean. Kasu guztietan ardatzak nagusiak izango

direnez, (9.35) ekuazioa erabiliko da.

Sekzio laukizuzena

9.9 irudian azaltzen den sekzio laukizuzenak erakusten ez den Ty =T indar

ebakitzailea jasaten du. A azaleraren ingurunean fluxu ebakitzailea bakarrik MN
lerroan ez da nulua, ¢ ingurunearen beste zatiak sekzioaren ingurunearekin bat egiten
baitu. Kalkulu nagusiak honakoak dira:

A=b(3h-y) y.=3(3h+y) Q=AY =b3(;h*-y*) I, =3bh’

(9.35) ekuazioan ordezkatuz, fluxu ebakitzailea honakoa da:

6T ( h?
d, :F{T_ yzj (9.36)

(9.36) ekuazioaren arabera, lodieran zehar banaketa parabolikoa da. Fluxu
ebakitzailea positiboa denez, tentsioak A, gainazalean sartzen dira.
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h G Tinerx

M N

9.9 irudia

Fluxu ebakitzailea eragiten duten tensioak MN lerroarekiko elkartzutak dira eta
ondorioz Ty tentsioak dira. Beren banaketa determinatzeko, bi hipotesi erabiltzen dira:

1. Tentsio guztiak konkurrenteak dira. M eta N puntuetan tentsioek ezin dute
osagai horizontalik eduki, sekzioaren inguruneko puntuak direlako. Tentsio
hauek bertikalak direnez, beste guztiak ere bertikalak dira eta 7, =0 edozein

puntutan.
2. Tentsioak uniformeki banatzen dira MN lerroan zehar, honakoak direlarik:

6T ( h?
Ty =q—bc=w[7— yzj (9.37)

(9.37) ekuazioaren arabera, tentsio banaketa parabolikoa da sekzioaren lodieran
zehar. Sekzioaren goiko eta beheko ertzetan nuluak dira eta balio maximoa z
ardatzean dago, y =0 denean:

T
bh

N[N

(Txy )max = Trax =

Sekzio zirkularra

Sekzio zirkularraren analisirako 9.10 irudia erabiliko da . Kasu honetan ere sekzioak

T,=T indar ebakitzailea jasaten du, irudian azaltzen ez dena. Ac azalera

isolatzerakoan, fluxu ebakitzailea bakarrik MN lerroan dago, ¢ kurbaren beste zatia
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sekzioaren ingurunekoa delako. Momentu estatikoa determinatzeko integrala erabiliko
da:

3
R d
Q; = [, vdA=[ y,2JR* - yidy, =2(R* - y* )2
MN lerroko fluxu ebakitzailea honakoa da:
3

;. = Oy =|l%(R2 -y°)?

Tentsio banaketari buruz, sekzio laukizuzenean erabili diren hipotesi berdinak
erabiliko dira oraingoan ere. Tentsioak MN lerroan uniformeak izanik, honakoak
dira:

Tmax

Y1

sQ

9.10 irudia
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M eta N puntuetako tentsioak ingurunearekiko ikutzaileak izan behar dutenez eta
tentsio guztiak konkurrenteak direnez, Q puntuan mozten dira, 9.10 irudian azaltzen
denez. Ondorioz, r,, osagaiak ez dira nuluak. MN lerroko tentsio maximoak M eta

N puntuetan daude, honakoak izanik:

Ty l

R 2
Ty =Ty = =7 - R? _
"N cosp Y R7_y? 3aR° y

Sekzio osoan, y =0 denean tentsioa maximoa da, z ardatzean:

2

T

= =4
(Txy )max “Thax =73 7Z'R2

Lodiera txikiko sekzio irekiak

Sekzioaren lodiera txikia denez, tentsioak ingurunearekiko paraleloak eta lodieran
uniformeak direla suposatzen da. 9.11 irudian azaltzen den sekzioak ere T, =T indarra

jasaten du. 1 indizearekin izendatuko diren zati horizontaletan edo hegaletan tentsioak,
horizontalak direnez, 7, dira. 2 indizearekin izendatuko den zati bertikalean edo

ariman tentsioak bertikalak direnez, z, dira.

A y e
: G
h| hi hg : % % Tmax2 <
i
i y
] S
1 \ E__fz_ _____________ tl fox
b ===
Tmax1
9.11 irudia

Hegaletan, fluxu ebakitzailea, tentsio banaketa eta tentsio maximoa honakoak dira:
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T q. T T
QzCl =tsz;h 9, = %I_'[1h1S (sz )1 =—t= %l_ NS T = %I_ hyb,

tl z z

Beraz, hegaletan banaketa lineala da, tentsioaren balio maximoa arimaren ondoan
dagoelarik. Arimako momentu estatikoa determinatzeko, hegal osoa eta arimaren zati
bat hartu behar dira, 9.11 irudian ikusten den bezala.

Qi =ty 3h +3(3h° - y?)

T
Q- thZCZ (Txy )2 :%z Tmax2 :(TXY )2(y=o)

2

Aurreko kalkuluetan ikus daitekenez, arimako banaketa parabolikoa da, balio
maximoa z ardatzen egonik. Gainera, arimako balio minimoa eta hegaletako maximoa
0s0 antzekoak dira. Desberdintasuna, bien arteko elkargunetik dator. Elkargune hau ez
da analizatzen, tentsioen norabide aldaketa baitago. 9.12 irudian sekzioan zehar
tentsioak nolakoak diren azaltzen da. Hegaletan ere badaude 7, tentsio ebakitzaileak,

baino arbuiagarriak dira arimakoen parean.

| i

o®

9.12 irudia

9.3.4 Tentsio nagusiak

Makurdura bakunean, sekzioaren altueran zehar aldatzen diren tentsio normal eta
ebakitzaileak azaltzen direnez, tentsio nagusiak eta norabide nagusiak ere aldatu egiten
dira. Tentsio nagusi bereko leku geometrikoak lerro isostatikoak deitzen dira eta
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interesa dute hormigoizko habeen kasuan, fisurazioa trakzioko plano nagusietan
gertatzen baita.

9.3.5 Habe konposatuak

Bi habe bata bestearen gainean kokatzen direnean, beren arteko marruskadura
arbuiatuz, makurdura independentea dute: bakoitzak bere gainazal neutroa eta
trakziozko eta konpresiozko tentsio banaketak ditu. Bi habeak lotura elementuekin
elkartzen badira, habe konposatua sortzen da eta bere portaera habe bakarrarena da:
gainazal neutroa eta tentsio banaketa bakarrak dira. Lotura elementuak bi motatakoak
izan daitezke habearen luzeran zehar: jarraituak eta diskretuak. Jarraituen artean
itsasgarriak eta soldadura ditugu. lltzeak, torlojoak eta errematxeak, aldiz, diskretuak
dira. Lotura elementuen lana bi habeak habe bakarrean bihurtzea denez, lotura
elementuek habe bakarrari dagozkion tentsio ebakitzaileak jasan behar dituzte.

|
- - - - -
e e e e e e e e =

L’.-”Z i efz (3}"‘2 i (,’."‘lz

9.13 irudia

Elementu diskretuen kasua aztertuko da, habean zehar beren arteko e distantziara
aldenduta egonik. Elementu bakoitzak e distantzian eragina duela suposatuko da, hau
da, bere inguruko e distantzia batean habe bakarra balitz egongo liratekeen tentsio
ebakitzaile guztiak jasaten dituela, 9.13 irudian azaltzen den bezala. Distantzia horretan
T indar ebakitzaileak orohar aldakorrak direnez, kalkulurako indar ebakitzaile maximoa
erabiltzen da. Gainera, bi habeen elkargunean habe bakarra balitz leudeken tentsioak,
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T maximo horri dagozkionak direla eta uniformeki banatuta daudela suposatzen da.
Piezaren zabalera b izanik, zabaleran zehar n lotura elementu badaude, bakoitzaren
indarra S izanik, nS indarrak tentsio ebakitzaile banaketaren eragina jasan behar
duenez, honakoa betetzen da:

7,,he=nS (9.38)

Ty tentsioak determinatzeko fluxu ebakitzailearen teorema erabiliko da, bi habeak

bakarra direla suposatuz. A, azaleratzat elkartu behar diren habeetako baten sekzioa
hartzen da. qc fluxu ebakitzailea bakarrik bien arteko elkargunenan dagoenez, q, =z, b

betetzen da eta (9.38) ekuazioa honela idatz daiteke:
g.e=nS (9.39)
(9.39) ekuazioarekin bi kalkulu mota egin daitezke:

o e distantzia eta lotura elementuaren r,, tentsio onargarria ezagutuz, lotura

elementuaren D diametroa lortzea. Kalkulu honetan, lotura elementuko
tentsio ebakitzaileak uniformetzat hartzen dira, hau da:

S=r, 7LD’ (9.40)

e Lotura elementuaren 7, eta D datuak izanik, beren arteko e distantzia
determinatzea (9.39) ekuaziotik.
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9.4. MAKURDURKA KONPOSATUA

9.4.1 Tentsio normalak eta ebakitzaileak
Makurdura konposatuan, indar normalari dagozkion tentsioak makurdurako hutseko
tentsioekin batzen dira, gainjarmen printzipioa erabiliz:

. M.
o :—+&y+—yz (9.41)

Indar normalari dagokion batugaiaren ondorioz, Ardatz Neutroa ez da sekzioaren
grabitate zentrutik igarotzen. Momentu makurtzailearen eragina nagusia denean,
Ardatz Neutroak sekzioa mozten du eta trakzio eta konpresio tentsioak daude, 9.14
irudian ikus daitekeen bezala.

9.14 irudia

Indar normalaren eragina nagusia denean, Ardatz Neutroak ez du sekzioa mozten
eta tentsioak ikur berekoak dira sekzioan zehar, 9.15 irudian azaltzen den bezala. y, z
inertzia ardatz nagusiak direnean, (9.41) ekuazioa honela gelditzen da:

N M M,
o, =—+—"2y+—2L72 9.42
A y I (9.42)

z y
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9.15 irudia
Tentsio ebakitzaileak makurdura bakunean bezala determinatzen dira.

9.4.2 Trakzio eta konpresio eszentrikoa

119

Makurdura konposatuaren kasu partikularra da. Indar normal eszentrikoa aplikatzen

da, 9.16 irudian azaltzen den bezala.

9.16 irudia

Ardatzak nagusiak direla suposatuko da. (9.42) ekuazioa aplikatuz, tentsio normalak

honakoak dira:
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P Pe, ~ Pe
=t —Ly+—27 9.43
O =mt Y (9.43)

z y

Ardatz neutroaren ekuazioa honakoa da:

€
JX=O:>%+I—yy+T—Zz=O (9.44)

z y

9.17 irudia

(9.44) ekuazioaren arabera, Ardatz Neutroa ez da aplikatutako indarraren
menpekoa. z, y ardatzekiko i, iy biraketa erradioak barneratuz, hurrenez hurren, (9.44)
ekuazioa honela idatz daiteke:

e
Sy+Zz=—1 (9.45)

2 2

i, iy
(9.45) ekuazioaren arabera, Ardatz Neutroak y, z ardatzekin dituen vy, , z, mozte

puntuak, hurrenez hurren, 9.17 irudian azaltzen dira eta honakoak dira:

i2 [

7, =—--2+ (9.46)

Yn =7
ey e
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(9.46) ekuazioaren arabera, e, =0=y, =o0. Hau da, P indarra z ardatzaren

gainean aplikatuta dagoenean, Ardatz Neutroa y-ren norabidekoa da. Antzera, P indarra
y ardatzaren gainean aplikatuta dagoenean, Ardatz Neutroa z norabidekoa da, 9.18
irudian ikus daitekenez.

9.18 irudia

Ondoren, P indarra y, z ardatzetan aplikatuta dauden Pi, P indarretan
deskonposatzeko baldintzak aztertzen dira. 9.19 irudian indarren aplikazio puntuak eta
distantziak azaltzen dira.

9.19 irudia

Indar sistemak baliokideak direnez, erresultante eta momentu erresultante bera izan
behar dute. Erresultante berdinaren baldintza erabiliz:
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P=P +P, (9.47)
y, z ardatzekiko momentu erresultanteen baliokidetasuna ezarriz:

y = Pz, =R,z

(9.48)
z—> Py, =Ry,
(9.48)-tik P, eta P, askatuz eta (9.47) ekuazioan ordezkatuz:
o 2o g (9.49)

i %

(9.49) ekuazioaren arabera, P indarra P, eta P,-ren aplikazio puntuek definitzen

duten zuzenean aldatu behar da. Indar hauei dagozkion ardatz neutroak S puntuan
mozten dira, 9.19 irudian ikus daitekenez, koordenatuak honakoak izanik:

i2 v
Ys =Y = _71 Zs =1y, :_Z_yz (9.50)
(9.45) ekuazioaren arabera, P-ri dagokion Ardatz Neutroa honakoa da:
1470y 2o, g (9.51)

k2 e

(9.50) ekuazioko koordenatuak (9.51) ekuazioan ordezkatuz, hau da, y =y, z =1z

eginez, (9.49) ekuazioa lortzen da. Ondorioz, S puntua (9.51) ekuazioan emandako
Ardatz Neutroan dago. Indarra Pi-etik P,-ra aldatzen denean, Ardatz Neutroak (AN)
erlojorratzen aurka biratzen du (AN;)-tik (AN2)-ra, 9.19 irudian ikus daitekenez.

9.4.3 Sekzioaren Nukleoa

Trakzio eta konpresio eszentrikoan, P indarra grabitate zentruan aplikatua dagoenean,
makurdurarik ez dago eta Ardatz Neutroa infinituan dago. Indarraren aplikazio puntua
G-tik aldentzen den heinean, Ardatz Neutroa sekziora gerturatzen da. P indarra G-ren
inguruko gune batean aplikatuz, tentsioak sekzio osoan ikur berekoak izatea lortzen da.
Gune hori Sekzioaren Nukleoa edo Nukleo Zentrala da eta konpresioa bakarrik jasan
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dezaketen materialen kasuan interesgarria da. Nukleoa determinatzeko baldintza,
Ardatz Neutroa sekzioarekiko ikutzailea izatea da. Adibide bezala sekzio zirkularra eta
laukizuzena aztertuko dira.

9.20 irudian D diametroko sekzio zirkularra azaltzen da. AN ikutzailea izan dadin Py
non aplikatu behar den jakin nahi da. Hau da, y,, ezaguna da eta y, determinatu behar
da. Beraz:

z A 16
i2
y [E— :lD
1 le 8

9.20 irudia

Sekzio laukizuzenaren kasuan, 9.21 irudian azaltzen den bezala, AN; ikutzailea izatea
inposatzen bada, y,, ezaguna da eta y, determinatu behar da. Beraz:
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h/3

b

9.21 irudia

Antzera, AN ikutzailea izatea inposatzen bada, z,, datua da eta z, determinatu behar
da. Ondorioz:

—_1 =Y _1p?
ZN2 2b Iy_ A_12b
i2
_ y _1
z,=——=1p
ZNZ

Azkenik, indarra Pi-etik Po-ra zuzenkian aldatzen bada, Ardatz Neutroa AN;-tik
AN-ra aldatzen da, S puntuaren inguruan erlojorratzen aurka biratuz, sekzioa moztu
gabe. Laukizuzenaren beste hiru erpinetan pareko analisia egin daitekenez, Nukleoa
9.21 irudian grisez adierazten da.



10. MAKURDURA:
ZURRUNTASUNA

10.1. SARRERA

Makurdura jasaten duten pieza prismatikoen ardatzaren desplazamenduak eta
angeluak aztertuko dira. Konfigurazio deformatuan pieza prismatikoaren ardatza kurba
elastikoa deitzen da. Navier-Bernouilliren hipotesiaren arabera, kurba elastikoa
sekzioekiko elkartzut mantentzen denez, sekzioak biratutako angelua kurba elastikoak
biratutakoaren berdina da. Makurdurako zurruntasunaren azterketa beharrezkoa da
desplazamendu edo angeluen mugak ezarri behar direnean. Egituretan, muga hauek
kalkulurako arauek ezartzen dituzte. Zurruntasunak sistemaren dardarekin eta
funtzionalitatearekin ere zerikusia du. Adibidez, erreminta batek eragindako
mekanizatze indarren ondorioz sortutako desplazamenduek perdoiak baino txikiagoak
izan behar dute.

10.2. KURBA ELASTIKOAREN EKUAZIO DIFERENTZIALA

Kurba elastikoa pieza prismatikoaren ardatz deformatua da. Makurdura hutsa
aztertuko bada ere, makurdura bakunean piezaren luzera sekzioaren altuerarekin
konparatuz handia denean, indar ebakitzaileek desplazamenduetan duten eragina
arbuiagarriada. M, =M momentuak eragiten duela eta sekzioaren ardatzak nagusiak
direla suposatuko da. “Makurdura: tentsioak” gaian azaldutako analisia kasu partikular
honetan aplikatuko da.
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Deformazio prozesua adierazten duen 9.2 irudian, habearen dx luzerako elementu
diferentziala deformatu baino lehen eta ondoren azaltzen da. Ardatz Neutroa z ardatza
da eta sekzioek berarekiko biratzen dute.

dx =

10.1 irudia

Gainazal neutroaren kurbadura erradioa p eta deformatu ondorengo angelua dé
izanik, dx = pd@ betetzen da, gainazal neutroa ez baita deformatzen. Bertatik y

distantziara dagoen zuntzaren deformazioa honakoa da:

46— pdo
gxz(p+y2)d9 p :% 10.)

Hooke-ren legea aplikatuz:

(10.2)

o =My (10.3)

—x= (10.4)
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Beste alde batetik, deformazio prozesua aztertuko da. 10.2 irudian soilki
bermatutako habe baten kasua azaltzen da. Deformatu gabeko AB ardatza eta
deformatu ondorengo A’B’ kurba elastikoa ikus daitezke. Deformaziorik jasaten ez

duenez, AB=AB’.
AN M, N B’ B
dx Q
10.2 irudia

dx luzerako MN elementuaren deformazio prozesua aztertuko da, bere luzera

aldatzen ez dela jakinik, kurba elastikokoa baita. Hau da, MN = M N’. M eta N puntuen
desplazamenduak honakoak dira:

I}

=MM’ =ui +vj (105)
= NN’ = (u+u,dx)i +(v+v,dx) ] '

<

I}

=2

(10.5) ekuazioan u, v desplazamenduak x-en menpeko funtzioak dira. Beraz, 10.2
irudiaren arabera, deformazio ondorengo elementua honakoa da:

MN"=MN + NN'— MM’ = (1+u dx)dxi +V dxj (10.6)

10.3 irudian elementu deformatua azaltzen da. Eskuin aldean, bere luzera
diferentziala denez, zuzen marraztu da. OM’ erradioak bertikalarekin angelua osatzen
badu, M’N’ elementuak horizontalarekin angelu bera osatzen du.
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10.3 irudia

Luzera aldatzen ez denez, 10.3 irudiaren arabera honakoa betetzen da:

pd6=MN’ =dx

(10.7) ekuaziotik honakoa lortzen da:

1 dé
K=—=——
p dx
(10.4) eta (10.8) ekuazioak alderatuz:
_do_M
dx El,

(10.7)

(10.8)

(10.9)

10.3 irudian azaltzen den kurbadura momentu makurtzaile positiboari dagokio.
Ikusten denez, x koordenatua handitzen denean angelua txikitzen da: OM’ erradioak &

angelua eta ON’ erradioak (#—d¢) angelua osatzen dute. Ondorioz, aukeratutako

ardatzetan kurbadura negatiboa da. Ikurren bateragarritasuna lortzeko (10.9) ekuazioa

honela idazten da:

ao__ M
dx El,

10.3 irudian honako erlazioak betetzen dira:

(10.10)
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sin@=v,
’ (10.11)
cosfd=1+u,

(10.10) ekuaziotik integrazioz 0(x) lortu ondoren, (10.11) ekuazioan ordezkatuz eta
x-ekiko integratuz, v desplazamendu bertikala eta u desplazamendu horizontala lortzen
dira. Beste alde batetik, (10.11): ekuaziotik @=arcsin(v,) lortzen da. (10.10)

ekuazioan ordezkatuz, kurba elastikoaren ekuazio diferentzial exaktoa lortzen da:

Vxx M
1’ > = —F (1012)
-V z

6 makurdura angelua txikia denean, (10.11) ekuazioak honela gelditzen dira:

* (10.13)

o
Il
c

(10.13); ekuazioa (10.10) ekuazioan ordezkatuz, kurba Elastikoaren Ekuazio
Diferentzial (EED) hurbildua lortzen da:

2
V,xx :%:_% (1014)

(10.13), ekuazioaren arabera desplazamendu horizontalak uniformeak dira, hau da,
u(x)=u, . Habeak puntu finkoa duenez, u, =0.

10.3. EED INTEGRAZIOA: BAKUNTASUN FUNTZIOAK

Bakuntasun funtzioak edo Macaulay-ren kakoak honela definitzen dira:

0 x<a

(x-a)" ={(X_a)n x>a (10.15)

Funtzio hauek erabiliz, habe osoko momentu makurtzaileak ekuazio bakarrean
adieraz daitezke. Gainera, El, makurdurako zurruntasuna uniformea bada, (10.14)ko
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EED integratzerakoan bakarrik bi integrazio konstante azaltzen dira. Adibide gisa, 10.4
irudian soilki bermatutako habea ikus daiteke, bermapuntuak erreakzioengatik
ordezkatu direlarik.

YYYVYY Yvyyvyy

Ra a Rs

10.4 irudia
Momentuak determinatzeko, mozketa azken tartean bakarrik egin behar da:
O<x<L

M =Rx—P{x-a)~1q, (x—b)’

Ondoren, EED integratuz angeluak eta desplazamenduak lor daitezke. 10.5 irudian
oinarrizko karga batzuren adibideak azaltzen dira, momentuak bakuntasun funtzioen
bidez adierazteko.

— a P
e M
X >
*EMO < >0
( M M =M,(x-a
X =~ ;) 0
a %o o
) g} YYYYY N q—q0<x—a> 2
; 1) M ——1q, (x-a)
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<—a>/(k( q:k{x—a}
i Y V

X

10.5 irudia

10.5 irudian azaltzen diren kasuetan karga banatuak habearen bukaeraraino iristen
dira. Hori gertatzen ez bada, karga banatu egokiak batu eta kendu behar dira, hauek
bukaeraraino irits daitezen. 10.6 irudian karga uniformearen kasua eta dagokion
momentu ekuazioa azaltzen dira.

YYVYVYVYVYVYVYVVYVVYYVYY

M =-1q,(x—a) +1q,(x—b)’
10.6 irudia

10.7 irudian karga linealaren kasua eta dagokion momentu ekuazioa azaltzen dira.
Kasu honetan, karga lineala bukaeraraino eraman ahal izateko trapezio erako karga batu
eta kendu behar da.

9, =k(b-a)
M =—1k(x-a)’ +1g,(x—b)" +1k(x—b)’
10.7 irudia
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10.4. MOHR-EN TEOREMAK

10.4.1 Lehenengo teorema (M1)
EED A eta B puntuen artean integratuz:

0, -0, - f%dx (10.16)

(10.16) ekuazioan zurruntasuna uniformea bada:

MA,B
0, -0, - SEI (10.17)

z

sM+= A eta B puntuen arteko momentu makurtzaile diagramaren azalera izanik.

10.4.2 Bigarren teorema (M2)

10.8 irudiaren arabera, B’ puntutik A’ puntuko ikutzaileraino dagoen distantzia
bertikala kalkulatu nahi da. Horretarako, tarteko C’ puntu baten inguruko C’; eta C’;
puntuetako ikutzaileek sortutako distantzia determinatuko da lehenik:

B,B, =B,B, — BB, = X360 — X3 (0 —d&) = x,d & (10.18)

Xg B-n sorrera eta A-ranzko norantza duen koordenatua izanik. EED (10.18)
ekuazioan ordezkatuz:
M

B,B, = —x, X (10.19)

X etaxaldagaiek aurkako norantza dutenez, dx =—dx, betetzen da. B eta A artean
integratuz, honakoa lortzen da:
a Mx

Son= jB?jdXB (10.20)
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? B,

V yv \ \\é) BA
10.8 irudia

El, zurruntasuna uniformea denean, (10.20) ekuazioa honela idatz daiteke:

MA,B

O :—élz (10.21)

QQAA*B A eta B puntuen arteko momentu diagramaren B-rekiko momentu estatikoa
izanik.

10.5. HABE KONJOKATUAREN METODOA

Metodo hau pieza prismatiko batean zerrada baten oreka ekuazioen eta EED-ren

artean dagoen parekotasunean oinarritzen da. Habe konjokatua q" = % indar banatua

jasaten duen habe irudikaria da, Estatikako ekuazioak erabiliz makurdurako
desplazamendu eta angeluak determinatzeko erabil daitekeena. Beheko taulan ikus
daitekenez, habe konjokatuan lortutako T~ indar ebakitzaile konjokatuak benetako
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habearen @ angeluak dira. Habe konjokatuan lortutako M~ momentu makurtzaileak,
benetako habearen v desplazamenduak dira.

Oreka EED Habe konjokatua
dT déo M aTr’ .

dx dx El, dx
d_M =T ﬁ =0 _dM =T

dx dx dx

d’M _ 4 dv_ M dZM*__q*
dx? dx>  El dx?

Ekuazioetako magnitudeak aldatzen direnez, ingurune baldintzak ere aldatu egiten
dira. 10.9 irudian adibide batzuk azaltzen dira.

Habea Habe Konjokatua
6+0 T %20
BS A BS
A 00 T 20 7 A
v=0 M™ %0 %
7 -0 T"=0
LA 2 N MA
4 =0 M =0
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1 2 1 2
TB 6=6, | L= Q) TG
! v=0 M" =0 ;
1 2 1 2
. () 0,0, T =T, B
i r
10.9 irudia

Beste berma baldintza batzuk prozedura bera jarraituz azter daitezke: alde batetik,
benetako habean sortzen duten angelu eta desplazamendu baldintza aztertu. Ondoren,
habe konjokatuko indar ebakitzaile eta momentu makurtzaile baldintzetan bihurtu, eta
zein lotura motari dagozkion erabaki.

Habe Konjokatuaren metodoan, indarren oreka ekuazioa erabiltzea Mohr-en
lehenengo teorema (M1) aplikatzearen parekoa da. Beste alde batetik, momentuen
ekuazioak erabiltzerakoan, indar banatu konjokatuak eragiten duen momentua Mohr-
en bigarren teorema (M2) aplikatzearen parekoa da.






11. MAKURDURA:
HIPERESTATIZITATEA

11.1. SARRERA

Makurdurako kasu hiperestatikoetan desplazamendu eta angelu badintzak ezarri
behar dira, Estatikako ekuazioez gain indar eta momentu ezezagunak determinatu ahal
izateko. Makurdurako desplazamendu eta angelu horiek determinatzeko “Makurdura:
zurruntasuna” gaiko metodoak erabiliko dira. Metodo horiek sistema isostatikoetan
erabili direnez, sistema hiperestatiko bat ebazteko garaian, lehen urratsa sistema
isostatiko batean bihurtzea da, dituen lotura gehigarriak indar edo momentu
egokiengatik ordezkatuz. Indar eta momentu hauek ezezagun hiperestatikoak deitzen
dira. Desplazamendu eta angelu baldintzak kendutako lotura horiei dagokienak dira.
Gai honetan habe jarraien hiperestatizitatea ebazteko metodo bat ere aztertuko da, hiru
momentuen teorema, Clapeyron-ek (1799-1864) garatutakoa.

11.2. TARTE BAKARREKO HABEAK

Habearen ardatzean bi bermapuntu finko dituen habea eta soilki bermatua berdintzat
hartuko dira desplazamendu txikien problemetan, 9.2 irudian azaltzen denez. Loturak
habearen ardatzean ez badaude, indar normal haundiak sor daitezke. Izan ere, loturak
dauden lerroa ez da deformatzen eta ondorioz gainazal neutrokoa da, makurdura
konposatua sortuz.
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A B @ A B
11.1irudia
Sistema hiperestatikoa isostatikoan bihurtzeko bidea ez da bakarra. 11.2 irudian
sistema bera isostatiko bihurtzeko bi aukera azaltzen dira. Habe konjokatuaren metodoa

erabiltzen bada, gainjarmen printzipioa erabiltzea egokia da, karga bakoitzari
dagozkion momentuak sistema isostatiko baliokidean adieraziz.

Hiperestatikoa

AN
>
i@l W

P
2 l Isostatikoa
7
A .
1A X B Baldintza: v; =0
P
Y Isostatikoa
[ |
A QB Baldintza: 6, =0
11.2 irudia

11.3. HIRU MOMENTUEN TEOREMA

11.3 irudian (N+1) bermapuntu dituen habe jarraia azaltzen da. Jasaten dituen
indarrak ez dira irudian adierazi. Bermapuntuak eta beren arteko tarteak zenbakien
bidez izendatzen dira, (i-1) eta (i) bermapuntuen arteko tartea [i] izanik.
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YO S O & S

i+1 N-1 N
11.3 irudia

Habearen hiperestatizitate maila (N-1) da, tarteko bermapuntu kopuruarena. Habe
hori isostatiko bihurtzeko bide bat, bermapuntu gaineko biraketa ahalbideratzea da.
Modu honetan, soilki bermatutako N habe isostatiko sortzen dira. Biraketari dagozkion
loturak kendu direnez, momentu makurtzaile ezezagunak barneratu behar dira
ezezagun hiperestatiko bezala, 11.4 irudian azaltzen den bezala. Ezezagun horiek
determinatzeko baldintza bermapuntuetako angeluen jarraitasuna da. Habe
konjokatuaren metodoa erabiliko da baldintza hori barneratzeko.

M1 Ml—l M| M|+1 MN—l
¥ ¥ «» - ¥ | | - ¥
| 0 '@ @\ JCX || I '@ |
A YA, 2858 A" 4
0 1 i1 i i+1 N-1 N
11.4 irudia

Habe jarraiaren sistema isostatiko baliokidea ezaugarri hauek dituzten N soilki
bermatutako habez osatua dago:

e Tarte bakoitzean inertzia momentua uniformea da, l; izanik
e Bermapuntuek & desplazamenduak dituzte

Tarte bakoitzean momentu makurtzaileen diagrama hiru zatiz osatua dago:

o Ezkerreko momentuaren diagrama lineala
e Eskuineko momentuaren diagrama lineala

e Kanpoko indarrei dagokion diagrama, diagrama isostatikoa deitzen dena,
soilki bermatutako habeari baitagokio.

10.4 irudian [i] eta [i+1] tarteen habe konjokatuak azaltzen dira. Bermapuntuetako
6 desplazamenduak momentu aplikatuak dira habe konjokatuaren muturretan.
Bermapuntuen ordez, indar ebakitzaile konjokatuak adierazi dira.
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11.5 irudia

[i] tarteko (Ti*)i indar ebakitzaile konjokatua (i-1) bermapuntuan momentuak hartuz

determinatzen da, honakoa izanik:

(11.1)

_1
6

° El El,  ELI L,

(Ti*)l 1 Mi—lLi 2Mil—i . Aai +6i _5i—l

[i+1] tarteko (Ti*)m indar ebakitzaile konjokatua (i+1) bermapuntuan momentuak
hartuz determinatzen da, honakoa izanik:

Mi+1Li+1+ A+1bi+1 +5i+1_5i (112)
EIi+l EL.! L

i+17i+1 i+1

“ 2M. L
(Ti )i+1 2% Ell i+l

i+1

1
t%

Hiperestatikotasun baldintza angeluen jarraitasuna denez, (10.16) eta (11.2)
ekuazioak berdinduz eta (6E) atalez atal biderkatuz, hiru momentuen ekuazioa lortzen
da:

IRV (- W0 VI ERY N Y o EL ER YT S
Ii Ii i+1 Ii+l Lili Li+lli+l

5'_5}71 _é‘i+1_5i
L- ﬁi+1_ L

i i+l

(11.3)

Orain arte bermapuntu soilak aztertu dira. Hegalkin bat baldin badago, isostatikoa
denez, bere eraginagatik ordezkatzen da. 11.6 irudian hegalkina ezker muturrean
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dagoeneko kasua azaltzen da. Bermapuntuko momentua (11.3) ekuazioan barneratzen
da, kasu honetan M, =—Pa izanik.

P

11.6 irudia

Landapen bat baldin badago, | =<« duen tarte batengatik ordezkatzen da. 11.7
irudian ezker muturreko hegalkina nola ordezkatzen den azaltzen da. (11.3)
ekuazioaren arabera, I, intertzia momentua barneratzen duten batugaiak nuluak dira.

o=
Y 2 A

NNNAN

11.7 irudia

Azkenik, bermapuntuetako desplazamenduak nuluak badira eta tarte guztietako
inertzia momentuak berdinak badira, (11.3) ekuazioa honela gelditzen da:

M, L +2M, (L + L)+ M, L., :—6%—6A£1—% (11.4)

i i+1






12. BIHURDURA

12.1. SARRERA

Gai honetan momentu bihurtzailea jasaten duten pieza prismatikoak aztertuko dira.
Ardatz birakorrek adibidez, potentzia momentu bihurtzaileen bidez igortzen dute.
Egituretan ere, momentu bihurtzaileak jasaten dituzten osagaiak azaltzen dira. Sekzio
zirkularrak, errektangularrak eta lodiera txikiko sekzio irekiak eta itxiak aztertuko dira.
Ikusiko denez, bihurdurarako sekzio egokienak lodiera txikiko itxiak dira. Sekzio ireki
batean indar ebakitzailearen aplikazio puntua edo bihurdura zentrua non dagoen
determinatuko da. Azkenik, makurdura eta bihurduraren eragin bateratua aztertuko da.

12.2. SEKZIO ZIRKULARRA

Coulomb-en hipotesiaren arabera, bihurduran sekzio lauek lau jarraitzen dute solido
zurrun gisa biratuz. Ondorioz, sekzioko erradioek zuzen jarraitzen dute. 9.2 irudian vy,
z koordenatuak dituen P puntua deformatu baino lehen eta ondoren azaltzen dira.
Deformatu baino lehen GP erradioa, GP =r izanik, deformatu ondoren GP’ erradioan
bihurtzen da, ¢ bihurdura angelua biratuz. x ardatzean desplazamendu osagaia nulua
denez, desplazamendu bektorea honakoa da:

PP’ =vj +wk (12.1)

9.2 irudian ¢ angelua zenbaki txikia dela eta GP erradioa definitzen duen angelua
0< g <4x tartean dagoela azpimarratu behar da.
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I~

12.1 irudia

GP erradioak ¢ angelu txikia biratzen duenez, arkua ikutzaileagatik ordezka daiteke
eta honakoa betetzen da:

PP =1y (12.2)

(12.2) ekuazioak ematen duen desplazamenduaren modulua ardatzetan proiektatuz,
honakoa lortzen da:

u=0
—V=rgsinf= rgoE =20 (12.3)
r

W=reCcosf = rgolz Yo
r

(12.3) ekuazioetako desplazamenduekin deformazio unitario normal eta
tangentzialak determina daitezke:
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u,=0 Y =V, tU, =—20,
e =v, =0 Yy =V, +w, =0 (12.4)
v

€Z= ,Z=0 7/ZX=u,Z+VV,X:y€0,X

Hooke-ren legea kontuan izanik, (12.4) ekuazioen arabera nuluak ez diren tentsio
osagai bakarrak zy eta zx dira:

Z-xy = _GZ¢),X Ty = Gy¢x (125)

Tentsio ebakitzailearen osagaiak (12.5) ekuaziokoak izanik, P puntuko tentsio
ebakitzaile erresultantea honakoa da:

r=\/1; +75, =Gro, (12.6)
12.2 irudian ny eta 7 tentsio tangentzialak eta beren 7 erresultantea azaltzen dira.

Honek horizontalarekin osatzen duen A angelua g-ren berdina da, tan A Lo tan g
y

baita. Beraz, sekzioko edozein P punturen tentsioak osagai erradialik ez du.

Y~

12.2 irudia
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Momentu bihurtzailea sekzioko tentsio ebakitzaileen momentu erresultantea denez:
M, =jArrdA (12.7)

(12.6) ekuazioa (12.7) ekuazioan ordezkatuz honakoa lortzen da:
MtzG%JJHAzG”QX (12.8)

I, inertzia momentu polarra izanik. (12.8) ekuazioa honela ere idatz daiteke:

d M
go,x:_goz t
dx Gl,

(12.9)

@, luzera unitateko bihurdura angelua deitzen da eta Gl bihurdurako

zurruntasuna da. (12.9) ekuazioa (12.6) ekuazioan ordezkatuz, tentsio ebakitzailearen
eta momentu bihurtzailearen arteko erlazioa lortzen da:

r=—1 (12.10)

Sekzioaren diametroa D bada, I, =1 zD*. Tentsio ebakitzaile maximoa kanpoko

p

puntuetan dago, r =4 D denean:

_16M,

max
zD?

. (12.11)

12.3 irudian sekzio zirkularrak diametro batean duen tentsio banaketa azaltzen da.
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Tmax

12.3 irudia

Coulomb-en hipotesia, sekzio zirkular betearentzat ezezik sekzio hutsarentzat ere
egokia da eta beraz (12.10) ekuazioa erabil daiteke. 12.4 irudian tentsio banaketa
azaltzen da. Kanpo eta barne diametroak D eta d izanik hurrenez hurren, inertzia

momentu polarra I, =3—127r(D4 - d“) da. (12.10) ekuazioaren arabera tentsio maximoa

honakoa da:

(12.12)

12.4 irudia

Zurruntasunari dagokionez, (12.9) ekuazioa A eta B sekzioen artean integratuz, bi
sekzioen arteko angelu diferentzia lortzen da:
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BMt

dx 12.13
o (12.13)

¢B_¢A:J

Gl bihurdura zurruntasuna uniformea bada, (12.13) ekuazioa honela idatz daiteke:

S Mg

Gl

p

2 (12.14)

12.5 irudia

Tentsio ebakitzaile maximoak piezaren kanpo aldean daudenez, piezaren ardatzaren
norabidean eta perpendikularrean ebakidura hutsezko egoera dago, 12.5 irudian ikus
daiteken bezala. Material hauskorrak trakzioko tentsio maximoko planoetatik hausten
direnez, haustura helikoidalak gertatzen dira 45°a. Adibidez, Klarionari bihurdura
aplikatuz lortzen dena.

12.3. SEKZIO LAUKIZUZENA

Sekzioa laukizuzena denean Coulomb-en hipotesia ez da betetzen. Problema hau
Saint-Venant-ek ebatzi zuen Elastikotasunaren Teoria erabiliz. Tentsio maximoak alde
haundienaren erdian gertatzen dira, 12.6 irudian azaltzen den bezela.



BIHURDURA 149

Tmax

v« <« <«

—> > ||t HD >

'y

12.6 irudia
Tentsio maximoaren balioa honakoa da:

M

Trax abfgz (12.15)

Luzera unitateko bihurdura angelua honakoa da:

g ==L 1 =pho’ (12.16)

I, sekzio laukizuzenari dagokion bihurdurako inertzia momentu baliokidea izanik.

« eta S parametroen balio batzuk ondorengo taulan ematen dira, h>b izanik.

h/b 1 1,5 1,75 2 2,5 3 4 6 8 10 o
a 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,299 0,307 0,313 0,333
p 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,299 0,307 0,313 0,333

12.4. LODIERA TXIKIKO SEKZIO IREKIAK

Prandtl-en analogiaren arabera, bihurdurako problema eta presioa jasaten duen
mintz elastikoaren problemak analogoak dira, biak ala biak agintzen dituzten ekuazio
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diferentzialak analogoak baitira. Ondorioz, analogia hori erabiliz, problema batetik
lortutako emaitzak bestean erabil daitezke. Mintz elastikoak diren xaboi pelikulekin
egindako esperimentutetatik, bihurdurako problemetarako ondorioak atera dira.

Analogia horren arabera, lodiera txikiko sekzio ireki baten kasuan sekzioaren
formak ez du tentsio banaketa baldintzatzen eta sekzio laukizuzena bailitz analiza
daiteke, lodiera uniformea duen kasuan o =g =1 izanik. Lodieran zehar tentsio

banaketa lineala dela suposatzen da. Sekzioaren lodiera aldakorra denean, z,,, tentsio
maximoa honakoa da:

r = (12.17)

(12.17) ekuazioaren arabera, tentsio maximoa lodiera maximoari dagokio. Luzera
unitateko angelua honakoa da:

Py =—" (12.18)

(12.17) eta (12.18) ekuazioetan, lodiera txikiko sekzio irekiari dagokion I, inertzia
momentu baliokidea honakoa da:

l, = th3ds (12.19)

(12.19) ekuazioko integrala 12.7 irudian azaltzen den L erdiko lerroan hedatua
egonik.



BIHURDURA 151

12.7 irudia

Sekzioa t; lodiera uniformeko eta s; luzerako n zatiz osatua dagoenean, (12.19)
ekuazioa honela idatz daiteke:

I =Y ts, (12.20)
i=1

12.5. LODIERA TXIKIKO SEKZIO ITXIAK

Prandtl-en analogiaren arabera, tentsioak uniformeak dira lodieran zehar. 12.8
irudian ikusten denez, piezaren dx luzerako elementu batetik zati bat isolatzen da,
zatiaren ertzetako lodierak ta, ts izanik. dx luzeran tentsioak uniformeak direnez, x
ardatzeko indarren oreka planteatuz:

Y F =0=r,t, =15ty (12.21)

(12.21) ekuazioaren arabera, g, =7t fluxu ebakitzailea uniformea da sekzioan

zehar. 12.9 irudian dA =tds azalera elementu batean tentsio ebakitzaileari dagokion
indarra azaltzen da. dF indar horrek eragindako momentu bihurtzailea honakoa da:

dM, =dFr =(zdA)r =(ztds)r (12.22)
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12.8 irudia

(12.22) ekuazioa integratuz, momentu bihurtzailea honakoa da:
M, =7t rds (12.23)

(12.23) ekuazioan rt integraletik atera daiteke uniformea delako. Gainera, 12.9

irudian azaltzen denez dA =3rds eta ondorioz Az%erds, A erdiko lerroak

barneratzen duen azalera izanik. Beraz, (12.23) ekuaziotik momentu bihurtzailearen eta
tentsio ebakitzailearen arteko erlazioa honakoa da:

Mt
oAt (12.24)

(12.24) ekuazioaren arabera, tentsio maximoa lodiera minimoko puntuetan dago.
Gainera, tentsioa jasateko sekzioaren hutsunea da garrantzitsuena, ez material kopurua,
Ac-ren azalera gehiena hutsuneari dagokiona baita. Horregatik, lodiera txikiko sekzio
itxiak bihurdurarako egokienak dira.
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dA=%rds

12.9 irudia

Zurruntasunaren analisia garatzeko, momentu bihurtzaileak dx luzerako elementu
diferentzial batean egindako dW; lanaren eta metatutako dU: deformazio energiaren
berdintsuna erabiliko da. Elementuaren bi aldeen artean biratutako angelua d¢ izanik,

lana honakoa da:
dW, =1 M de (12.25)

yz planoko tentsio ebakitzaileak bakarrik daudenez, bolumen unitateko deformazio
energia honakoa da:

2

UO = %(Txyyxy + 7,7 % ) :%(Tfy + Tzzx) :;—_G (1226)

dx luzerako elementuaren deformazio energia honakoa da:
z_2
du, :(jAUOdA)dx :ULEtdsjdx (12.27)

(12.24) ekuazioa (12.27) ekuazioan ordezkatuz, honela gelditzen da:

2 2
dU, = [ Z-tds || -] 2 |ax (12.28)
b2 8A’G L t
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(12.25) eta (12.28) ekuazioak berdinduz, luzera unitateko bihurdura angelua
honakoa da:

2
p,=—C=—L = A (12.29)

(12.29) ekuazioan, I; inertzia momentu baliokidean azaltzen den integrala
batukariagatik ordezkatzen da sekzioa lodiera uniformeko zati zuzenez osatua
dagoenean. Gainera, erdiko lerroak barneratutako A; azalera azaltzen denez, materiala
ez egoteak zurruntasuna handitzen du.

12.6. BIHURDURA ZENTRUA

Bihurdura zentrua indar ebakitzailearen aplikazio puntua da eta O letrarekin
izendatuko da. Lodiera txikiko sekzio ireki batzuetan bihurdura zentrua eta grabitate
zentrua ez dira puntu bera. Makurdura bakuna aztertzerakoan, fluxu ebakitzailearen
teorema eta hipotesi sinplifikatzaileak erabiliz sekzioko tentsio banaketa determinatu
da, indar ebakitzailea grabitate zentruan dagoela suposatuz, azken baldintza hau erabili
ez bada ere.

Sekzioak simetria ardatza badu, O bertan dago. Beraz, sekzioak bi simetria ardatz
baditu O eta G puntu bera dira. Sekzio zati desberdinen erdiko lerroak puntu batean
mozten badira, bihurdura zentrua puntu hori da, 12.10 irudian azaltzen den L
sekzioaren kasuan bezala.

v
v
¥
v
v
'

C

12.10 irudia

U erako sekzio baten kasua aztertuko da tentsio banaketaren erresultantea non
dagoen determinatzeko. 12.11 irudian sekzioko tentsio banaketa eta tentsio horiek
hegaletan eta ariman dituzten F, eta F, erresultanteak, hurrenez hurren, azaltzen dira.
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Bektore horien erresultantea T indar ebakitzailea da eta O puntuan aplikatua dago.
Simetriagatik, O z ardatzean dago eta bere kokapena Varignon-en teorema C puntuan
aplikatuz lortzen da:

TOC =Fh, (12.30)
& F
: - - - - | ,,,,,,,,,, I. ....... "

2
G 0 cC.G ho
T]

| .
== P
qlmax

12.11 irudia

Fluxu ebakitzailea luzera unitateko indar banatua denez, hegaletako maximoa Qimax
izanik, F, indarra honakoa da:

F1 :%boqlmax (12-31)

Fluxu ebakitzailearen teorema erabiliz, hegaletako fluxu maximoa honakoa da:

Oimax = _%botlho (12-32)

(12.30)-(12.32) ekuazioak konbinatuz, honakoa lortzen da:

oc _ h

C=—0lbt (12.33)
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T indar ebakitzailea bihurdura zentruan aplikatzeko sekzioari gehigarri bat erantsi
beharko litzaioke. T sekzioko beste Q puntu batean aplikatua badago, Td momentu
bihurtzailea sortzen da, 12.12 irudian azaltzen den bezala. Adibidez, U erako edo L
erako hegalin batek berezko pisua jasaten badu bihurdura gertatzen da, sekzio
bakoitzeko bolumen indarren erresultantea sekzioaren grabitate zentruan baitago.

Q
o 1
R d
o v
& \Td
-
1
12.12 irudia

12.7. BIHURDURA-MAKURDURA

Bihurdura eta makurdura batera gertatzen diren kasuetako bat ardatz zirkular
birakorrena da. 12.13 irudiaren arabera, demagun D diametroko sekzioak M momentu
makurtzailea eta M momentu bihurtzailea jasaten dituela.

M
B M t

Ox T
A OxA 7

12.13 irudia

Tentsio normal maximoak A eta B puntuetan daude eta bihurdurako tentsio
ebakitzaile maximoak sekzioaren inguruneko edozein puntutan daude, A eta B barne.
A puntuko tentsio normal eta ebakitzailea honakoak dira:
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32M . _16M,
zD? A aD®

(12.34)

O\ =

Ardatzak normalean material harikorrez eginak daude eta hauetan tentsio
ebakitzaile maximoaren erizpidea erabil daiteke. Tentsio ebakitzaile maximoa Mohr-
en zirkuluaren erradioa denez, (12.34)-ko tentsioak erabiliz:

1/ +M? (12.35)

(12.35) ekuazioko tentsio maximoa materialaren tentsio onargarriarekin berdinduz
eta D diametroa askatuz, honakoa lortzen da:

D:\/ LN VENIVE (12.36)






13. TEOREMA ENERGETIKOAK

13.1. SARRERA

Elementu diferentzial batean desplazamenduak aldatzen direnean tentsioek
egindako lana “Gorputz Elastikoa” gaian determinatu da eta Deformazio Energia deitu
da. Gai honetan kanpoko indarrek egindako lana deformazio energian bihurtzen dela
suposatuko da, marruskaduraren energia eta energia zinetikoa kontuan hartu gabe.
Desplazamenduak aldatu ordez indarrak aldatzen badira, lan osagarria eta deformazio
energia osagarria edo koenergia definituko dira. Kasu honetan ere, lan osagarria
koenergian bihurtzen dela suposatuko da. Azken berdintasun honetan oinarrituz
Engesser-Castigliano-ren teorema deduzituko da. Koenergia sekzio indarren bidez
adieraziz eta Engesser-Castiglianoren teorema erabiliz, desplazamenduak
determinatuko dira sistema isostatikoetan eta hiperestatizitatea ebatziko da sistema
hiperestatikoetan. Gai honetan “desplazamendua” eta “indarra” hitzak esanahi
orokortuan erabiltzen dira. Hau da, “desplazamendua” hitzak desplazamenduak eta
angeluak barneratzen ditu eta “indarra” hitzak indarrak eta momentuak barneratzen
ditu. Lana eta lan osagarria determinatzerakoan, indarra eta bere norabideko
desplazamendua, edo momentua eta bere norabideko biraketa bidertzen dira.

13.2. KANPOKO INDARREN LANA ETA LAN OSAGARRIA
F.....,F, kanpoko indar sistema jasaten duen sistema isostatikoa analizatuko da.

Indarren aplikazio puntuen desplazamenduak A,,...,A, dira, eta desplazamendu hauen

osagaiak indarren norabidean ¢;,...,0, dira, 13.1 irudian azaltzen denez. Indarrak
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aldaketa txikien bidez edo kuasiestatikoki aplikatzen dira. Desplazamenduen aldaketa
diferentziala suposatzen bada, W lanaren diferentziala honela definitzen da:

dW:iﬁ-d&;iFﬁ@ (13.1)

i=1 i=1

13.1 irudia

Desplazamenduen ordez indarrak aldatzen direla suposatzen bada, W™ lan
osagarriaren diferentziala honela definitzen da:

dwW” = i& Z (13.2)

i=1

13.2 irudian lanaren eta lan osagarriaren esnahiak azaltzen dira i puntuaren kasuan.
Portaera elastiko ez lineala eta F, =0 denean bere norabideko o,, # 0 desplazamendua
dagoela suposatzen da.
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Fi|
dw”
dF;
dw
o =§
dé
13.2 irudia

A eta B konfigurazioen artean egindako lana eta lan osagarria 13.3 irudian azaltzen
dira. Bi konfigurazioen artean integratuz lortzen dira, honakoak izanik:

Wi = ij.; Fdé, W;as = iJ‘ABé‘idFi (13.3)
i=L i=1
i

Fie

13.3 irudia

Sistema elastiko lineal batean, hasierako J,, desplazamenduak nuluak direnean,
lana eta lan osagarria berdinak dira, 13.4 irudian ikus daitekenez:

W, g :W;ﬁB :%Z(FiBé‘iB - FiAé‘iA) (13.4)
i-1
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Fi |

Fie

Fia

13.4 irudia

13.3. ELKARREKIKOTASUN TEOREMAK

Hasierako desplazamendurik ez duen sistema isostatiko elastiko lineal batek 13.5
irudian azaltzen diren bi indar aplikazio prozesuak jasaten ditu:

I: 1 puntuan F1 indarra aplikatu ondoren 2 puntuan F, indarra aplikatzen da.
I1: 2 puntuan F; aplikatu ondoren 1 puntuan F; indarra aplikatzen da.
| karga prozesuan, indarrek egindako lana honakoa da:
W, =1Fd, +3F,0,, + Fo, (13.5)

(13.5) ekuazioan, F indarra aplikatzen denean F; indarrak bere bukaerako balioa
du eta ondorioz F,0,, lana egiten du. Il karga prozesuan lana honakoa da:

Wu = % I:1511 +% F2522 + F2521 (13-6)
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13.5 irudia

Desplazamendu txikien kasuan lana indarren aplikazio ordenaren menpekoa ez
denez, (13.5) eta (13.6) ekuazioak berdinduz Lanen Elkarrekikotasun Teorema (Betti)
lortzen da:

F1512 = I:2521 (13.7)

Indarrak berdinak badira, Desplazamenduen Elkarrekikotasun Teorema lortzen da
(Maxwell):

S, =0, (13.8)

13.4. CASTIGLIANO ETA ENGESSER-EN TEOREMAK

W lana U deformazio energian bihurtzen dela suposatuz, (13.1) ekuaziotik honakoa
lortzen da:

dW =dU = > Fds, (13.9)
i=1

Gorputz elastikoan U diferentzial exaktoa dela onartzen da eta ondorioz egoera-
funtzioa da, o, desplazamendu independenteak egoera aldagaiak izanik:
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" 5U
du =>Zds, (13.10)
§a5

(13.9) eta (13.10) ekuazioak identifikatuz eta o, desplazamenduak independenteak
direnez, honakoa betetzen da:

Y _¢ (13.11)
a5,

(13.11) ekuazioa Castiglianoren lehen teorema da. Sistema isostatiko batean,
deformazio energia desplazamenduen menpe adieraziz, indar aplikatuak determina
daitezke.

W" lan osagarria U =C deformazio koenergian bihurtzen dela suposatuz, (13.2)
ekuaziotik honakoa lortzen da:

dW’ =>6dF, =dU” =dC (13.12)

i=1

Gorputz elastikoan C koenergia diferentzial exaktoa dela onartzen da eta ondorioz
egoera-funtzioa da, F, indar independenteak egoera aldagaiak izanik:

0, 6C
dc = Za—FdFi (13.13)
i=1 i

(13.12) eta (13.13) ekuazioak identifikatuz, F, indarrak independenteak direnez:

X _s (13.14)
oF

(13.14) ekuazioa Engesser-en lehen teorema da, Crotti-Engesser-en teorema ere
deitzen dena. Castigliano-k Crotti eta Engesser-ek energia osagarria definitu aurretik
U =C betetzen duten sistema linealetan aplikatu zuenez, Engesser-Castiglianoren
teorema deituko diogu. Sistema isostatiko batean, C koenergia indarren menpe
adieraziz, desplazamenduak determina daitezke. Teorema hau (13.11) ekuazioko
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Castigilanoren lehen teorema baino erabilgarriagoa da, koenergia indar aplikatuen
menpe adieraztea energia desplazamenduen menpe adieraztea baino errazagoa baita.

13.5. DEFORMAZIO ENERGIA ETA KOENERGIA

13.5.1 Tentsioen menpe

Bolumen unitateko U, deformazio energia “Gorputz Elastikoa” gaian determinatu
da, tentsioek elementu diferentzial batean egindako lana kalkulatzerakoan. Egoera
linealean eta hasierako deformaziorik gabe, energia eta koenergia berdinak dira.
Helburua pieza prismatikoetan erabiltzea denez, nuluak ez diren batugaiak idatziko dira
bakarrik. Osagai hauek pieza prismatikoaren sekzioetan dauden hiru tentsio osagaiekin

erlazionatuta daude: o,, r,,, 7, . 13.6 irudian azaltzen diren bolumen unitateko

xy !

deformazio energia eta koenergia, Uo eta Co hurrenez hurren, honakoak dira:

U,=C, =%(GX5X)+%(1XY7W + rzxyzx) (13.15)

13.6 irudia

(13.15) ekuazioan, osagai normalen batugaia indar normalarekin eta
makurdurarekin erlazionatuta dago. Osagai tangentzialen batugaia indar
ebakitzailearekin eta momentu bihurtzailearekin erlazionatuta dago.

Tenperatura aldaketa edo luzera erroreen ondorioz, hasierako &, deformazio

normalak egon daitezkela suposatuko da. 13.7 irudian ikus daitekenez energia eta
koenergia ez dira berdinak. Tentsio-deformazio erlazioa honakoa da:

£ :%4'50 (13.16)

X
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ox A

13.7 irudia

13.7 irudiaren arabera, &, =0= o, =0, . Ondorioz, (13.16) ekuaziotik o, =-Eg,
lortzen da. Bolumen unitateko deformazio koenergia tentsioen menpe honakoa da:

2

U, #C, =20—E+ .8, (13.17)

Osagai tangentzialen kasuan berriz, koenergia deformazio energiaren berdina da.
(13.15) ekuaziotik, tentsioen menpe honela gelditzen da:

1
U, =C, =E(szy +72,) (13.18)

13.5.2 Sekzioko indarren menpe
Engesser-Castiglianoren teorema pieza prismatikoetan erabiliko denez, koenergia eta
bere deribatuak sekzioko indarren menpe adieraziko dira.

Indar normala

Indar normalaren eta tentsio normalaren arteko erlazioa honakoa da:
N
A ( )

(13.17) ekuazioan ordezkatuz honakoa gelditzen da:
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Con = N” +E£
N 2EA? A °

(13.20)

Pieza prismatikoan koenergia determinatzeko bolumenean integratu behar da.
Integral hori gainazal integral batean eta luzerako integral batean bana daitekenez:

Co =] ConlV = +jL%d|jAgodA (13.21)

(13.21) ekuazioan L pieza prismatikoaren ardatza eta A sekzioa dira. &, hasierako
deformazioa sekzioan uniformea bada, (13.21) ekuazioa honela gelditzen da:

C, = dl (13.22)

Engesser-Castiglianoren teorema aplikatzeko, (13.22) ekuazioaren deribatua
honakoa da:

j N—de +jLN'god| (13.23)

(13.23) ekuazioan egin den bezala, indarrekiko deribatuak prima bidez adieraziko

dira: H' :2—?, H kanpoko F; indarren edozein funtzio delarik.

n barrako egitura giltzatu baten kasuan, N, E, A, ¢, integraletik biderkagai komun
bezala atera daitezkenez, (13.23) ekuazioa honela gelditzen da:

NZL,
Cy —;(ZE A + N, &, L,J (13.24)

(13.24) ekuazioa deribatuz, honakoa lortzen da:

ZN[ EA L+ gyl ] ZN'ALi (13.25)
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Momentu makurtzailea

Sekzioko ardatzak nagusiak direnean eta M, momentu makurtzaileak bakarrik
eragiten duenean, momentuaren eta tentsio normalaren arteko erlazioa honakoa da:

o, =—1 (13.26)

y
oM, 2E|22 I 80 ( )

(13.27) ekuazioa bolumenean integratuz honakoa lortzen da:

jaM dv = j dlj y dA+j Zd|j ye,dA (13.28)

E|2

Lehen batugaiko gainazal integrala I, inertzia momentua dela kontuan izanik,
(13.28) ekuazioa honela gelditzen da:

M2
Cy, = Lin dl + ZZdeAygodA (13.29)

&, hasierako deformazioa sekzioan uniformea bada, (13.29)-ko bigarren batugaia
nulua da. (13.29) ekuazioa deribatuz, honakoa lortzen da:

J~|V||\/|
L

C! =
M El

z

2 dl + j —z dI j y&,dA (13.30)

Antzeko prozedura jarraituz, aplikatutako momentua My denean, koenergia eta bere
deribatua, hurrenez hurren, honakoak dira:

y
Cy = 2EI j —dI j z£,dA (13.31)
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M M/ M!
r y y y
Cu. _jLE—Iydl +_[LTdeAZgOdA (13.32)

Indar ebakitzailea

Sekzioko ardatzak nagusiak direnean eta Ty indar ebakitzaileak bakarrik eragiten
duenean, 13.8 irudian ikusten denez fluxu ebakitzailea duen MN lerroaren luzera b
bada, indar eta MN lerroarekiko elkartzutak diren tentsio ebakitzaileen arteko erlazioa
honakoa da:

=T, SI b=MN (13.33)

MN lerroa horizontala bada, (13.33) ekuazioan r =7, da eta MN lerroa bertikala

bada, r =7, da. Adibidez, “Makurdura. Tentsioak” gaian ikusi denez, U erako sekzio

baten hegaletan 7, eta ariman 7, tentsioak daude.

| A

13.8 irudia

(13.18) ekuazioan ordezkatuz honakoa gelditzen da:

T2 Q)

=1 13.34
o 2Gb*1? (13.34)

(13.34) ekuazioa piezaren bolumenean integratuz honakoa lortzen da:
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T ey
C, =] CordV =] zc;y|2 dl A((iz) dA (13.35)

(13.35) ekuazioan A azalera bidertuz eta zatituz:

2
T2 A (@)
[ gl &
Tv_jLzeAdl ISJA ~ dA (13.36)
(13.36) ekuazioa honela idazten da:
C, = Tyz dl _A —(ch)z dA 13.37
Ty—xyILZGA Zy—lzzfA 0’ (13.37)

x, ebakidura faktorea da eta sekzioaren formaren araberako parametroa da.
Adibidez, sekzioa laukizuzena bada, y, =¢. (13.37) ekuazioa deribatuz, honakoa
lortzen da:

TT/
CTy :ZVJ.L C);Ay

dl (13.38)

Antzeko prozedura jarraituz, indarra T, denean, koenergia eta bere deribatua,
hurrenez hurren, honakoak dira:

2
15 A Q)
CTZZZJLZG dl IZZEL > dA (13.39)
! TZTZ'
Ci =7, jL Sod (13.40)

Bihurdura

Bihurduraren kasuan, momentu bihurtzailearen eta tentsio ebakitzaileen arteko
erlazioa sekzio motaren araberakoa denez, koenergia beste modu batean determinatuko
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da. Hasierako deformaziorik ez egoteagatik, koenergia deformazio energiaren berdina
da eta hau kanpoko indarren lanaren berdina da. Sekzioa edozein motatakoa izanik ere,
luzera unitateko angelua honakoa da:

do _ M,

_do _M, 13.41
P77 " al, (13.41)

M: momentua jasaten duen piezaren dl luzerako elementua hartuz, muturretako
sekzioen artean biratutako angelua d¢ denez, momentu bihurtzailearen lana hau da:

dw,, =dU, =dC, =iMde (13.42)

t

(13.41) ekuazioa (13.42) ekuazioan ordezkatuz eta pieza prismatikoaren luzeran
zehar integratuz:

C, = M‘2 dl 13.43
M‘—LZGL (13.43)

(13.43) ekuazioa deribatuz honakoa lortzen da:

, MM/
Cy, = IL o1 dl (13.44)

Laburpena

Sekzio bateko barne indar eta momentuen koenergiak independenteak direnez,
koenergiak eta beren deribatuak determinatzerakoan gainjarpen printzipioa erabil
daiteke. Ondorengo taulan barne indar eta momentu desberdinen koenergiak eta
deribatuak azaltzen dira.

Barne indarra Koenergia Deribatua

2 ’
N Orokorra CszLzl\lEdl+jLNgodl C;,_J'ﬂdHLN’gOdI
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n (N2L n N.L n
Giltzatua ~ Cy :Z[I—A;+ NigOiLi] Cy :ZN{EI_A:JrSOiLiJ: N,

i=1 2E. i=1 i i=1
M? M, . _ [ MM, M,
M, Cy, :ILZEIZdI+JL ] dif ye,c Cy, _jLE—IZdeL ] dif ye
M
M youjz ¢« C, =jM ydI+I—ydIIZg
y M, ~ '—2E| %o L E|
T2 T,
Ty G, ZlyIL 2(;Ad| < ZVL ZGAd
T
TZZ "o Tsz'
Te Cr, =%, 2GA"! =% 568"
¢ M? ) M, M/
Mo Cu=fogd G =g
Malgukiak

k zurruntasuna duen malguki lineal baten kasuan, malgukiak jasaten duen indarra F
izanik, koenergia eta bere deribatua honakoak dira:

Cl=—no (13.45)

k, biraketarekiko zurruntasuna duen biraketa malguki baten kasuan, malgukiak
jasaten duen momentua M izanik, koenergia eta bere deribatua honakoak dira:

M MW
2Kk, “ok

C, = (13.46)

4
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13.6. SEKZIOKO INDARREN DERIBATUAK. INDAR
UNITARIOAREN METODOA

Atal honetan sekzioko indarren deribatuen esanahia azalduko da. 13.9 irudian
F.....,F, indar independenteak jasaten dituen sistema isostatikoa azaltzen da. Edozein

barne indar B kanpoko indar independenteen funtzioa da, hau da, B = B(Fl,...F )

n

Beraz, F, indarra dF, aldatzen bada, barne indarra B + B'dF, da. Gainera, 13.9 irudian

azaltzen denez:

B,=B+B'dF, B, =B (13.47)

13.9 irudia

111 konfigurazioko barne indarra, (13.47) ekuazioa eta gainjarmen printzipioaren
arabera:

B, =B, - B, =B'dF (13.48)

Il konfigurazioak jasaten duen indar bakarra dF; denez, dF, =1 eginez lortutako
sekzio indarrak hasierako sistemaren ( B, = B)) sekzio indarren deribatuak dira, hau da,

=B'=a—B. Indar unitarioaren metodoa F =0 denean ere erabil daiteke,

determinatu nahi den desplazamenduaren norabideko indar unitarioa aplikatuz.

B
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13.7. ENGESSER-CASTIGLIANOREN TEOREMAREN APLIKAZIOA

13.7.1 Sistema isostatikoak

Engesser-Castiglianoren teorema (13.14) ekuazioan emana dago. Koenergiaren
deribatuak  sekzioko indarren menpe adieraziz, sistema isostatikoetan
desplazamenduak lor daitezke. Sekzioko indarren deribatuak determinatzerakoan indar
unitarioaren metodoa erabilgarria da.

Indar bera jasaten duten bi puntuen arteko desplazamendu erlatiboa lor daiteke bi
puntuak lotzen dituen zuzenaren norabidean. 13.10 irudian azaltzen diren i; eta i,
puntuen arteko desplazamendu erlatiboa honakoa da:

=0, +0, —£+£

6, =6, +6, = (13.49)
R T OR, OF,

13.10 irudia

Bi puntuetan aplikatutako indarrak berdinak izanik, F =F =F betetzen da.

Beraz, independentea den indarra bakarra da eta (13.49) ekuazioa honela gelditzen da:

=0 +0 _oC

o = 13.50
iyiy i iy 6F, ( )

(13.50) ekuazioko emaitza sistema hiperestatikoetan erabiliko da.
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13.7.2 Sistema hiperestatikoak

Lehen urratsa sistema hiperestatikoa isostatiko baliokidean bihurtzea da, lotura
gehigarriak ezezagun hiperestatikoengatik ordezkatuz. X; aldagai hiperestatikoa hiru
motatakoa izan daiteke:

a/ Kanpo erreakzioa. Berari dagokion o, desplazamendua ezaguna izanik,

baldintza honakoa da:

o _s

(13.51)

Kasu askotan kanpo errekazioei dagokien desplazamendua nulua denez, honakoa
betetzen da:
o« _ 0 (13.52)
oX,
b/ Hasieran aldenduta dauden sistemako bi elementuren arteko lotura indarra.
Lotura puntuen arteko hasierako desplazamendu erlatibo ezaguna &, izanik, (13.50)

ekuazioaren arabera honakoa bete behar da:

STC = (13.53)

I
¢/ Barne indarra. Kasu honetan, ondoz ondoko sekzioen arteko desplazamendu
erlatiboa nulua da. Izan ere, sekzio indarrak ondoz ondoko sekzioen desplazamendu
erlatiboak eragozten dituzten barne erreakzio bezala ikus daitezke. Honako baldintza
bete behar da:

€ 5 (13.54)
ox






14. EZEGONKORTASUNA.
GILBORDURA

14.1. SARRERA

Pieza prismatiko batek konpresioa jasaten duenean, orekaren egonkortasunarekin
erlazionatuta dagoen eta gilbordura deitzen zaion gertaera jasan dezake: indarraren
balio kritiko batentzat, makurdurako desplazamenduak azaltzen dira eta indarra
kentzen ez bada piezaren huts egitea gerta daiteke. Orekaren egonkortasuna honela
sailka daiteke, perturbazio edo aldaketa txiki baten ondoren sistemak duen
erantzunaren arabera:

e Oreka egonkorra: perturbazio baten ondoren sistema hasierako oreka
egoerara itzultzen da.

e Oreka ezegonkorra: perturbazio baten ondoren sistema bere hasierako
oreka egoeratik urruntzen da.

e Oreka indiferentea: perturbazioaren ondoren sistema oreka egoera berri
batera heltzen da.

Konpresio uniformea jasaten duten piezen orekaren egonkortasuna aztertuko da.
Horretarako piezaren egoera deformatuaren oreka eta kurba elastikoaren ekuazio
diferentzial hurbildua erabiliko dira. Gaiaren bukaeran, prozedura bera erabiliz, zutabe
lerdenen konpresio eszentrikoa aztertzen da.
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14.2. EULER-en KARGA KRITIKOA

P konpresio indarra jasaten duen soilki bermatutako zutabea aztertzen da, 14.1
irudian ikus daitekeen bezala. Gilbordura eragiten duen karga kritikoa oreka
indiferentearen baldintza aplikatuz determinatuko da. Horretarako, hasieran
perturbazio bat aplikatu eta zutabea deformatuta gelditzen da. Egoera berri hau
orekakoa bada, oreka indiferentea da. Kargaren balio handiagoentzat oreka
ezegonkorra da eta balio txikiagoentzat oreka egonkorra da.

ol

>-s
14.1 irudia

14.2 irudian perturbazioa aplikatu ondorengo zutabearen kurba elastikoa azaltzen
da oreka indiferentea dela suposatuz, hau da, oreka egoera berria posizio deformatua
dela onartzen da. Posizio horizontalean marrazten da, kurba elastikoaren ekuazio
diferentziala deduzitzerakoan erabili diren ardatzak adieraziz. Aztertutako sekzioaren
desplazamendua v da. A-ko apoioa irudia argitzeko irudikatu da, erreakzio bertikala
nulua dela kontuan izanik.
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14.2 irudia

Bermapuntutik x distantziara dagoen sekzioa kontsideratuz, momentu makurtzailea
honakoa da:

M =Pv (14.1)

Kurba elastikoaren ekuazio diferentziala honakoa da:

d?v M
- __ 14.2
dx*  El, (14.2)
(14.1) ekuazioa (14.2) ekuazioan ordezkatuz:
dv.
—+a.,v=0 14.3
dx?  * (143)
(14.3) ekuazio diferentzial linealaren soluzio orokorra honakoa da:
v=C,sin(a,x)+C,cos(a,x) (14.4)
o, honakoa izanik:
P
= [— 14.5
@ =& (145)
Ondorengo ingurune baldintzak bete behar dira:
v) =0
(V)o (14.6)
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(14.6)-ko lehenengo baldintzatik C, =0 lortzen da. Bigarren baldintza betetzeko bi

egoera gerta daitezke:

e Oreka egonkorrari dagokiona, C, =0 izanik.
e sin(q,L)=0.Ondorioz, a,L=7,27... bete behar da. Karga minimoa 7-

ri dagokiona da. (14.5) ekuazioan ordezkatuz indarra honakoa da:

p=_ " (14.7)

zx planoan antzeko analisia egin daitekenez, karga kritikoa inertzia momentu
minimoari dagokiona da:
7°El,
Peit :Tmm (14.8)
(14.8) ekuazioaren arabera, karga kritikoa txikia izan dadin inertzia momentu
minimoak haundia izan behar du. Hori lortzeko egoera egokiena inertzia momentu
nagusiak berdinak izatea da. Ondorioz, sekzioko norabide guztiak nagusiak dira.
Gainera, materiala ardatzetatik urruntzeak inertzia momentua haunditzen duenez,
sekzioko norabide guztiak nagusiak dituzten lodiera txikiko sekzioak dira egokienak.
Adibidez, sekzio karratu eta zirkular hutsak.

14.3. LOTUREN ERAGINA

Zutabearen muturretako loturen arabera karga kritikoa aldatu egiten da. Soilki
bermatutako zutabean muturretako momentuak zero direnez, beste lotura baldintza
batzurekin momentu makurtzaile nuluko puntuak bilatzen dira. Horrelako bi punturen
arteko distantzia, Ly gilbordura-luzera bezala definitzen da. Puntu hauek, (14.2)
ekuazioaren arabera kurba elastikoaren inflexio puntuak dira. 14.3 irudian L luzera
duen zutabe batek izan ditzazkeen ohiko loturak azaltzen dira.
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= Bl

> e - -

14.3 irudia
Dagokien gilbordura-luzerak honakoak dira:
Giltzatua-Giltzatua: Ly =L
Landatua-Askea: Ly = 2L
Landatua-Landatua: Ly = 0,5L
Landatua-Giltzatua: Ly = 0,7L

Edozein lotura baldintzentzat karga kritikoa honakoa da:

2
7°El
2
Lg

Pkrit =

14.4. TENTSIO KRITIKOA ETA LERDENTASUNA
Tentsio kritikoa gilbordurako karga kritikoari dagokiona da:
I:)krit ﬂ-ZEImin

oO,., =—=
krit A ALZ

i biraketa erradioaren definizioa kontuan izanik: 1, =i, A

min

I!>lp

—+
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(14.9)

(14.10)
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Beste alde batetik, A lerdentasuna honela definitzen da:

A=—2 (14.11)
|

min

(14.11) ekuazioa (14.10) ekuazioan ordezkatuz:

P.. ~E
Oyit = ;‘= e (14.12)

Egituren kalkuluko araudian, konpresioa jasaten duten egitura-elementuen
lerdentasuna funtsezko parametroa da. (14.12) ekuazioa grafika batean adieraziz, 14.4
irudian azaltzen den Euler-en kurba lortzen da.

|

Ao ;:
14.4 irudia

oe limite elastikoa izanik, portaera elastikoa ziurtatzeko lerdentasunak A > 4,

baldintza bete behar du. Baldintza hau betetzen duten piezak lerdenak deitzen dira.
A < 4, denean, piezak laburrak deitzen dira eta Euler-en kurba ezin da erabili.

14.5. ZUTABE LERDENEN KONPRESIO ESZENTRIKOA

Mutur batean landatua eta bestean askea dagoen zutabe lerden batek konpresio
eszentrikoa jasaten duenean, mutur askeko desplazamendua eszentrizitatearen
mailakoa baldin bada, desplazamendu haundien problema sortzen da. Ondorioz, karga
kritikoarentzat egin denaren antzeko analisia garatuko da, egoera deformatua eta kurba
elastikoaren ekuazio diferentzial hurbildua erabiliz.
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14.5 irudia

14.5 irudiaren ezker aldean P konpresio indarra e, eszentrizitatearekin jasaten duen
zutabea azaltzen da, sekzioari dagokion erreferentzia sistemarekin. Eskuin aldean
kurba elastikoa eta kargaren kokapena azaltzen dira, desplazamenduak determinatzeko
erreferentzia sistemarekin. A landapeneko erreakzioak determinatu ondoren, 14.6
irudian x distantziara dagoen sekzio baten mozketa azaltzen da, bertako momentu
makurtzailea honakoa delarik:

M =Pv-P(e, +5,) (14.13)
P ‘A
[
M
14.6 irudia

(14.2) ekuazioan ordezkatuz honakoa lortzen da:

2

\'
ijv:af(ey +6,) (14.14)

(14.14) ekuazioaren soluzio orokorra honakoa da:
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v=C,sin(a,x)+C,cos(a,x) +(e, +5,) (14.15)

C: eta C, konstanteak eta o, desplazamendua determinatzeko ingurune baldintzak
honakoak dira:

Il
o

>

\'
v, =0 (14.16)
\Y

I
o9

x > X
1l
- © o

(14.16)-ko baldintzak (14.15) ekuazioan aplikatuz, honakoa lortzen da:

C,=—(e,+5,)
C,=0 (14.17)
_ [1-cos(a,L)]
7 cos(a,l)

(14.17)-ko emaitzak (14.15) ekuazioan ordezkatuz, desplazamenduen funtzioa
honakoa da:

v=e, 1-cos(a;x) (14.18)
cos(a,L)

(14.18) ekuazioa (14.13) ekuazioan ordezkatuz, momentu makurtzailea x-en menpe
honakoa da:

cos(a,x)

M =—P
> cos(a,L)

(14.19)

(14.19) ekuazioaren arabera, momentu maximoa landapenean gertatzen da:

1
Mmax = MA = —Peym: —Pey SEC(aZL) (1420)



EZEGONKORTASUNA. GILBORDURA 185

(14.20) ekuazioan sec(e,L) makurdura konposatuko (—Pey) momentuari eragiten

dion faktore biderkatzailea da, sec(c,L)>1 izanik.

Ezegonkortasuna gertatzen denean landapeneko momentuak infiniturantz jotzen
duenez:

Mmax—>°O:>“z|——>E:>P: z (14.21)

(14.21) ekuazioaren arabera, gilbordura eragiten duen karga kritikoa Landatua-
Askea kasuan lortutakoa da eta inertzia momentu minimoari dagokio.
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