

50 URTE AÑOS 1968 - 2018 Biba Zientzia! Ciencia Viva

Tabla de Contenidos

Presentación 3 Competencias de la Titulación 3 Estructura de los Estudios de Grado 3 Las Asignaturas de Cuarto Curso en el Contexto del Grado 4 Tipos de Actividades a Realizar 6 Trabajo de Fin de Grado 7 Movilidad 7 Prácticas académicas externas 7 Tutorías académicas 8 Plan de Acción Tutorial (PAT) 8 Coordinación 8 Otra información de interés 9 2 Información específica para el grupo 9 Asignación de estudiantes a grupos docentes 9 Calendario, horario y exámenes 9 Profesorado 9	1 Información del Grado en Ingeniería Química	3
Competencias de la Titulación		
Estructura de los Estudios de Grado	Competencias de la Titulación	3
Las Asignaturas de Cuarto Curso en el Contexto del Grado	Estructura de los Estudios de Grado	3
Tipos de Actividades a Realizar		
Trabajo de Fin de Grado 7 Movilidad 7 Prácticas académicas externas 7 Tutorías académicas 8 Plan de Acción Tutorial (PAT) 8 Coordinación 8 Otra información de interés 9 2 Información específica para el grupo 9 Asignación de estudiantes a grupos docentes 9 Calendario, horario y exámenes 9 Profesorado 9	Tipos de Actividades a Realizar	6
Movilidad 7 Prácticas académicas externas 7 Tutorías académicas 8 Plan de Acción Tutorial (PAT) 8 Coordinación 8 Otra información de interés 9 2 Información específica para el grupo 9 Asignación de estudiantes a grupos docentes 9 Calendario, horario y exámenes 9 Profesorado 9	Trabajo de Fin de Grado	7
Tutorías académicas 8 Plan de Acción Tutorial (PAT) 8 Coordinación 8 Otra información de interés 9 2 Información específica para el grupo 9 Asignación de estudiantes a grupos docentes 9 Calendario, horario y exámenes 9 Profesorado 9	Movilidad	7
Tutorías académicas 8 Plan de Acción Tutorial (PAT) 8 Coordinación 8 Otra información de interés 9 2 Información específica para el grupo 9 Asignación de estudiantes a grupos docentes 9 Calendario, horario y exámenes 9 Profesorado 9	Prácticas académicas externas	7
Coordinación 8 Otra información de interés 9 2 Información específica para el grupo 9 Asignación de estudiantes a grupos docentes 9 Calendario, horario y exámenes 9 Profesorado 9		
Coordinación 8 Otra información de interés 9 2 Información específica para el grupo 9 Asignación de estudiantes a grupos docentes 9 Calendario, horario y exámenes 9 Profesorado 9	Plan de Acción Tutorial (PAT)	8
Otra información de interés	Coordinación	8
Asignación de estudiantes a grupos docentes	Otra información de interés	9
Asignación de estudiantes a grupos docentes	2 - Información específica para el grupo	q
Calendario, horario y exámenes	Asignación de estudiantes a grunos docentes	C
Profesorado	Calendario horario y exámenes	
	•	
	ANFXOI	10

Guía elaborada por la Comisión de Estudios del Grado de Ingeniería Química (CEGIQ)

1.- Información del Grado en Ingeniería Química

Presentación

Bienvenido al 4º Curso del Grado de Ingeniería Química de la Facultad de Ciencia y Tecnología de la Universidad del País Vasco. En este curso, se describen los principales procesos que tienen lugar en una planta química, con énfasis en la calidad del producto, centrándose en los sistemas de reacción y separación de productos, los materiales, la necesidad de controlar los procesos, y el desarrollo y evaluación económica de proyectos industriales. A modo de síntesis de las competencias y conocimientos adquiridos en los cursos anteriores, se debe realizar el Trabajo Fin de Grado (TFG).

Además, el alumno debe realizar en una empresa o centro público las Prácticas Externas obligatorias, con el objetivo de aplicar los conocimientos adquiridos durante el Grado y permitir un primer contacto con el sector industrial. La información que necesita sobre prácticas en empresas y formación complementaria se lleva a cabo a través del Servicio de Asesoramiento del Estudiante de Ciencia y Tecnología (SAECYT), que se encarga de la gestión de los trámites administrativos (en el caso de las prácticas externas utilizando el sistema informático PraktiGes de la UPV-EHU). Las prácticas externas curriculares en el Grado en Ingeniería Química tendrán una duración de 12 ECTS, siendo requisito que al alumno le queden 85,5 o menos créditos, incluyendo el Trabajo, para finalizar el Grado.

La preinscripción del trabajo de Fin de Grado se realizará la tercera semana del mes de julio para aquellos/as estudiantes que cumplan las condiciones para inscribirse en septiembre en el TFG (Para que el/la alumno/a se pueda preinscribir será necesario que le queden 72 o menos créditos, incluyendo el Trabajo, para finalizar el Grado). Más información en los siguientes enlaces:

https://www.ehu.eus/documents/19559/37321287/IQ_TFG_es.pdf/011dc42a-fff6-1ffc-462c-

79047d3e4c56?t=1676619808436

https://www.ehu.eus/es/web/estudiosdegrado-gradukoikasketak/gradu-amaierako-lana-egin-eta-

defendatzeari-buruzko-arautegia

Competencias de la Titulación

El Grado en Ingeniería Química debe formar profesionales que conozcan el diseño de Procesos y Productos, incluyendo la concepción, cálculo, construcción, puesta en marcha y operación de equipos e instalaciones donde se efectúen Procesos en los que la materia experimente cambios en su composición, estado o contenido energético, característicos de la Industria Química y de otros sectores relacionados como el Farmacéutico, Biotecnológico, Alimentario o Medioambiental.

Con esta formación podrá desempeñar puestos en la Industria Manufacturera, en empresas de Diseño y Consultoría, en tareas de Asesoría Técnica, Legal o Comercial, en la Administración y en la Enseñanza en los niveles secundario y universitario, así como el ejercicio libre de la profesión y la elaboración de dictámenes y peritaciones.

Estructura de los Estudios de Grado

El plan de estudios está orientado hacia objetivos concretos relacionados con la adquisición de las competencias que se han considerado esenciales para tu graduación en Ingeniería Química. La secuenciación de las materias y de las asignaturas está planteada para que el estudiante pueda ir alcanzando, de forma escalonada la formación en Ingeniería Química. Los contenidos formativos están diseñados con un número de créditos necesarios para alcanzar las competencias y, al mismo tiempo, adecuados para que el esfuerzo requerido sea factible para la mayoría de los/as estudiantes.

Tabla 1. Estructura de los estudios y organización de las enseñanzas.

Tipo	Curso 1°	Curso 2°	Curso 3°	Curso 4°	TOTAL
Materias básicas de rama ingenieril	48	27			75
Obligatorios	12	33	60	19,5	124,5
Prácticas Externas				12	12
Trabajo Fin Grado				10,5	10,5
Optativos				18	18
Total	60	60	60	60	240

Módulo 1. Formación básica (75 créditos)

Integrado principalmente por las materias básicas de la Ingeniería Química, con el objetivo de que el/la estudiante adquiera capacidad de identificación, formulación y resolución de problemas propios de estas áreas, así como dotar al estudiante de la capacidad para comprender y aplicar, en el campo de la Ingeniería Química, los fundamentos científicos y tecnológicos de la química, matemáticas, estadística, física, informática, expresión gráfica y administración de empresa.

Módulo 2. Común a la rama industrial (61.5 créditos)

Integrado por materias comunes de la rama industrial, en el que se pretende que el/la estudiante adquiera la capacidad para el diseño y modelización de sistemas dinámicos, operaciones y procesos, en el ámbito de la Ingeniería Química, así como dotar al estudiante de la capacidad para comprender y aplicar en el campo de la Ingeniería Química los fundamentos científicos y tecnológicos de química, materiales, electrotecnia y electrónica, automática y control, energía y mecánica de fluidos, medioambiente, diseño mecánico y proyectos de ingeniería.

Módulo 3. Tecnología específica: ingeniería química (63 créditos)

Integrado por materias específicas, en el que se pretende que el/la estudiante adquiera capacidad para aplicar criterios de calidad y procedimientos de mejora continua en los sistemas productivos, tecnológicos y de servicios que ofrece la Ingeniería Química a la Industria Química y a otros sectores industriales relacionados. Se persigue dotar al estudiante de la capacidad para comprender y aplicar, en el campo de la Ingeniería Química, los fundamentos científicos y tecnológicos de las bases de la ingeniería química, transferencia de materia y operaciones de separación, cinética y reactores químicos, biotecnología, ingeniería de procesos y producto.

Módulo 4. Intensificación (18 créditos)

Integrado por 8 asignaturas optativas cuyo objetivo es la intensificación en el conocimiento y aplicación de materias de la Ingeniería Química y la proyección del conocimiento y capacidades adquiridas previamente por los/as alumnos/as hacia sectores industriales de actualidad, que son de interés estratégico, desde las perspectivas económica y social. Así, deberás cursar 4 asignaturas, de las 8, en las que podrás adquirir capacidades de interés en los sectores industriales del petróleo y petroquímica, de energías renovables, eco industria e industria asociada al medio ambiente y a la microbiología y biotecnología, integrando la filosofía de la seguridad y las acciones de minimización de riesgos con el resto de capacidades.

Módulo 5. Prácticas externas (12 créditos)

Las prácticas externas proporcionan una visión aplicada de los con cimientos y un contacto directo con la industria. Se establecen 12 créditos de prácticas externas obligatorias que se realizarán en empresas o centros públicos con una duración de 300 horas de presencia del estudiante. La UPV/EHU tiene establecidos convenios con un importante número de empresas que se comprometen a incorporar estudiantes para la realización de prácticas, entre las que se incluyen algunas de las más representativas de los sectores industriales en los que presta servicio la Ingeniería Química. Se recomienda consultar la normativa:

https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/insercion-laboral http://www.ehu.eus/documents/19559/1492311/practicas_ext_IQ_es.pdf

Módulo 6. Trabajo fin de grado (10,5 créditos)

El Trabajo Fin de Grado es el ejercicio final previo a la graduación, en el que el/la alumno/a realiza una síntesis de todas las competencias adquiridas a lo largo de la carrera, en todas y cada una de las asignaturas.

Las Asignaturas de Cuarto Curso en el Contexto del Grado

Las asignaturas que desarrollarán en cuarto curso son las mostradas en la Tabla 2. Como puede observar, se corresponden con las del módulo de común a la rama industrial, el módulo de intensificación, el módulo de prácticas externas y el módulo de trabajo fin de grado de Ingeniería Química. Los alumnos elegirán cuatro asignaturas optativas con un total de 18 créditos entre las ofertadas. La asignatura optativa "Environmental Biotechnology" se oferta exclusivamente en inglés.

Tabla 2. Distribución de créditos de las asignaturas de cuarto curso de G.I.Q.

MÓDULO	Tipo	Asignatura	Semestre	Créditos
Común a la rama industrial	Obligatoria	Diseño mecánico de equipos	1	6
Común a la rama industrial	Obligatoria	Ingeniería ambiental	1	6
Intensificación	Optativa	Análisis económico de procesos químicos	1	4,5
Intensificación	Optativa	Análisis de riesgos y seguridad en plantas industriales	1	4,5
Intensificación	Optativa	Environmental Biotechnology	1	4,5
Intensificación	Optativa	Gestión de calidad	1	4,5
Intensificación	Optativa	Ingeniería de Procesos Biotecnológicos	1	4,5
Intensificación	Optativa	Ingeniería Energética	1	4,5
Intensificación	Optativa	Ingeniería Química y Sostenibilidad	1	4,5
Intensificación	Optativa	Petróleo y Petroquímica	1	4,5
Intensificación	Optativa	Comunicación Científico-técnica Escrita en Euskera	1	6

MÓDULO	Tipo	Asignatura	Semestre	Créditos
Intensificación	Optativa	Comunicación Científico-técnica Oral en Euskera	2	6
Común a la rama industrial	Obligatoria	Organización y Gestión de Proyectos	2	7,5
Prácticas externas	Obligatoria	Prácticas externas	2	12
Trabajo Fin de Grado	Obligatoria	Trabajo Fin de Grado	2	10,5

Un breve contenido de cada una de las asignaturas se ha reflejado en la Tabla 3.

Tabla 3. Resumen de los contenidos de las asignaturas de cuarto curso de G.I.Q.

Asignatura	e las asignaturas de cuarto curso de G.I.Q. Resumen del contenido de las asignaturas
Asignatura	
Diseño mecánico de equipos	Códigos y normas. Criterios de diseño estructural. Diseño de recipientes cilíndricos, esféricos, cabezales y cubiertas. Diseño de toberas y aberturas. Fatiga en recipientes a presión. Diseño de bridas y soportes. Diseño mecánico de tuberías. Diseño mecánico de cambiadores de calor y otros equipos.
Ingeniería ambiental	Medio ambiente y contaminación. Contaminantes atmosféricos. Dispersión. Tratamiento de efluentes gaseosos. Contaminación acuosa. Métodos físico-químicos. Tratamientos biológicos de aguas. Problemática de residuos sólidos. Residuos tóxicos y peligrosos. Residuos sólidos urbanos.
Análisis económico de procesos químicos	Economía industrial. Elementos de análisis económico. Medida de rentabilidad. Análisis de alternativas. Aspectos financieros. Análisis de sensibilidad. Análisis coste-beneficio. Análisis de riesgos y tomas de decisiones.
Análisis de riesgos y seguridad en plantas industriales	Técnicas de seguridad. Análisis de riesgos. Seguridad en plantas: incendios, explosiones y escapes. Estudio de accidentes reales. El medio ambiente de trabajo: contaminantes físicos y químicos. Inspecciones de seguridad. Medidas preventivas. Planes de emergencia. Gestión de la seguridad.
Environmental Biotechnology	Origen y composición de los contaminantes. Ciclos Biogeoquímicos. Rutas de asimilación y/o degradación de compuestos naturales y xenobióticos. Empleo de biocatalizadores, microorganismos heterótrofos y microalgas en la biorremediación de aguas, gases y suelo. Obtención de bioproductos renovables. Biorefinerías. Bioplásticos y biocarburantes biofertilización. Bioinsecticidas.
Gestión de calidad	Calidad total. Gestión de la calidad y su mejora. Herramientas. Técnicas de planificación, optimación y control de la gestión de calidad. Evaluación y auditorías de los sistemas de control de calidad.
Ingeniería de Procesos Biotecnológicos	Microorganismos de interés industrial. Reacciones enzimáticas homogéneas. Cinética y estequiometria del crecimiento microbiano. Análisis y diseño de biorreactores. Recuperación de bioproductos. Procesos microbianos en la industria. Aplicaciones medio ambientales.
Ingeniería Energética	Generación de energía calorífica. Procesos de transformación de energía calorífica en energía mecánica. Motores, turbinas, cogeneración. Energías renovables. Política energética.
Ingeniería Química y Sostenibilidad	Principios de la química sostenible. Economía atómica. Aplicaciones de la catálisis en química sostenible. Fuentes renovables para la obtención de energía. Evaluación de ciclos de vida. Conceptos de mejor tecnología disponible e IPPC.

Tabla 3. Resumen de los contenidos de las asignaturas de cuarto curso de G.I.Q. (continuación)

Asignatura	Resumen del contenido de las asignaturas
Petróleo y Petroquímica	Química del crudo. Fraccionamiento del crudo. Procesos de reformado. Procesos de conversión. Refino de fracciones petrolíferas. Productos de refinería. Procesos petroquímicos de base. Procesos petroquímicos de síntesis.
Comunicación Científico-técnica Escrita en Euskera	Criterios de selección y adecuación. Condiciones y restricciones. Actividades lingüísticas de comunicación. Géneros textuales. Cuestiones de estilo.
Comunicación Científico-técnica Oral en Euskera	Fundamentos de la comunicación. Comunicación especializada. Textos científicos. Idiomas especializados. Terminología. Fraseología.
Organización y Gestión de Proyectos	Metodología de proyectos. Organización, planificación y programación. Ejecución del proyecto. Control y seguimiento. Cierre del proyecto. Normas y legislación.
Prácticas externas	Las prácticas externas obligatorias a realizar en empresas o centros públicos para proporcionar una visión aplicada de los conocimientos y un contacto directo con la industria.
Trabajo Fin de Grado	El Trabajo de Fin de Grado es el ejercicio final previo a la graduación, en el que el alumno realiza una síntesis de todas las competencias adquiridas a lo largo de la carrera, en todas y cada una de las asignaturas del Plan de Estudios. Se trata de un trabajo individual a presentar ante un tribunal, dando forma a un desarrollo original concreto. El contenido del Trabajo Fin de Grado consistirá en trabajos relativos al diseño de instalaciones o unidades de proceso relacionadas con la industria química y otros sectores transformadores afines por la naturaleza de sus operaciones o en trabajos de investigación con orientación aplicada cuya temática se relacione con los contenidos del grado. El Trabajo Fin de Grado podrá realizarse en castellano o euskera.

Las Fichas de las asignaturas con la información completa se muestran en el Anexo I de la guía. Esta información está disponible en la página web de la Facultad de Ciencia y Tecnología, correspondiente al Grado de Ingeniería Ouímica:

https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/grado-ingenieria-quimica

Tipos de Actividades a Realizar

En las Tablas 4a y 4b se resume la distribución docente en horas presenciales en función del tipo de actividad.

Tabla 4a. Distribución docente (en horas presenciales) en el primer semestre.

Asignatura	Magistral	Prácticas de aula	Prácticas de ordenador	Seminario	Prácticas de laboratorio
Diseño mecánico de equipos	40		10	10	
Ingeniería ambiental	28	14		14	4
Análisis económico de procesos químicos	19	11		15	
Análisis de riesgos y seguridad en plantas industriales	30			15	
Environmental biotechnology	30			5	10
Gestión de calidad	23	8	7	7	
Ingeniería de procesos biotecnológicos	27	10		8	
Ingeniería energética	15	22		8	
Ingeniería química y sostenibilidad	30			15	
Petróleo y petroquímica	27	8		7	3
Comunicación Científico-técnica Escrita en Euskera	15	15	30		
Comunicación Científico-técnica Oral en Euskera	15	15	30		
Total	309	113	57	104	17

Tabla 4b. Distribución docente (en horas presenciales) en el segundo semestre.

Asignatura	Magistral	Prácticas Aula	Prácticas Ordenador	Seminario	Créditos no Presenciales	Prácticas empresa
Organización y gestión de proyectos	45	7,5	10	12,5		
Prácticas externas						12
Trabajo Fin de Grado					10,5	
Total	45	7,5	10	12,5	10,5	12

Trabajo de Fin de Grado

El Trabajo Fin de Grado (TFG) supone la realización por parte de cada estudiante y de forma individual de un proyecto, memoria o estudio original bajo la supervisión de uno o más directores o directoras, en el que se integren y desarrollen los contenidos formativos recibidos, capacidades, competencias y habilidades adquiridas durante el periodo de docencia del Grado.

En la Normativa sobre la elaboración y defensa del TFG de la FCT-ZTF se detallan las fases del TFG y los requisitos a cumplir para que un/a estudiante comience a elaborar su TFG. Las fechas importantes para el curso 2023/24 son las siguientes:

Preinscripción (12-14 de julio de 2023, ambos inclusive): preinscripción mediante formulario online: https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/tfg_aurreinskripzioa.

Inscripción: para poder inscribir el TFG, el máximo de créditos pendientes para finalizar el grado es de 72 (60 créditos de cuarto curso más 12 pendientes de cursos anteriores). Dos vías:

- 1-8 de septiembre de 2023 (ambos inclusive): las profesoras y profesores inscriben los trabajos acordados con el alumnado, a la vez que registran la oferta de trabajos no acordados para su posterior selección por el alumnado.
- 20-22 de septiembre de 2023 (ambos inclusive): Selección en GAUR de temas por el alumnado que no haya acordado previamente un trabajo. Se podrán elegir del listado un máximo de cinco temas.

Adjudicación (25-29 de septiembre de 2023, ambos inclusive): todos los temas de TFG son definitivamente adjudicados, tras lo cual, a cada estudiante le llega un correo electrónico.

Matriculación, entrega de la memoria y defensa: la matrícula dará derecho a dos convocatorias oficiales de defensa en cada curso académico. Para la matriculación, se deben tener superados todos los créditos del Grado a excepción del TFG. Las fechas de matriculación y defensa para el curso 2023/24 serán:

Convocatoria	Matrícula y Entrega memoria	Defensa
Febrero	12-15 de febrero de 2024	4-8 de marzo de 2024
Junio	19-21 de junio de 2024	10-12 de julio de 2024
Agosto	19-23 de julio de 2024	4-6 de septiembre de 2024

Más información sobre el TFG:

https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/trabajos-fin-grado https://www.ehu.eus/documents/19559/37321287/IQ_TFG_es.pdf/011dc42a-fff6-1ffc-462c-79047d3e4c56?t=1676619808436

Movilidad

Es posible cursar un semestre o un curso académico en otra universidad en el marco de uno de los programas de intercambio en los que participa la Facultad. Los requisitos a cumplir y otra información de interés pueden consultarse en https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/programas-intercambio-alumnado.

Prácticas académicas externas

La realización de prácticas en entidades externas facilita la incorporación de los estudiantes al mundo laboral, proporcionando, además de conocimientos y competencias de contenido práctico, experiencia profesional. Además de las prácticas externas curriculares (obligatorias), en el Grado en Ingeniería Química es posible realizar también prácticas externas extracurriculares (de carácter voluntario). Para poder realizar las prácticas académicas externas, se deberán haber superado 120 ECTS. Más información en: https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/insercion-laboral

Tutorías académicas

La tutoría académica es un proceso que consiste básicamente en brindar asesoría y orientación académica a las y los estudiantes a través de un profesor o una profesora. Esta asesoría está encaminada a apoyar al alumnado en las materias que están cursando. A comienzo de cada cuatrimestre cada docente dará a conocer su horario de tutorías.

Plan de Acción Tutorial (PAT)

El Plan de Acción Tutorial (PAT) ofrece a las y los estudiantes la oportunidad de disponer de un profesor tutor o de una profesora tutora que favorecerá su integración en la vida universitaria y les orientará durante toda su trayectoria académica.

Las profesoras tutoras y los profesores tutores pretenden:

- o apoyar y orientar a las y los estudiantes en su proceso de formación integral, en su aspecto tanto académico como personal y profesional.
- o favorecer la integración de las y los estudiantes en la actividad académica de la Facultad.
- o informar a las y los estudiantes sobre los servicios y actividades que tienen a su disposición en el ámbito universitario.
- o identificar las dificultades que pueden aparecer durante el desarrollo de los estudios y facilitar el desarrollo de habilidades y estrategias de aprendizaje.
- o asesorar en la toma de decisiones, especialmente en la elección del itinerario curricular.
- transmitir información que pueda resultar de interés para el desarrollo académico y profesional de las y los estudiantes.

La asignación de tutores o tutoras a cada estudiante del Grado en Ingeniería Química se realizará al inicio del primer curso. Esa asignación permanecerá vigente hasta la obtención del Grado.

Coordinación

La coordinación del Grado recae en la Comisión de Estudios de Grado (CEG). Esta realiza funciones de apoyo al desarrollo curricular, seguimiento, revisión y mejora del Grado. A la hora de redactar esta guía, la CEG del Grado en Ingeniería Química está formada por:

Tipo	Coordinador/a	Datos de contacto
Grado	Javier Ereña Loizaga	javier.erena@ehu.eus
	Dpto. Ingeniería Química	946015363
		B1.P1.14
1º curso	Miriam Arabiourrutia Gallastegi	miriam.arabiourrutia@ehu.eus
	Dpto. Ingeniería Química	946018149
		B1.P2.8
2º curso	Asier Aranzabal Maiztegi	asier.aranzabal@ehu.eus
PAT	Dpto. Ingeniería Química	946015554
		B1.P1.15
3º curso	Eva Epelde Bejerano	eva.epelde@ehu.eus
Prácticas externas	Dpto. Ingeniería Química	946015361
		A4.P1.8
4º curso	Beñat Pereda Ayo	benat.pereda@ehu.eus
TFG	Dpto. Ingeniería Química	946012263
		B1.P1.15

Se puede consultar información actualizada de la CEG del Grado en Ingeniería Química en el siguiente enlace: https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/comisiones-grado#ComisionesdeEstudios7

Además, para cada asignatura del Grado se ha nombrado un/a coordinador/a de asignatura que se encarga de coordinar el equipo docente que la imparte. La relación de coordinadores/as de asignaturas del Grado en Ingeniería Química puede consultarse en el siguiente enlace:

https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/coordinacion-asignaturas-iq

Otra información de interés

En algunas asignaturas del Grado, el equipo docente utiliza un aula virtual de apoyo a la docencia presencial. Estas aulas están en eGela (https://egela.ehu.eus). Para acceder a eGela hay que introducir el usuario LDAP, que se asigna a cada estudiante al realizar la matrícula como alumnado de nuevo ingreso. También se utiliza el usuario LDAP para acceder a GAUR, herramienta informática para la realización de trámites administrativos y la consulta de datos relativos a la vida académica del alumnado.

Cada estudiante matriculado en el Grado en Ingeniería Química dispone de una cuenta de correo electrónico corporativa, cuya dirección y contraseña le fueron entregadas al realizar la matrícula como alumnado de nuevo ingreso. A esta cuenta de correo corporativa se remiten todos los mensajes del profesorado, de eGela, del equipo decanal u otros estamentos universitarios. Es posible redirigir los mensajes que llegan a esta cuenta al correo personal. Más información en: https://www.ehu.eus/es/group/ikt-tic/bildu). También dispone de un servicio de albergue de disco (https://www.ehu.eus/es/group/ikt-tic/bildu).

Ante cualquier duda o problema en la utilización del correo corporativo o en general de los servicios informáticos de la UPV/EHU, se recomienda contactar con CAU vía web http://lagun.ehu.eus, utilizando el usuario LDAP. Para más información sobre el CAU visitar: http://www.ehu.eus/cau.

El Servicio de Asesoramiento del Estudiante de la Facultad de Ciencia y Tecnología (SAECYT) asesora al estudiante y realiza los trámites necesarios para poder realizar prácticas en empresa o participar en un programa de intercambio. Se encuentra ubicado en la Secretaría de la Facultad. Más información sobre el SAECYT en https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/atencion-estudiantes

Más Información sobre el Grado en Ingeniería Química:

https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/grado-ingenieria-quimica

Página web de la Facultad:

https://www.ehu.eus/zientzia-teknologia-fakultatea

2.- Información específica para el grupo

Asignación de estudiantes a grupos docentes

Durante las primeras semanas de clase se informará de la asignación de cada estudiante a los grupos docentes en las diferentes modalidades docentes para las que haya más de un grupo programado.

Calendario, horario y exámenes

El calendario lectivo del Centro puede consultarse en la página web: https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/calendario

El horario, con la correspondiente información sobre las aulas donde se impartirá cada actividad, así como el calendario oficial de exámenes, se publica y actualiza en la web de la Facultad. Pueden consultarse en: https://www.ehu.eus/es/web/zientzia-teknologia-fakultatea/egutegia-ordutegiak. Además, en el enlace anterior también pueden consultarse los tribunales de 5ª y 6ª convocatoria nombrados para las asignaturas del Grado.

Profesorado

La información sobre el profesorado (datos de contacto, horas de tutoría) que imparte las asignaturas de este grupo puede consultarse en la web institucional del grado:

https://www.ehu.eus/es/web/guest/grado-ingenieria-quimica/profesorado

Para acceder a la información de un profesor/a en el enlace anterior, basta con pinchar en el nombre del profesor/a.

ANEXO I (GUÍAS DOCENTES DE LAS ASIGNATURAS) Las asignaturas vienen ordenadas por orden alfabético.

IRAKASKUNTZA-GIDA 2023/24 Ikastegia 310 - Zientzia eta Teknologia Fakultatea Plana GINQUI30 - Ingeniaritza Kimikoko Gradua IRAKASGAIA 28279 - Ahozko komunikazio zientifiko-teknikoa euskaraz ECTS kredituak: 6

IRAKASGAIAREN AZALPENA ETA TESTUINGURUA ZEHAZTEA

IRAKASGAI HAU EUSKARAZ BAINO EZ DA ESKAINTZEN.

Irakasgai hau hautazkoa da Ingeniaritza Kimikoa graduko 4. mailako ikasleentzat. Komunikazio zientifiko-teknikoa landuko da: dokumentazioa, berrikuspen bibliografikoak eta testu-genero ohikoenak. Horretarako, espezializazio maila desberdinetako idatzizko eta ahozko testuak landuko dira: ikerketa-artikuluak, dibulgaziokoak, poster zientifikoak, ahozko aurkezpenak, dibulgazio-hitzaldiak e.a. Berariaz sakonduko da ahozko komunikazioan. Kimika alorreko terminologia eta adierazpideak ere landuko dira aipatutako testu-generoekin lotuta.

Lotura zuzena du gradu berean hautazko irakasgai den Idatzizko komunikazio zientifiko-teknikoa euskaraz (IKZTE) irakasgaiarekin (4. mailan egin daitekeena hau ere, lehenengo lauhilekoan). Nolanahi ere, IKZTE irakasgaian gehiago sakonduko da idatzizko testu-generoetan eta Ahozko komunikazio zientifiko-teknikoa euskaraz (AKZTE) irakasgai honetan, ahozko eta idatzizko testuak landuko badira ere, lan-ildo nagusia ahozko komunikazioaren bereizgarriak izango dira.

Irakasgaiok lotura zuzena dute baita Ingeniaritza Kimikoa Graduko zenbait gaitasun zehatzekin ere:

- -M02CM09. Eskuraturiko ezagutzak adierazpen idatzian komunikatu eta transmititu.
- -M04CM5. Idatziz zein ahoz, eraginkorki komunikatu eta igorri eskuratutako ezagutzak, emaitzak eta trebetasunak ingurune eleanitzean eta disziplina askotarikoan.
- -M05CM6. Komunikatu eta helarazi, eraginkorki eta modu ordenatuan, txosten idatzi baten bidez, kanpo praktikan eskuratutako ikastaldiaren emaitzak.
- -G012. Ezagutzak, emaitzak, abileziak eta trebetasunak diziplina eta hizkuntza anitzeko ingurune batean komunikatu eta helaraztea.

Horretaz gain, gradu amaierako lana prestatzen ari diren ikasleei oso baliagarri izango zaie irakasgai hau, txosten zientifikoak idazteko eta ahozko aurkezpen akademikoetarako beharrezkoak diren baliabideak eta trebetasunak landuko baitira.

GAITASUNAK / IRAKASGAIA IKASTEAREN EMAITZAK

- 1. Goi-mailako tituludunek euskararen erabileran eta garapenean duten eraginaren kontzientzia hartzea, eta norberaren komunikazio-rola berraztertzea testuinguru horretan.
- 2. Informazio zientifikoa bilatzea, ulertzea, sintetizatzea eta kritikoki aztertzea.
- 3. Ikerkuntzarekin, aholkularitza teknikoarekin eta irakaskuntzarekin lotutako arazoei aurre egiteko bideak adostea, aurkeztea eta argudiatzea, elkarlana baliatuta.
- 4. Kontsulta-tresnak erabiltzen jakitea (bereziki Interneten eskuragarri daudenak), askotariko komunikazio-egoeretan sor daitezkeen premiei egokiro erantzuteko mailan.
- 5. Zientzia arloko gaiak komunikatzea, komunikazio-testuinguruaren eskakizunak aintzat hartuta: dibulgazio-hitzaldiak, klase magistralak, kongresuetarako komunikazioak, hitzaldietarako euskarri idatzia, poster zientifikoa...
- 6. Norberaren intuizio eta esperientzia linguistikoak sistematizatu, azaldu eta berrikustea.

CONTENIDOS TEÓRICO-PRÁCTICOS

EGITARAU TEORIKOA

- 1. GAIA: Hizkuntzen kudeaketa ingurune akademiko eta profesional eleaniztunean
- 1.1. Hizkuntza-eskubideak eta hizkuntza gutxituak
- 1.2. Hizkuntza gutxituak eta hizkuntza-plangintza
- 1.3. Euskararen normalizazio-plangintza
- 1.4. Hizkuntza-ukipena, mailegutza, kalkoak eta hizkuntza-mendekotasuna
- 1.5. Termino-sorkuntzarako bideoak eta hizkuntza-ukipena
- 1.6. Hizkuntzen kudeaketarako praktika onak testuinguru akademiko eta profesional eleaniztunean
- 2. GAIA: Hizkuntza-aldaerak eta hiztunen errepertorio linguistikoa
- 2.1. Hizkuntza-aldaerak: aldaera geografikoak vs aldaera funtzionalak
- 2.2. Idatzizko eta ahozko testuen alderaketa
- 2.3. Ortografia eta ortotipografia
- 2.4. Puntuazioa eta prosodia
- 2.5 Aldakortasuna ahozko erregistroetan

- 2.6. Hiztunen errepertorio linguistikoa eta komunikazio formala
- 2.7. Euskara Batuaren Ahoskera zaindua
- 3. GAIA: Ahozkorako diskurtso-estrategiak
- 3.1. Ahozko komunikazio akademikoa
- 3.2. Hiztegi eta fraseologia akademikoa: terminoak, kolokazioak eta diskurtso-formulak
- 3.3. Pertsuasioa komunikazio akademiko eta profesional multimodalean
- 3.4. Baliabide erretorikoak: galdera erretorikoak, errepikapena, adibidegintza, birformulazioa
- 3.5. Baliabide fonikoak: etenak, intonazioa
- 3.6 Baliabide ez-berbalak
- 4. GAIA: Euskararen lantze funtzionala alor akademikoan
- 4.1. Hizkuntza gutxituen biziberritzea: terminologia eta fraseologia espezializatua
- 4.2. Euskararen erregistro akademikoen garapena
- 4.3. Aldakortasuna hizkuntza garatuetan eta normalizazio bidean dauden hizkuntzetan
- 4.4. Hizkuntza-baliabide espezializatuen ezarpena adituen diskurtsoetan

EGITARAU PRAKTIKOA

Ordenagailu-gelako praktiketan lau proiektu eramango dira aurrera.

- A. proiektua: Euskararen normalizazioari buruzko eztabaida eta iritzi-artikulua.
- B. proiektua: Ahoskera zaindua identifikatzea, eta ahoz gorako irakurketan erabiltzea.
- C. proiektua. Helburu didaktikoetarako ahozko komunikazioa: klase magistrala eta bideo tutoriala.
- D. proiektua. Komunikazio akademiko espezializatua: GrALaren laburpena, defentsa eta dibulgazio-hitzaldia.

METODOLOGIA

Eskola eta jarduera gehienak praktikoak izango dira, eta, ahal dela, informatika-gelan egingo dira. Horretarako, eGela erabiliko da.

- Banakako lanak
- Talde-lanak
- Ordenagailu-praktikak
- Eskola teorikoak (ariketetan jorraturiko arazo eta egiturak azaltzeko)
- Ahozko aurkezpenak

IRAKASKUNTZA MOTAK

Eskola mota	M	S	GA	GL	GO	GCL	TA	TI	GCA
lkasgelako eskola-orduak	15		15		30				
Horas de Actividad No Presencial del Alumno/a	22,5		22,5		45				

 Legenda:
 M: Magistrala
 S: Mintegia
 GA: Gelako p.

 GL: Laborategiko p.
 GO: Ordenagailuko p.
 GCL: P. klinikoak

TA: Tailerra TI: Tailer Ind. GCA: Landa p.

EBALUAZIO-SISTEMAK

- Ebaluazio jarraituaren sistema
- Azken ebaluazioaren sistema

KALIFIKAZIOKO TRESNAK ETA EHUNEKOAK

- - Ikus ohiko deialdirako eta ezohiko deialdirako orientazioak. % 100

OHIKO DEIALDIA: ORIENTAZIOAK ETA UKO EGITEA

Irakasgaiaren ebaluazioa jarraitua izango da. Ebaluazio jarraituak eskatzen du saio guztietara bertaratzea eta zeregin guztiak garaiz entregatzea. Ebaluazio jarraitua egiten hasi eta alde batera uztea erabakitzen duten ikasleek edo hasieratik bukaerako azterketaren bidez bakarrik ebaluatuak izatea aukeratzen duten ikasleek bukaerako azterketa egiteko eskubidea dute (puntuazioaren % 100). Eskubide hori gauzatu ahal izateko, ikasleak ebaluazio jarraituari uko egiten diola jasotzen duen idatzi bat helarazi behar dio irakasgaiaren ardura duen irakasleari, lauhilekoaren hasierako 9 asteen barruan (16-24 asteetan).

Halako idatzirik bidali ezean, ebaluazio jarraiturako aurkeztutako zereginak kalifikatuko dira.

UPV/EHUko Ebaluaziorako Arautegiko 12.2 artikuluaren arabera, azken probaren pisua irakasgaiko kalifikazioaren % 40 edo txikiagoa bada, deialdiari uko egin nahi dioten ikasleek kasuan kasuko irakasgaiaren irakaskuntza aldia bukatu baino gutxienez hilabete lehenago eskaria egin beharko dute deialdiari uko egiteko. Eskari hori, idatziz, irakasgaiaren ardura duen irakasleari aurkeztu beharko zaio. Hori horrela, deialdiari uko egiten dioten ikasleek «AURKEZTEKE» kalifikazioa jasoko dute aktan; deialdiari uko egiten ez dioten ikasleek, azken probara aurkezten ez badira, aktan «GUTXIEGI» kalifikazioa izango dute (zenbakizko kalifikazioa: 0).

Ebaluazio jarraiturako tresnak hauek izango dira:

PORTFOLIOA % 30 AHOZKO AURKEZPENAK % 50

GALDETEGIAK % 20 [NAHITAEZ APROBATU BEHARREKOA]

Bukaerako azterketan % 100 ebaluatzea eskatuko duten ikasleentzako orientazioak ezohiko deialdian zehaztutakoak dira.

EZOHIKO DEIALDIA: ORIENTAZIOAK ETA UKO EGITEA

Irakasgaiaren % 100 azterketa bidez ebaluatuko da. Azterketa ordenagailu-gelan egingo da, hizkuntza-tresna elektronikoekin lotutako gaitasunak ebaluatu ahal izateko. Ahozkoa ere ebaluatuko da. Horretarako, azterketa egunean, idatzia bukatu ondoren, 10 minutuko ahozko aurkezpena egingo dute azterketara aurkezten diren ikasleek ordenagailugelan bertan. Aurkezpena egiteko diapositibak prest ekarri beharko dituzte azterketa egiten duten ikasleek.

Bukaerako proban erabiliko diren tresnak hauek izango dira:

TEST MOTAKO PROBA % 20 ARIKETA PRAKTIKOAK % 15 IDAZLANA % 15 AHOZKO AURKEZPENA %50

NAHITAEZ ERABILI BEHARREKO MATERIALAK

Irakasleak eGelan jarritako materialak.

BIBLIOGRAFÍA

Oinarrizko bibliografia

EZEIZA, J; ALDEZABAL, I., ELORDUI, A., ZABALA, I., UGARTEBURU, I., ELOSEGI, K. (2010) PREST: Unibertsitateko komunikazio-gaitasunen eskuliburua. EHUko Euskara Errektoreordetzaren sareko argitalpena:

http://testubiltegia.ehu.es/Prest-komunikazio-gidaliburua

ETXEBARRIA, J.R. (2011) Zientzia eta teknikako euskara arautzeko gomendioak. EIMAren estilo-liburua ETXEBARRIA, J.R. (2014) Komunikazioa euskaraz ingeniaritzan. Bilbo. EHU eta UEU

EUSKALTZAINDIA (2018) Euskara Batuaren Eskuliburua (EBE).

EUSKALTZAINDIA "Euskara Batuaren Ahoskera Zaindua" (Euskaltzaindiaren 87 araua)

EUSKALTZAINDIA " Adierazpena euskalkien erabileraz: irakaskuntzan, komunikabideetan eta administrazioan" (Euskaltzaindiaren 137 araua)

Euskaltzaindiaren Ahoskera Batzordea "Ahoskerak axola du"

Gehiago sakontzeko bibliografia

ALVARADO CANTERO, L. (2017) "Géneros académicos orales: Estructura y estrategias de la exposición académica" Revista Nebrija de Lingüística Aplicada a la Enseñanza de las Lenguas.

ALCOBA, S. (1999) La oralización. Barcelona: Ariel Practicum.

BONDI, M. eta LORÉS, R. (ed.) (2014) Abstracts in Academic Discourse. Berna: Peter Lang

CASTELLÓ, M. (koord.) (2007) Escribir y comunicarse en contextos científicos y académicos. Conocimientos y estrategias. Crítica y fundamentos. Bartzelona: Graó

EUSKALTZAINDIA.1986. Maileguzko hitz berriei buruz Euskaltzaindiaren erabakiak

EUSKALTZAINDIA (1992) Hitz elkartuen osaera eta idazkera

GOTI, M. (ed.) (2012) Academic Identity Traits. Berna: Peter Lang

GUTIÉRREZ RODILLA, B.M. (2003) Aproximaciones al lenguaje de la ciencia. Burgos: Fundación Instituto Castellano y Leonés de la Lengua. Colección Beltenebros.

ITURBE, J. eta TXURRUKA, J.M. (2020) Amets bikoitza. Euskara zientifikotzen eta zientzia euskaratzen. EHUko Argitalpen Zerbitzua.

KAUR, K., AFIDA, M.A. (2018) "Exploring the Genre of Academic Oral Presentations: A Critical Review" International Journal of Applied Linguistics & English Literature. Vol.7, 1

UZEI. 1982. Maileguzko hitzak: ebakera eta idazkera

VALEIRAS, J., RUIZ, M.N., JACOBS, G. (2018) "Revisiting persuasion in oral academic and professional genres: Towards a methodological framework for Multimodal Discourse Analysis of research dissemination talks" Ibérica: Revista de la Asociación Europea de Lenguas para Fines Específicos (AELFE), Nº. 35: 93-118

VÁZQUEZ, G. (2001) El discurso académico oral. Guía didáctica para la comprensión auditiva y visual de clases magistrales. Madrid: ADIEU.

YOUNG, K.S. eta TRAVIS, H. P. (2018) Oral communication: skills, choices, and consequences. Illinois: Waveland press. (4. argitalpena, 1. argitalpena 2012)

ZUAZO, K. (2005) Euskara batua. Ezina ekinez egina. Elkar.

ZUAZO, K. (2008) Euskalkiak euskararen dialektoak. Elkar.

Aldizkariak

Elhuyar aldizkaria

http://aldizkaria.elhuyar.eus/

Ekaia. Euskal Herriko Unibertsitateko Zientzia Aldizkaria http://www.ehu.eus/ojs/index.php/ekaia

Interneteko helbide interesgarriak

http://www.euskaltzaindia.eus/

http://www.hiztegia.net/

http://hiztegiak.elhuyar.eus/

http://garaterm.ehu.es/garaterm_ataria/kontsultak/

http://ehu.eus/ehg/zehazki/

http://www.euskara.euskadi.eus

http://www.ei.ehu.es

http://www.elhuyar.eus/

https://www.ehu.eus/eu/web/euskara/ehulku-aurkibidea/

http://ehuskaratuak.ehu.eus/kontsulta/

http://www.euskara-errektoreordetza.ehu.eus/p267-http://garaterm.ehu.es/garaterm_ataria/eu http://31eskutik.eizie.eus/

http://www.erabili.eus/

http://gaika.ehu.eus/eu

https://zientziakaiera.eus/

http://teknopolis.elhuyar.eus/?lang=eu

https://ahotsak.eus/

OHARRAK

GUÍA DOCENTE 2023/24 Centro 310 - Facultad de Ciencia y Tecnología Plan GINQUI30 - Grado en Ingeniería Química Curso 4º curso ASIGNATURA 26738 - Análisis de Riesgos y Seguridad en Plantas Industriales Créditos ECTS: 4,5

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

En el ámbito de la industria química se implantan sistemas de seguridad industrial en base a la evaluación de riesgos de los procesos operativos aplicados. El alumnado se instruirá en la metodología de evaluación de riesgos laborales, en seguridad química, en seguridad biológica y gestión de accidentes y emergencias.

La asignatura se divide en tres bloques: i)metodologías de evaluación de riesgos, ii)riesgos por incendios y explosiones, seguridad química y seguridad biológica y iii)elaboración de planes de emergencia e implantación de sistemas de gestión de la seguridad según estandares internacionales.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

COMPETENCIAS:

Conocimiento básico de los aspectos de Análisis de Riesgos y Seguridad en Plantas Químicas, en una empresa u organización industrial existente, en fase de diseño y en régimen de proceso. Se pretende alcanzar las competencias necesarias para:

- 1. Implantar un Sistema de Gestión de Seguridad de acuerdo a las normas de la serie ISO-45001 (substituyen a OHSAS-18001).
- 2. Desarrollar el estudio de Evaluación de Riesgos de un proceso productivo, planificando y ejecutando las auditorias necesarias para evaluar de forma objetiva los elementos de riesgo, y estableciendo acciones preventivas que reduzcan los riesgos de accidente.
- 3. Comparar y seleccionar Equipos de Proteccion Personal (EPIs) y colectiva (EPC).

CONTENIDOS TEÓRICO-PRÁCTICOS

TEMARIO

- 1.- TÉCNICAS DE SEGURIDAD INDUSTRIAL. Concepto y definición de seguridad industrial. Técnicas de seguridad industrial: definición y aplicación. Condiciones de trabajo y salud. Señalización.
- 2.- ACCIDENTES EN PLANTAS: ESTUDIO DE CASOS REALES. Metodología en la investigación de accidentes. Índices estadísticos de accidentalidad. Notificación y registro de accidentes. Análisis de efectos y causas de accidentes graves.
- 3.- ANÁLISIS DE RIESGOS DE PROCESOS. Los riesgos profesionales. Técnicas de identificación de riesgos: métodos comparativos, índices de riesgo y método HAZOP. Los productos químicos como factores de riesgo.
- 4.- SEGURIDAD INDUSTRIAL EN PLANTAS: INCENDIOS Y EXPLOSIONES. Características de inflamabilidad. Explosiones confinadas. Explosiones no confinadas. Ruptura de recipientes. Incendios de líquidos en charco. Dardos de fuego. Procesos BLEVE y esferas de fuego.
- 5.- SEGURIDAD INDUSTRIAL EN PLANTAS: ESCAPE DE SUSTANCIAS PELIGROSAS. Caudal másico de descarga. Evaporación. Dispersión de gases y vapores. Riesgos derivados de las operaciones de carga y descarga.
- 6.- EL MEDIO AMBIENTE DE TRABAJO: CONTAMINANTES QUÍMICOS BIOLÓGICOS Y FÍSICOS. Definición e identificación de contaminante. Medición de la exposición y valoración. Sistemas activos y pasivos. Medidas de prevención y protección individual y colectiva.
- 7.- PLANES DE EMERGENCIA. Manual de autoprotección. Elaboración de los planes de emergencia. Inspecciones de seguridad. Sistemas de Gestión según ISO-45001.

METODOLOGÍA

La asignatura está dividida en tres bloques, con tres temas por bloque, que cubren la metodología de Evaluación de Riesgos, la Seguridad Industrial frente a incendios, explosiones y fugas de productos químicos y el desarrollo de planes de emergencias e implantación de Sistemas de Gestión de la Seguridad.

Los objetivos docentes de esta asignatura se orientan hacia:

- 1. Una formación básica en la metodología de Evaluación de Riesgos referida a los entornos industriales del sector químico.
- 2. Un conocimiento básico de los riesgos derivados de los incendios, explosiones y fugas accidentales, para establecer medidas de seguridad adecuadas a cada empresa y entorno social.
- 3. Una formación básica en las herramientas utilizadas en la industria para la planificación de la Seguridad: desarrollo de los planes de emergencias e implantación de Sistemas de Gestión de la Seguridad.

En los seminarios se simularán inspecciones de seguridad industrial que auditen la evaluación de riesgos de una empresa del sector químico o relacionada, con el fin de establecer:

- La adecuación del alcance de la evaluación de riesgos

- El nivel de desviaciones y trabajos no conformes al Sistema de Seguridad.
- La eficacia del plan de mantenimiento y del plan de formación/cualificación.

TIPOS DE DOCENCIA

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	30	15							
Horas de Actividad No Presencial del Alumno/a	45	22.5							

 Leyenda:
 M: Magistral
 S: Seminario
 GA: P. de Aula

 GL: P. Laboratorio
 GO: P. Ordenador
 GCL: P. Clínicas

TA: Taller Ind. GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 80%
- Trabajos en equipo (resolución de problemas, diseño de proyectos) 20%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

Evaluación CONTINUA.

La convocatoria Ordinaria consistirá en los siguientes porcentajes de peso de cada parte en la evaluación total:

- Examen escrito: 80% (en lugar y fecha que determine la ZTF/FCT y que aparecerá publicado en su Web)
- Ejercicios y casos prácticos: 20% (a desarrollar en equipo en aula). Consisten en el análisis de accidentes producidos en plantas industriales, y en actividades conexas desde el punto de vista legal y laboral. Se evalúa el análisis de los factores de riesgo, la definición de la cadena de acontecimientos, las acciones correctivas y las acciones preventivas propuestas para evitar la repetición del accidente y/o aminorar sus efectos.

Evaluación NO CONTINUA.

La evaluación del alumnado es continua (examen + trabajos). No obstante, el alumnado puede renunciar a ella mediante comunicación por escrito de dicha renuncia, que deberá realizarse antes de la semana 9. En este caso, el examen escrito supondrá el 100% de la calificación porque incorporará una serie de preguntas adicionales que representarán el 20% de la calificación final.

Tanto en el caso de evaluación final como en el caso de evaluación continua, bastará con no presentarse a la prueba final para que la calificación de la asignatura sea NO PRESENTADO o NO PRESENTADA.

Si fuera necesario realizar la evaluación no-presencial, en el caso de que las condiciones sanitarias impidan la realización de la evaluación en los términos descritos con anterioridad, para todo o parte del alumnado matriculado en la asignatura, se atenderán las directrices emitidas por el Rectorado sobre la evaluación en el momento de realizarla.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

La calificación de la Convocatoria Extraordinaria se realizará mediante un examen escrito obligatorio (en lugar y fecha que determine la ZTF/FCT y que aparecerá publicado en su Web), cuyo porcentaje de peso será el 100% según indica la Normativa de Evaluación del Alumnado.

Si fuera necesario realizar la evaluación no-presencial, en el caso de que las condiciones sanitarias impidan la realización de la evaluación en los términos descritos con anterioridad, para todo o parte del alumnado matriculado en la asignatura, se atenderán las directrices emitidas por el Rectorado sobre la evaluación en el momento de realizarla.

MATERIALES DE USO OBLIGATORIO

Apuntes de la asignatura disponibles en E-GELA del curso correspondiente.

BIBLIOGRAFÍA

Bibliografía básica

- 1. Norma ISO-45001:2018 (Occupational health and safety management systems. Requirements with guidance for use).
- 2. Bond, J., The Hazards of Life and All That, IOP Publishing, 1996,
- 3. Dirección General de Protección Civil, Guía técnica: Metodología para el análisis de riesgos. I. Visión general. Madrid, 1994.
- 4. Guidelines for Chemical Process Quantitative Risk Analysis, AIChE, New York, 1989.
- 5. Kent, J.A. "Riegel´s Handbook of Industrial Chemistry". Chapman & Hall, New York, 1992.
- 6. Lees, F.P., Loss Prevention in the Process Industries. Butterworth-Heinemann. Londres, 1980.
- 7. Santamaría, J.M., Braña, P.A., Análisis y reducción de riesgos en la industria química, Mapfre, D.L, Madrid, 1994.
- 8. TNO Environment, Energy and Process Innovation, The Yellow Book 2 vol., 820 pag., 3rd edition, Holland, 1997.
- 9. Gómez, G.; Manual para la formación en prevención de riesgos laborales: especialidad de seguridad en el trabajo; Editorial CISS (2003).
- 10. Haddow, G. D.; Introduction to emergency management; Butterworth Heinemann Ed. (2006).

Bibliografía de profundización

Legislación

- 1. REAL DECRETO 948/2005, de 29 de julio, por el que se modifica el Real Decreto 1254/1999, de 16 de julio, por el que se aprueban medidas de control de los riesgos inherentes a los accidentes graves en los que intervengan sustancias peligrosas. BOE núm. 181, de 30 de julio de 2005
- 2. REAL DECRETO 1254/1999, de 16 de julio, por el que se aprueban las medidas de control de los riesgos inherentes a los accidentes graves en los que intervengan sustancias peligrosas. BOE de 20 de julio de 1999.
- 3. REAL DECRETO 1196/2003, 19 de septiembre, Directriz Básica de protección civil para el control y planificación ante el riesgo de accidentes graves en los que intervienen sustancias peligrosas. BOE núm. 242 DE 9 DE OCTUBRE.
- 4. DIRECTIVA CE DEL CONSEJO, 96/82 de 24 de junio de 1982, relativa a los riesgos de accidentes graves en determinadas actividades industriales.
- 5. DIRECTRIZ BÁSICA para la elaboración y homologación de los planes especiales del sector químico. BOE 06/02/1991.
- 6. LEY 31/1995, de 8 de noviembre de Prevención de Riesgos Laborales. BOE 269, de 10 de noviembre.

Libros

- 1. "Perry´s chemical engineer´s handbook", Perry, R.H., y Green, D. W., McGraw-Hill, New York, 1997.
- 2. "Procedimiento para el Análisis de Riesgos de Operación.- Método HAZOP". Arístides Ramos Antón, COASHIQ.(APA.- revista Prevención. Julio-Septiembre 1987)
- 3. "Manual de seguridad industrial en plantas químicas y petroleras", Storch de Gracia, J.M., McGraw-Hill., Madrid, 1998.
- 4. "Análisis de Riesgos en Instalaciones Industriales", Edición UPC.- J. Casal, E. Montiel, E. Planas, J.A. Vilchez.- Septiembre 1999.

Revistas

Acción Preventiva

Revista de prevención de riesgos laborales de la CEOE.

Prevención

Revista Técnica de seguridad y salud laboral. ISSN: 0034-8732

Direcciones de internet de interés

http://osha.europa.eu http://www.cdc.gov/niosh http://www.osalan.net http://www.insht.es

OBSERVACIONES

Esta asignatura es de tipo formativo horizontal con aplicación de todo tipo de sectores industriales. En particular, es aplicable en empresas de la industria química y biotecnológica que conforman un sector en el que es obligatoria la realización de una evaluación de riesgos de la actividad y la elaboración de un plan de emergencias.

Durante el desarrollo de las pruebas de evaluación quedará prohibida la utilización de libros, notas o apuntes, así como de aparatos o dispositivos telefónicos, electrónicos, informáticos, y/o de comunicación de cualquier tipo, por parte del alumnado. Ante cualquier caso de práctica deshonesta o fraudulenta se procederá aplicando lo dispuesto en el protocolo sobre ética académica y prevención de las prácticas deshonestas o fraudulentas en las pruebas de evaluación y en los trabajos académicos en la UPV/EHU.

GUÍA DOCENTE

2023/24

Centro 310 - Facultad de Ciencia y Tecnología

Plan GINQUI30 - Grado en Ingeniería Química

ASIGNATURA

26766 - Análisis Económico de Procesos Químicos

Créditos ECTS: 4,5

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

Esta materia de último curso tiene dos objetivos principales:

- 1. Proporcionar a los estudiantes los principios, conceptos básicos y metodología de la economía ingenieril/industrial.
- 2. Ayudar a los estudiantes a desarrollar capacidades para el uso de estos métodos y los procesos racionales de toma de decisiones con los que se encontrarán en su práctica profesional.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

- A. Conocimiento de aspectos económicos a considerar en la evaluación económica de proyectos en química industrial y similares
- B. Aprendizaje de métodos de evaluación de alternativas de inversión de inversión en la industria química y similares.
- C. Valoración de los equipos de proceso en ingeniería, y análisis de oportunidad de sustitución de los equipos.
- D. Valoración del análisis de riesgos y realización de toma dedecisiones.

Competencias transversales o genéricas a desarrollar en la materia y en la titulación

- CT1. Compromiso ético.
- CT2. Capacidad de aprendizaie.
- CT3. Trabajo en equipo.
- CT4. Capacidad creativa y emprendedora.
- CT5. Capacidad comunicativa.
- CT6. Autonomía y responsabilidad.

CONTENIDOS TEÓRICO-PRÁCTICOS

- Tema 1. INTRODUCCIÓN. Economía: Macroeconomía y Microeconomía. Los análisis económicos en la empresa.
- Tema 2. EL VALOR DEL DINERO EN EL TIEMPO. Razones del interés del dinero. Tipos de interés: simple, compuesto y continuo. Diagramas de flujo de caja. Equivalencia del dinero en el tiempo. Valor presente y valor futuro. Series de pagos uniformes o con gradiente.
- Tema 3. ELEMENTOS PARA EL ANÁLISIS ECONÓMICO. Causas de depreciación del activo. Criterios de amortización: constante, progresiva, degresiva (suma de dígitos y saldo decreciente), semivariable y variable.
- Tema 4. MÉTODOS TRADICIONALES PARA LA MEDIDA DE LA RENTABILIDAD. Rentabilidad porcentual: análisis marginal. Los beneficios del riesgo. Tiempo de recuperación de la inversión. Crítica de los métodos expuestos. Consideración del interés.
- Tema 5. VALORACIONES BASADAS EN EL VALOR DEL DINERO EN EL TIEMPO. La plusvalía actual o valor actual neto (o capitalización de los ingresos/desembolsos). Valor (coste) anual equivalente. La rentabilidad intrínseca y su relación con la plusvalía actual. La rentabilidad externa.
- Tema 6. ANÁLISIS ESTRUCTURAL DE ALTERNATIVAS. Desarrollo y clasificación de alternativas. Análisis de alternativas independientes. Análisis de alternativas mutuamente excluyentes. El criterio marginal. Consideración de la vida de las alternativas. Cuasirrenta anual equivalente o coste anual equivalente.
- Tema 7. ANÁLISIS DE LS SUSTITUCIÓN DE EQUIPOS. Estudio de substitución de equipos por deterioro, obsolescencia y/o inadecuación. Vida económica para los reemplazamientos cíclicos.
- Tema 8. ASPECTOS FINANCIEROS. Fuentes de financiación: préstamos e intereses. El apalancamiento financiero. El arrendamiento financiero ("leasing"). Una decisión a tomar: ¿financiación o compra?
- Tema 9. ANÁLISIS DE SENSIBILIDAD. ¿Qué ocurriría si...? Sensibilidad de un proyecto único. Sensibilidad de varias alternativas.
- Tema 10. ANÁLISIS COSTE-BENEFICIO. Variables de conjunto objetivo de optimación. La capacidad óptima de proyectos. El coeficiente de utilización: producciones crítica y de cierre. Cálculo de la capacidad a instalar en un mercado dinámico. La venta en "dumping".
- Tema 11. ANÁLISIS DE RIESGOS Y TOMA DE DECISIONES. Conceptos probabilísticos. Árboles de decisión. Árboles de decisión descontados: una combinación de valor actual, probabilidad y valor esperado. Sensibilidad de las decisiones. Toma de decisiones bajo condiciones de incertidumbre. Decisiones competitivas: teoría de los juegos.

METODOLOGÍA

Clase de teoría (M). (19 horas) . Asimila conceptos, toma notas, planifica la preparación del tema. Plantea dudas y cuestiones complementarias.

Clase práctica de problemas (GA). (11 horas). Resuelve problemas seleccionados o los trabajos propuestos. Presenta los resultados en pizarra o mediante informes escritos.

Seminarios (S). (15 horas). Plantea dudas surgidas en las tareas no presenciales. Expone sus resultados sobre los

trabajos asignados. Discute los resultados.

Estudio. (45,5 horas np). Actividades de estudio particular o en grupo planificadas por los propios estudiantes, al margen de las clases regulares.

Problemas o casos propuestos y cuestionarios web. (22 horas np). Resuelve problemas o trabajos propuestos en cada tema o responde cuestionarios planteados por internet. Presenta los resultados mediante informes escritos.

TIPOS DE DOCENCIA

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	19	15	11						
Horas de Actividad No Presencial del Alumno/a	33	22	12.5						

 Leyenda:
 M: Magistral
 S: Seminario
 GA: P. de Aula

 GL: P. Laboratorio
 GO: P. Ordenador
 GCL: P. Clínicas

 TA: Taller
 TI: Taller Ind.
 GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 60%
- Realización de prácticas (ejercicios, casos o problemas) 40%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

EVALUACIÓN CONTINUA:

Durante el curso se realizarán ejercicios, casos o problemas, cuya valoración podrá aportar hasta un 40% de la nota final. Se realizarán dos pruebas escritas específicas, una hacia la mitad de la materia y otra al final de la misma. Complementarán el 60% restante de la nota final.

EVALUACIÓN FINAL:

Si la asignatura no ha sido aprobada con las actividades anteriores, el alumno tendrá derecho a un examen final escrito, con valoración única.

Si el alumno/a renuncia a la evaluación continua, en los plazos establecidos en la Normativa de Evaluación de la UPV/EHU, tendrá opción al examen final escrito, con valoración única.

Tanto en el caso de evaluación final como en el de evaluación continua, bastará con no presentarse a la prueba final para que la calificación de la asignatura sea NO PRESENTADO/A.

Puede encontrarse información adicional acerca de la naturaleza y características de las distintas actividades en la plataforma e-gela de la asignatura.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

Examen escrito sobre el contenido global de la asignatura, con valoración única.

En el caso de no presentarse al examen, figurará en la calificaión NO PRESENTADO/A.

MATERIALES DE USO OBLIGATORIO

- Recursos indicados en la plataforma Moodle. Se encuentran las transparenciasutilizadasen clase y un extenso listado de problemas y actividades a desarrollar.
- Williams G. Sullivan, Elin M. Wicks y James T. Luxhoj, Engineering Economy, 12ª edición, Prentice Hall, Nueva Jersey, 2003.

BIBLIOGRAFÍA

Bibliografía básica

Libros de problemas resueltos.

- 16 Profesores americanos revelan sus ficheros, Engineering Economy: Exam Files, Engineering Press, San José, California, 1984.
- José A. Sepúlveda, Williams E. Souder y Byron S. Gottfried, Engineering Economics, Schaums Outline Series in Engineering, McGraw Hill, Nueva York, 1984.

Bibliografía de profundización

- Max Kurtz, ¿Handbook of Engineering Economics: Guide for Engineers, Technicians, Scientists, and Managers, McGraw Hill, Nueva York, 1984.
- James L. Riggs y Thomas M. West, Engineering Economics, 3ª edición, McGraw Hill, Nueva York, 1986.

Revistas

Direcciones de internet de interés

OBSERVACIONES

GUÍA DOCENTE 2023/24 Centro 310 - Facultad de Ciencia y Tecnología Plan GINQUI30 - Grado en Ingeniería Química Curso 4º curso ASIGNATURA 26763 - Diseño Mecánico de Equipos Créditos ECTS: 6

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

DESCRIPCION

Códigos y normas. Criterios de diseño estructural. Diseño de recipientes cilíndricos, esféricos, cabezales y cubiertas. Diseño de toberas y aberturas. Fatiga en recipientes a presión. Diseño de bridas y soportes. Diseño mecánico de cambiadores de calor y otros equipos.

Esta asignatura requiere de los conocimientos de la asignatura "Resistencia de Materiales" de 3º curso (docencia del 1º cuatrimestre) y de la asignatura de "Ingeniería de Materiales" de 3º curso del grado de Ingeniería Química (docencia del 2º cuatrimestre).

La asignatura aporta los conocimientos en el ámbito profesional adecuados para desempeñar trabajos de ingeniería en el ámbito empresarial del sector del metal.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

COMPETENCIAS

Competencias específicas

- Analizar, modelizar y calcular equipos e instalaciones para el manejo de materiales sólidos y de fluidos, y para la transmisión de calor.
- Establecer, considerando los principios básicos de la ingeniería y resistencia de materiales, las especificaciones y el diseño de los equipos e instalaciones idóneas para un proceso.

Competencias transversales

- Comparar y seleccionar alternativas tecnológicas integrando criterios técnicos, económicos, medioambientales y de impacto social.
- Utilizar las tecnologías de la información y comunicación aplicadas al aprendizaje a nivel avanzado, y manejar de forma básica las fuentes de información, incluyendo bases de datos específicas de las materias del módulo, así como herramientas ofimáticas de apoyo a las presentaciones orales.
- Comunicar y transmitir, básicamente, por escrito y de forma oral, los conocimientos, resultados, habilidades y destrezas adquiridos, en un entorno pluridisciplinar y multilingüe.
- Participar y liderar, en su caso, grupos de trabajo con razonamiento crítico y espíritu constructivo.
- Resolver problemas de las materias comunes de la rama industrial, planteados con criterios de calidad, sensibilidad por el medio ambiente, sostenibilidad, criterio ético y fomento de la paz.

CONTENIDOS TEÓRICO-PRÁCTICOS

- 1.- Códigos y normas de recipientes a presión. Desarrollo de códigos de construcción de recipientes a presión. Consideraciones estructurales y de materiales.
- 2.-Elasticidad y plasticidad. Parámetros de diseño. Tensión-deformación. Proceso productivo siderúrgico de hierro y el acero en la industria. Laminación-extrusión-refilado en caliente y en frío.
- 3.- Criterios de diseño estructural de recipientes a presión. Modos de fallo. Teorías de fallo. Tipos de tensiones. Límites de tensión permitidos. Límites de servicio. Fractura. Tipos de fractura. Fractura dúctil. Fractura frágil. Mecanismos de fractura frágil. Mecánica de fractura.
- 4.- Diseño para cargas cíclicas. Fatiga en recipientes a presión. Diseño de curvas S-N de fatiga. Mecanismos de fatiga. Límite de fatiga. Determinación del límite de fatiga. Vida útil. Tensión de diseño. Daño acumulado. Procedimiento de evaluación a la fatiga.
- 5.- Diseño a bajas temperaturas. Tenacidad. Técnicas de determinación. Temperatura de transición dúctil-frágil. Procedimiento de evaluación de la tenacidad. Materiales tenaces.
- 6.- Diseño a altas temperaturas. Fluencia. Factores que afectan a la fluencia. Diseño de curvas de fluencia. Mecanismo del proceso de fluencia. Materiales resistentes en condiciones extremas de temperatura.
- 7.- Elección del material de diseño de recipientes a presión. Diseño por propiedades sucesivas. Diseño por propiedades múltiples. Corrosión y tipos de corrosión.
- 8.- Diseño de recipientes a presión. Parte 1: Diseño de carcasas de recipientes cilíndricos y esféricos. Determinación de las cargas. Recipientes de pared delgada. Recipientes de pared gruesa. Ecuaciones aproximadas. Pandeo de recipientes cilíndricos. Factor de seguridad. Parte 2: Diseño de cabezales y cubiertas de recipientes a presión. Cabezales hemiesféricos. Cabezales elipsoidales. Cabezales toroesféricos. Cabezales cónicos. Cabezales torocónicos. Cabezales planos y cubiertas.
- 9.- Diseño de toberas y aberturas de recipientes a presión. Concentración de tensiones alrededor de un agujero circular. Recipiente cilíndrico a presión interna con un agujero circular. Recipiente esférico a presión interna con un agujero

circular. Reforzamiento de aberturas. Toberas.

10.- Tuberías. Disposición en planta de tuberías. Ingeniería mecánica de tuberías. Sistemas de soportes de tuberías. Mantenimiento y reparaciones. Diseño de soportes y conexiones bridadas. Soportes tipo orejas. Soportes tipo faldilla. Soportes tipo silla. Comportamiento de juntas bridadas. Diseño de pernos.

METODOLOGÍA

En las clases magistrales se aportará la información relevante teórica de cada uno de los temas, resaltando los aspectos fundamentales de los mismos. Esta información debe complementarse con la bibliografía específica cuya referencia se aporta en las aulas virtuales y al final de cada tema.

En las clases de ordenador se resolverán problemas de diseño de mecánico de equipos, utilizando programas de uso general en la resolución de problemas. Los problemas serán desarrollados de forma individual o en grupos de alumnos, siendo en este caso cada uno de ellos líder y responsable de cada una de las fases del proceso de realización, planteamiento del problema y esquematización, resolución y resultados y conclusiones. La asistencia a las clases de ordenador es obligatoria (asistencia mínima 80%).

Las clases de ordenador se realizarán de forma telepresencial.

En las clases de seminario se realizará resolución de problemas globales de diseño mecánico y su posterior desarrollo. La asistencia a las clases de seminario es obligatoria (asistencia mínima 80%).

La resolución de cuestiones y problemas serán evaluados por el profesor para su seguimiento.

Las clases de seminario se realizarán de forma telepresencial.

Con objeto de complementar su formación en búsqueda bibliográfica, autonomía y presentaciones, cada grupo de alumnos deberá presentar de forma escrita (y/u oral) un tema sobre un diseño mecánico de equipos e instalaciones que constará de: índice, introducción, fundamento teórico, análisis y realización del diseño, resultados y conclusiones, nomenclatura y bibliografía.

TIPOS DE DOCENCIA

Levenda:

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	40	10			10				
Horas de Actividad No Presencial del Alumno/a	60	15			15				

S: Seminario

TA: Taller

M: Magistral

GL: P. Laboratorio

GO: P. Ordenador TI: Taller Ind. GA: P. de Aula GCL: P. Clínicas GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 90%
- Realización de prácticas (ejercicios, casos o problemas) 5%
- Trabajos individuales 2%
- Trabajos en equipo (resolución de problemas, diseño de proyectos) 3%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

EVALUACIÓN CONTINUA

PRUEBA ESCRITA EXAMEN PROBLEMAS Y TEORIA: 70-90% DEL TOTAL

LAS ENTREGAS SERAN:

REALIZACIÓN DE PRACTICAS DE ORDENADOR (EJERCICIOS, CASOS O PROBLEMAS) 5-15% TRABAJOS INDIVIDUALES Y/O TRABAJOS EN EQUIPO (RESOLUCIÓN DE PROBLEMAS, DISEÑO DE PROYECTOS): 5-15%

Para contabilización de las tareas la puntuación mínima de cada tarea deberá ser 5.0

Para contabilización de las tareas la puntuación mínima del examen deberá ser 5.0

SOLICITUD DE SISTEMA DE EVALUACION FINAL

El alumnado que quiera ser evaluado mediante el sistema de evaluación final, independientemente de que haya participado o no en el sistema de evaluación continua deberá presentar la renuncia a la evaluación continua, dirigida al profesorado responsable de la asignatura, a través de egela de la asignatura DME, rellenando el impreso que podrán descargar en egela de DME y cargándo este impreso relleno en egela, para lo que dispondrán de un plazo de 9

semanas, (semanas 1 hasta 9 del primer cuatrimestre), de acuerdo con el calendario académico del Centro. NO se admitirán renuncias por otros medios, ni fuera de plazo.

RENUNCIA A LA CONVOCATORIA

Tanto en el caso de evaluación final como en el caso de evaluación continua, al ser el peso de la prueba final de la asignatura "Diseño Mecánico de Equipos" superior al 40% de la calificación de la asignatura, bastará con no presentarse a dicha prueba final para que la calificación final de la asignatura sea NO PRESENTADO o NO PRESENTADA. (Art. 12.2 Texto aprobado en la Comisión de Grado del día 16 de mayo de 2019 y aplicable en 2019/20)

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

PRUEBAS DE EVALUACIÓN O EXAMEN: 100% DEL TOTAL

MATERIALES DE USO OBLIGATORIO

- La bibliografía básica (libros y código ASME)
- La documentación de los temas aportados en egela

BIBLIOGRAFÍA

Bibliografía básica

Los dos libros que se utilizan para el desarrollo de la asignatura son:

- Chattopadhyay, S.; Pressure vessels: design and practice, CRC Press, Boca Ratón, Fla., 2004.
- Megyesy, E.; Pressure Vessel Handbook, 14th Edition: ASME Code Section VIII, Division I Condensed; The Mechanical Engineering Reference Manual for the Design and Fabrication of ASME Boilers & Pressure Vessels, Pressure Vessel Publishing, 2008.

Libros de apoyo:

- Martinez, J.M. Normas de construcción de recipientes a presión. Guía del código ASME, Sección VII, division 1. Bellisco Ediciones, Madrid, 2008.
- ASME Boiler & Pressure Vessel Code VIII Division 1 Rules for Construction of Pressure Vessels, ASME, 2007.
- Moss, D.R.; Pressure Vessel Design Manual, Third Edition, Elsevier, 2004.
- Rothbart, H.A.; Brown, T.H.; Mechanical Design Handbook, Second Edition, McGraw Hill, 2006.

Bibliografía de profundización

- Escoe, K.; Piping and Pipelines Assessment Guide, Volume 1, Gulf Professional Pub., 2006.
- Escoe, A.K.; Mechanical Design of Process Systems: Piping and Pressure Vessels, CRC Press, Boca Ratón, 1994.
- Escoe, A.K.; Mechanical Design of Process Systems: Shell-And-Tube Heat Exchangers, Rotating Equi- Singh, K.P.;

Soler, A.I.; Mechanical Design of Heat Exchangers and Pressure Vessel Components, Arcturus Pub, 1999.

- Farr, J.R.; Jawad, M.H.; Guidebook for the Design of ASME, Section VIII: Pressure Vessels, Third Edition, ASME, 2005.
- Kuppan, T.; Heat Exchanger Des- Escoe, K.; Piping and Pipelines Assessment Guide, Volume 1, Gulf Professional Pub., 2006.2pment, Bins, Silos, Stacks, CRC Press, Boca Ratón, 1995.

Revistas

- American Society Of Mechanical Engineers ASME.
- Mechanical Engineering ASME
- International Journal of Manufacturing

Direcciones de internet de interés

- www.asme.org
- www.aenor.es
- www.iso.org

OBSERVACIONES

Las directrices de evaluación en esta asignatura se basan en los documentos: "Normativa reguladora de la Evaluación del alumnado en las titulaciones oficiales de Grado" y "Protocolo sobre ética académica y prevención de las prácticas deshonestas o fraudulentas en las pruebas de evaluación y en los trabajos académicos en la UPV/EHU" (https://www.ehu.eus/es/web/estudiosdegrado-gradukoikasketak/akademia-araudiak)"

Durante la celebración de las pruebas de evaluación:

- En el examen será obligatorio la utilización de calculadora No programable
- Una vez comenzada una prueba de evaluación ningún estudiante podrá abandonar el aula de examen durante los primeros quince minutos. Posteriormente, si un estudiante abandona el aula no podrá volver a acceder a la misma bajo ningún concepto (no habrá permiso de salida).
- Los teléfonos móviles y otros dispositivos electrónicos deberán estar apagados y guardados, nunca deberán estar sobre la mesa, en el bolsillo, ni al alcance del alumno.

COURSE GUIDE 2023/24								
Faculty 310 - Faculty of Science and Technology Cycle .								
Degree GINQUI30 - Bachelor`s Degree in Chemical Engineering Year Fourth								
COURSE								
26741 - Environmental Biotechnology Credits, ECTS								
COURSE DESCRIPTION								

Esta asignatura se imparte íntegramente en ingles. The most relevant aspects of the biotechnological applications that can contribute to the recovery of the environment (soils, water and atmosphere) will be introduced. How to obtain new bioproducts (bioplastics and biofuels, among others) by clean technologies will also be presented. After studying the metabolic pathways involved in the removal of natural and xenobiotics pollutants, the most appropriate bioremediation processes to remove such pollution will also be studied. As field practices, wastewater and solid waste treatment plants will be visited, as well as companies that produce biofuels.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

Mainly, the students should develop ethical commitment, motivation for quality and participation in social debate, showing sensitivity to environmental and social issues. Significant effort will also be dedicated to learn how to prepare a research proposal for funding. Furthermore, to have an integrated vision of the metabolism, of the systems of adaptation to the physiological and environmental changes. Finally, to know and apply well the criteria of evaluation of biotechnological risks and the protocols of performance and safety in an industrial plant.

CONTENIDOS TEÓRICO-PRÁCTICOS

Origin and composition of pollutants. The Ecosphere. Biogeochemical cycles. Biodiversity and sustainable development. Origin and accumulation of pollutants. Natural pollutants and their biodegradation. Xenobiotic contaminants. Economic and social aspects of environmental pollution. The colors of Biotechnology.

Cycles of carbon, nitrogen, sulfur and phosphorus. Biodegradation of carbon compounds. Methanogenesis. Biofixation of CO2. Dynamics of the atmospheric ozone layer. Global warming. Greenhouse effect and climate change. Biofixation of N2. Photoasimilation of nitrate and nitrite. Assimilation of ammonium. Nitrification and denitrification. Assimilation of sulfate. Acid rain and related issues.

Biodegradation of natural and xenobiotics compounds. Degradation of cellulose and lignin. Degradation of hydrocarbons. Biodegradation of aromatic compounds. Degradation of recalcitrant substances, PCBs and explosives.

Bioremediation of water, gas and soil in situ and ex situ. Immobilization of microorganisms and enzymes. Aerobic and anaerobic digestion. Sewage treatment. Photosynthetic assimilation of contaminants. Elimination of nutrients (nitrates, nitrites and phosphates) from potentially potable and residual waters. Treatment of gaseous effluents. Accumulation of metals. Elimination of heavy metals. Bioremediation with microalgae.

Bioproducts and renewable biofuels Biodegradable plastics. Polylactates and polyhidoxyalkanoates. Bioethanol and Biodiesel Other environmental applications such as biomining. Carbon desulfurization. Biotechnological control of pests. Bioinsecticides. Biofertilization. Bioproduction of hydrogen gas as a sustainable fuel.

TEACHING METHODS

The main content of this course will be taught by providing the theory background, as well as by developing interactive methodologies for learning. In oreder to implement the gained knowledge, students will be given the task to write a grant research proposal on one of the topics related to the course content of their choice. Additionally, the students will have to present a seminar related to the list of topics of the course. In both cases the students will have to search for journal articles with to complete their work. In this way they get used to looking for and obtaining specialized bibliography. To follow the theoretical explanations the students will have in the virtual classroom (e-Gela) all the slides, complementary readings and other teaching materials used in the course. In addition to the explanation of the theoretical lessons the students will participate in field visits to water and waste treatment plants described in the course.

TYPES OF TEACHING

Types of teaching	M	S	GA	GL	GO	GCL	TA	TI	GCA
Hours of face-to-face teaching	30	5							10
Horas de Actividad No Presencial del Alumno/a	45	7,5							15

Legend: M: Lecture-based S: Seminar GA: Applied classroom-based groups

GL: Applied laboratory-based groups

GO: Applied computer-based groups

GCL: Applied clinical-based groups

TA: Workshop

TI: Industrial workshop

GCA: Applied fieldwork groups

Evaluation methods

- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 35%
- Multiple choice test 35%
- Exercises, cases or problem sets 10%
- Individual assignments 20%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Evaluation system:

This course teaching will be evaluated by (i) an exam that includes test questions that will represent 35% of the final grade and a written project proposal that will represent 35% of the final grade; (ii) seminars (20%) and (iii) mandatory field practices (10%).

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Evaluation system:

The extraordinary call will consist of a test that will worth 100% of the qualification.

MANDATORY MATERIALS

There is no single book that can be called a textbook. There will be an open e-Gela page of the subject that will include multimedia materials, complementary reading and other didactic tools to follow the course.

BIBLIOGRAFÍA

Basic bibliography

Ram Lakhan (Ed.). Principles and Applications of Environmental Biotechnology for a Sustainable Future. Singh, Springer Editorial. 2017. 287 pp.

Banerjee, B.R. Environmental Biotechnology. Oxford University Press. 2008. 400 pp.

Evans, G.M. & Furlong, J.C. Environmental Biotechnology: Theory and Application Wiley. 2002. 300 pp.

Evans, G.M. & Furlong, J.C. (Eds). Environmental Biotechnology - Theory and Application. John Wiley & Sons. 2002. 286 pp.

Joshi, R. Environmental Biotechnology. Isha Books. 2006. 284 pp.

Mohapatra, P.K. Textbook of Environmental Biotechnology. I.K. International Publishing House. 2007. 664 pp.

Jördening H.J. & Winter, J. (Eds). Environmental Biotechnology: Concepts and Applications. Wiley. 2004. 488 pp.

Marandi, R. & Shaeri, A. Environmental Biotechnology. SBS Publishers. 2009. 679 pp.

Oestgaard, K. Environmental Biotechnology. John Wiley & Sons. 2008. 600 pp.

Rittmann, B.E. & McCarty, P.L. Environmental Biotechnology: Principles and Applications. Mcgraw-Hill Publishing Co. 2001. 768 pp.

Scragg, A. Environmental Biotechnology. Oxford University Press. 2005. 456 pp.

Detailed bibliography

Agathos, S.N. & Reineke, W. (Eds) Biotechnology for the Environment: Soil Remediation. Kluwer Academic Publishers. 2002. 150 pp.

Agathos, S.N & Reineke, W. (Eds). Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling. Kluwer Academic Publ. 2003. 288 pp.

Ahmed, N. Industrial and Environmental Biotechnology. Garland Science. 2001. 196 pp.

Crawford, R.L. & Crawford, D.L. (Eds). Bioremediation: Principles and Applications. Cambridge University Press. 2005. 416 pp.

Eriksson, K.-E.L. (Ed.). Biotechnology in the Pulp and Paper Industry. Springer Verlag. 1997. 339 pp.

Kawatra, K., Komar, S. & Natarajan K.A. (Eds). Mineral Biotechnology: Microbial Aspects of Mineral Beneficiation, Metal Extraction, and Environmental Control

Society Mining Metallurgy & Exploration. 2001. 263 pp.

Ecotoxicology Interface (Biotechnology Research). Cambridge University Press. 1998. 313 pp.

Rawlings, D.E. & Johnson, D.B. (Eds). Biomining. Springer. 2007. 314 pp.

Shareefdeen, Z. & Singh, A. (Eds). Biotechnology for Odor and Air Pollution Control Springer. 2008. 409 pp.

Viswanath Buddolla (Ed.) Environmental Biotechnology . Alpha Science International Ltd Editorial, 2016. 330 pp.

Daniel Vallero (Ed.) Environmental Biotechnology A Biosystems Approach (2nd Edition.) Elsevier Editorial. 2015. 746 pp.

Journals

Applied and Environmental Microbiology, Trends in Biotechnology, Biotechnology, Environmental Science Technology, Environmental Pollution, Water Research

Web sites of interest

http://www.efb-central.org/

http://www.bio.org/

http://www.ebcrc.com.au/

http://www3.inecol.edu.mx/iseb/

http://www-esd.lbl.gov/CEB/

OBSERVATIONS

GUÍA DOCENTE 2023/24 Ciclo Centro Indiferente 310 - Facultad de Ciencia y Tecnología Plan GINQUI30 - Grado en Ingeniería Química Curso 4º curso **ASIGNATURA** 26737 - Gestión de Calidad **Créditos ECTS:** 4,5

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

La asignatura de Gestión de Calidad se refiere a las grandes áreas de la Calidad enfocada a empresas industriales, dado que se imparte en el Grado de Ingeniería Química cuya vocación es la formación de Graduados/as con especialización hacia actividades laborales industriales. Dado que se imparte también en el Grado de Biotecnología, en la docencia se usarán ejemplos tanto del sector Químico del sector Biotecnológico.

Las grandes áreas de la Calidad que se explicarán serán, en especial, las siguientes: la implantación de Sistemas, la realización de auditorias, las herramientas de mejora continua y las técnicas de resolución de problemas.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

Conocimiento básico de los aspectos de Gestión de Calidad, en una empresa u organización industrial existente o en una nueva empresa en fase de implantación, para:

- 1. Ser capaz de implantar un Sistema de Gestión de Calidad, de acuerdo a las normas internacionales de la serie ISO-9000 y en concreto de la ISO-9001 de 2015.
- 2. Comparar y seleccionar herramientas de mejora continua y de Calidad Total, tanto trabajando en equipo como realizando actividades individuales con decisión propia.
- 3. Ser capaz de diseñar, preparar y utilizar formatos del Sistema de Gestión de Calidad de acuerdo a requisitos industriales generales.
- 4. Ser capaz de planificar y ejecutar las auditorias del Sistema de Gestión de Calidad necesarias para evaluar objetivamente el nivel de implantación, así como proponer no-conformidades, observaciones y recomendaciones de mejora.

CONTENIDOS TEÓRICO-PRÁCTICOS

Temario:

- 1.- La Gestión de la Calidad Total. Conceptos básicos actuales relacionados con la Calidad. Etapas históricas: control, aseguramiento y gestión. Pensamiento basado en riesgos. Estructura de alto nivel.
- 2.- Evaluación y auditoria interna de los Sistemas de Gestión de la Calidad. Auditorias de certificación. Contenido de las principales normas de la serie ISO 9000 y de ISO-9001 de 2015.
- 3.- La Gestión de la Calidad y su mejora. Herramientas y filosofía del control de calidad total (TQM). Herramientas para la mejora continua basadas en el ciclo de Deming. Descripción y aplicación de Brainstorming, Círculos de Calidad, Benchmarking v Reingeniería.
- 4.- Técnicas para la planificación, optimización y gestión de la Calidad. Análisis Modal de Fallos y Efectos (AMFE). Diseño Estadístico de Experimentos. Control Estadístico de Procesos (SPC).

METODOLOGÍA

La asignatura está dividida en cuatro temas que cubren la implantación de Sistemas de Gestión de Calidad, su desarrollo, evaluación y auditoria.

Los objetivos docentes de esta asignatura se orientan hacia:

- Una formación básica en la Calidad referida a los entornos industriales, en especial de empresas químicas y biotecnológicas, en sus vertientes de Sistemas de Gestión y de herramientas de implantación y de control.
- Un conocimiento básico de las herramientas utilizadas en la industria para la planificación de Calidad, así como su optimización y evaluación mediante herramientas de uso general en los departamentos de Calidad de organizaciones industriales.

Las prácticas de ordenador implicarán la preparación de programas en Excel (o software equivalente) para las siguientes funciones:

- Seguimiento de No-Conformidades.
- Especificaciones de recepción de materias primas.
- Plan de Auditorias.

TIPOS DE DOCENCIA

Tipo de Docencia	М	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	23	7	8		7				
Horas de Actividad No Presencial del Alumno/a	34	12	12		9,5				

 Leyenda:
 M: Magistral
 S: Seminario
 GA: P. de Aula

 GL: P. Laboratorio
 GO: P. Ordenador
 GCL: P. Clínicas

TA: Taller Ind. GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 60%
- Trabajos individuales 20%
- Trabajos en equipo (resolución de problemas, diseño de proyectos) 20%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

EVALUACIÓN CONTINUA

La Convocatoria Ordinaria consistirá en los siguientes porcentajes de peso de cada parte en la evaluación total:

- Examen escrito: 60% (en lugar y fecha que determine la ZTF/FCT y que aparecerá publicado en su Web). Es decir, es prueba escrita y obligatoria que se realizará en el periodo oficial de exámenes.
- Ejercicios y casos prácticos (a desarrollar en equipo en GA): 20% (si la persona estudiante no los realiza, la nota correspondiente sera cero).
- Trabajos individuales (a desarrollar en las clases de GO): 20% (si la persona estudiante no los realiza, la nota correspondiente sera cero).

El mínimo a superar para aprobar la asignatura es 5 (sobre 10) como resultado global de la suma de las tres partes.

Evaluación NO CONTINUA.

El alumnado que desee ser evaluado mediante sistema de evaluación final deberá comunicarlo al profesorado en los términos y plazos establecidos en la Normativa de Evaluación del Alumnado, antes de la semana 9. Los alumnos que opten por el sistema de Evaluación Final deberán realizar la Prueba Final (examen escrito) más una prueba adicional (prueba escrita) que demuestre la adquisición de las competencias de la materia. Los mínimos a superar en la Prueba Final y adicional son los mismos que los señalados anteriormente.

Tanto en el caso de evaluación final como en el caso de evaluación continua, bastará con no presentarse a la prueba final para que la calificación de la asignatura sea NO PRESENTADO o NO PRESENTADA.

Si fuera necesario realizar la evaluación no-presencial, en el caso de que las condiciones sanitarias impidan la realización de la evaluación en los términos descritos con anterioridad, para todo o parte del alumnado matriculado en la asignatura, se atenderán las directrices emitidas por el Rectorado sobre la evaluación en el momento de realizarla.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

La calificación de la Convocatoria Extraordinaria se realizará mediante un examen escrito obligatorio (en lugar y fecha que determine la ZTF/FCT y que aparecerá publicado en su Web), cuyo porcentaje de peso será el 100% según indica la Normativa de Evaluación del Alumnado.

Si fuera necesario realizar la evaluación no-presencial, en el caso de que las condiciones sanitarias impidan la realización de la evaluación en los términos descritos con anterioridad, para todo o parte del alumnado matriculado en la asignatura, se atenderán las directrices emitidas por el Rectorado sobre la evaluación en el momento de realizarla.

MATERIALES DE USO OBLIGATORIO

Apuntes de la asignatura disponibles en E-GELA del curso correspondiente.

BIBLIOGRAFÍA

Bibliografía básica

Norma ISO-9001:2015 de Sistemas de Gestión de Calidad, International Organization for Standardization, Septiembre 2015.

Cuatrecasas, L., Gestión Integral de la Calidad, Profit Editorial, Barcelona, 1999

Banks, J., Principles of Quality Control, John Wiley, Nueva York, 1989.

Swift, J.A., Introduction to Modern Statistical Quality Control and Management, St. Lucie Press, Florida, 1995.

Bibliografía de profundización

Barker, .B., Quality by Experimental Design, Marcel Decker, Nueva York, 1985.

Box, G.E.P., Hunter, W.G., Hunter, J.S., Statistics for Experimenters, John Wiley, Nueva York, 1978.

Dehnad, K., Quality Control, Robust Design, and the Taguchi Method, AT & T Bell Laboratories, Wadsworth & Brooks / Cole Advanced Books, Pacific Grove, California, 1989.

Hutchins, G.B., Introduction to Quality Management, Assurance and Control, Prentice Hall, New Jersey, 1991.

Ishikawa, K., Guide to Quality Control, Asian Productivity Organization, Nueva York, 1976.

John, P.W.M., Statistical Methods in Engineering and Quality Assurance, John Wiley, Nueva York, 1990.

Mosteller, F., Fienberg, S.E., Rourke, RE., Beginning Statistics with Data Analysis (2ª edición), Addison-Wesley, Massachusetts, 1983.

Ott, E.R, Schilling, E.G., Process Quality Control (2. edición), McGraw-Hill, Nueva York, 1990.

Ryan, T.M., Statistical Methods for Quality Improvement, John Wiley, Nueva York, 1989.

Ross, P.J., Taguchi Methods for Quality Engineering, McGraw-Hill, Nueva York, 1988.

Taguchi, G., Introduction to Quality Engineering. Designing Quality into Products and Processes, Quality Resources, 1990.

Revistas

- 1. Calidad. Editada por la Asociación Española para la Calidad (AEC), Depósito Legal: M-3470-1990 ISSN: 156-4915.
- 2. "UNE", editada por AENOR, ISSN: 0213-9510, Madrid.

Direcciones de internet de interés

- 1. EUSKALIT (http://www.euskalit.net)
- 2. AEC (http://www.aec.es)
- 3. AENOR (http://www.aenor.es)

OBSERVACIONES

Esta asignatura es de tipo formativo horizontal con aplicación en empresas de todo tipo de sectores industriales. En particular, es aplicable en empresas de la industria química y biotecnológica que conforman unos sectores industriales en los que resulta prácticamente obligatoria la implantación de Sistemas de Gestión de Calidad. Esta observación es válida teniendo en cuenta la practica industrial usual de acuerdo al estado actual de la técnica.

Durante el desarrollo de las pruebas de evaluación quedará prohibida la utilización de libros, notas o apuntes, así como de aparatos o dispositivos telefónicos, electrónicos, informáticos, y/o de comunicación de cualquier tipo, por parte del alumnado. Ante cualquier caso de práctica deshonesta o fraudulenta se procederá aplicando lo dispuesto en el protocolo sobre ética académica y prevención de las prácticas deshonestas o fraudulentas en las pruebas de evaluación y en los trabajos académicos en la UPV/EHU.

IRAKASKUNTZA-GIDA 2023/24 Ikastegia 310 - Zientzia eta Teknologia Fakultatea Plana GINQUI30 - Ingeniaritza Kimikoko Gradua IRAKASGAIA 28278 - Idatzizko komunikazio zientifiko-teknikoa euskaraz ECTS kredituak: 6

IRAKASGAIAREN AZALPENA ETA TESTUINGURUA ZEHAZTEA

IRAKASGAI HAU EUSKARAZ BAINO EZ DA ESKAINTZEN.

Irakasgai hau hautazkoa da Ingeniaritza Kimikoko Graduko 4. mailako ikasleentzat. Komunikazio zientifiko-teknikoa landuko da: dokumentazioa, berrikuspen bibliografikoak eta testu-genero ohikoenak. Horretarako, espezializazio maila desberdinetako idatzizko eta ahozko testuak landuko dira: ikerketa-artikuluak, dibulgaziokoak, testu didaktikoak, lexikografikoak, eta ahozko aurkezpen akademikoak. Berariaz sakonduko da idatzizko komunikazio zientifikoan. Espezialitate-alorreko terminologia eta adierazpideak ere landuko dira aipatutako testu-generoekin lotuta.

Irakasgai honek (IKZTEk) lotura zuzena du gradu berean eskaintzen den Ahozko komunikazio zientifiko-teknikoa euskaraz (AKZTE) hautazko irakasgaiarekin (4. mailan egin daitekeena hau ere; bigarren lauhilekoan). AKZTE irakasgaian, idatzizko komunikazio zientifikoa landuko bada ere, areago sakonduko da ahozko testu moten ezaugarrietan.

Halaber, IKZTE irakasgaian lantzen diren edukiek eta trebetasunek lotura zuzena dute Ingeniaritza Kimikoko Gradukoo zenbait gaitasun zehatzekin:

- M02CM09. Eskuraturiko ezagutzak adierazpen idatzian komunikatu eta transmititu.
- M04CM5. Idatziz zein ahoz, eraginkorki komunikatu eta igorri eskuratutako ezagutzak, emaitzak eta trebetasunak ingurune eleanitzean eta disziplina anitzean.
- M05CM6. Komunikatu eta helarazi, eraginkorki eta modu ordenatuan, txosten idatzi baten bidez, kanpo praktikan eskuratutako ikastaldiaren emaitzak.
- G012. Ezagutzak, emaitzak, abileziak eta trebetasunak diziplina eta hizkuntza anitzeko ingurune batean komunikatu eta helaraztea.

Horretaz gain, Gradu Amaierako Lana prestatzen ari diren ikasleei oso baliagarri izango zaie irakasgai hau, testuak planifikatzeko, ekoizteko eta berrikusteko baliabideak landuko baitira.

GAITASUNAK / IRAKASGAIA IKASTEAREN EMAITZAK

- 1-Goi-mailako tituludunek euskararen erabileran eta garapenean duten eraginaren kontzientzia hartzea, eta norberaren komunikazio-rola berraztertzea testuinguru horretan
- 2-Informazio zientifikoa bilatzea, ulertzea, sintetizatzea eta kritikoki aztertzea.
- 3-lkerkuntzarekin, aholkularitza teknikoarekin eta irakaskuntzarekin lotutako arazoei aurre egiteko bideak adostea, aurkeztea eta argudiatzea, elkarlana baliatuta.
- 4-Kontsulta-tresnak erabiltzen jakitea (bereziki Interneten eskuragarri daudenak), askotariko komunikazio-egoeretan sor daitezkeen premiei egokiro erantzuteko mailan.
- 5-Unibertsitate- eta lanbide-esparruetako dokumentuak egokiro sortzea (curriculumak, inprimakiak, protokoloak, eskabideak...).
- 6-Zientzia arloko gaiak komunikatzea, komunikazio-testuinguruaren eskakizunak aintzat hartuta: txostenak, artikulu zientifikoak, testu didaktikoak, dibulgazio-testuak, testu lexikografikoak.

CONTENIDOS TEÓRICO-PRÁCTICOS

EGITARAU TEORIKOA

- 1.GAIA: Komunikazioaren oinarriak: testuen kalitatea
- 1.1. Testua komunikazio-unitate linguistikoa: testuinguratzea, egituratzea eta testuratzea
- 1.2. Testuen berrikuspena
- 1.3. Komunikazio espezializatuaren bereizgarri batzuk
- 1.4. Ahozko eta idatzizko testuak
- 1.5. Testu-sorkuntzarako eta berrikuspenerako kontsulta-baliabideak
- GAIA: Zientzia-testuak: testu prototipikoen bereizgarri linguistikoak
- 2.1. Parametro pragmatikoak eta zientzia-testuak
- 2.2. Testu didaktikoak eta testu entziklopedikoak
- 2.3. Ikerketa-testuak eta dibulgazio-testuak
- 2.4. Zientzia-testuetan maiz erabiltzen diren zenbait diskurtso-eragiketa: testu-antolatzaileak, diskurtso-errutinak, aditzen hautapena.

- 2.5. Erregistro akademikoen zenbait bereizgarri: hitz elkartuen osaera eta idazkera, baliabide sinbolikoak diskurtsoan txertatzeko estrategiak eta izen-sintagma konplexuak.
- 3. GAIA: Terminologia eta fraseologia zientifikoak
- 3.1. Testu espezializatuak, terminologia eta fraseologia
- 3.2. Hizkuntza gutxituen biziberritzea eta terminologia
- 3.3. Termino-sorkuntza: hiztegi-sorkuntzarako bideak
- 3.4. Terminologia-aldakortasuna garatutako hizkuntzetan eta normalizazio bidean dauden hizkuntzetan
- 3.5. Zenbait okerbide euskarazko terminoen sorkuntzan
- 3.6. Kontsulta-baliabideak: hiztegi eta datu-base terminologikoak vs corpusak

EGITARAU PRAKTIKOA

Ordenagailu-gelako praktiketan hiru proiektu eramango dira aurrera.

A proiektua: Komunitate akademikoaren kideekin komunikatzea: eskabidea eta mezu elektronikoa Helburua: Komunikazioaren, testu-ekoizpenaren eta berrikuspenaren oinarriak lantzea (beti ere, kontsulta-baliabideak erabiliz: ortografia-zuzentzaileak, hiztegiak eta testu-corpusak).

B proiektua: Terminologia, jakintza espezializatua errepresentatzeko tresna.

Helburua: Goi-mailako tituludunek jakintza espezializatua euskaraz errepresentatzeko baliabideak sortzeko orduan duten erantzukizunaz kontzientzia hartzea.

C proiektua: Komunikazio espezializatua eta testu espezializatuak.

Helburua: Informazio espezializatua kudeatzea, ikerketa-testuak sortzeari begira. Ohiko ikerketa-testu ahozkoak eta idatzizkoak landuko dira eta, bestalde, terminologiaren komunikazio-funtzioa landuko da, komunikazio-egoera eta testu mota desberdinetan.

METODOLOGIA

Eskola eta jarduera gehienak praktikoak izango dira, eta, ahal dela, informatika-gelan egingo dira. Horretarako, eGela erabiliko da.

- Banakako lanak
- Talde-lanak
- Ordenagailu praktikak
- Eskola teorikoak (ariketetan jorraturiko arazo eta egiturak azaltzeko)
- Ahozko aurkezpenak

IRAKASKUNTZA MOTAK

Eskola mota	M	S	GA	GL	GO	GCL	TA	TI	GCA
lkasgelako eskola-orduak	15		15		30				
Horas de Actividad No Presencial del Alumno/a	22,5		22,5		45				

 Legenda:
 M: Magistrala
 S: Mintegia
 GA: Gelako p.

 GL: Laborategiko p.
 GO: Ordenagailuko p.
 GCL: P. klinikoak

 TA: Tailerra
 TI: Tailer Ind.
 GCA: Landa p.

EBALUAZIO-SISTEMAK

- Ebaluazio jarraituaren sistema
- Azken ebaluazioaren sistema

KALIFIKAZIOKO TRESNAK ETA EHUNEKOAK

- Ikus ohiko deialdirako eta ezohiko deialdirako orientazioak % 100

OHIKO DEIALDIA: ORIENTAZIOAK ETA UKO EGITEA

Irakasgaiaren ebaluazioa jarraitua izango da. Ebaluazio jarraituak eskatzen du saio guztietara bertaratzea eta zeregin guztiak garaiz entregatzea. Ebaluazio jarraitua egiten hasi eta alde batera uztea erabakitzen duten ikasleek edo hasieratik bakarrik bukaerako azterketaren bidez ebaluatuak izatea aukeratzen duten ikasleek bukaerako azterketa egiteko eskubidea dute (ebaluazioaren % 100). Eskubide hori gauzatu ahal izateko, ikasleak ebaluazio jarraituari uko egiten diola jasotzen duen idatzi bat helarazi behar dio irakasgaiaren ardura duen irakasleari, lauhilekoaren hasierako 9 asteen barruan (1.- 9. asteetan). Halako idatzirik bidali ezean, ebaluazio jarraiturako aurkeztutako zereginak kalifikatuko dira.

UPV/EHUko Ebaluaziorako Arautegiko 12.2 artikuluaren arabera, azken probaren pisua irakasgaiko kalifikazioaren % 40

edo txikiagoa bada, deialdiari uko egin nahi dioten ikasleek kasuan kasuko irakasgaiaren irakaskuntza aldia bukatu baino gutxienez hilabete lehenago eskaria egin beharko dute deialdiari uko egiteko. Eskari hori, idatziz, irakasgaiaren ardura duen irakasleari aurkeztu beharko zaio. Hori horrela, deialdiari uko egiten dioten ikasleek «AURKEZTEKE» kalifikazioa jasoko dute aktan; deialdiari uko egiten ez dioten ikasleek, azken probara aurkezten ez badira, aktan GUTXIEGI kalifikazioa izango dute (zenbakizko kalifikazioa: 0).

EBALUAZIO JARRAITUA: KALIFIKAZIO-TRESNAK ETA EHUNEKOAK:

- Galdetegiak: % 20 (NAHITAEZ APROBATU BEHARREKOA)

Ahozko aurkezpenak: % 30Portfolioa: % 50

EBALUAZIO EZ-JARRAITUA:

Bukaerako azterketarako orientazioak ezohiko deialdirako zehaztutako berberak dira.

EZOHIKO DEIALDIA: ORIENTAZIOAK ETA UKO EGITEA

Irakasgaiaren % 100 azterketa bidez ebaluatuko da. Azterketa ordenagailu-gelan egingo da, hizkuntza-tresna elektronikoekin lotutako gaitasunak ebaluatu ahal izateko. Ahozkoa ere ebaluatuko da. Horretarako, azterketa egunean, idatzia bukatu ondoren, 10 minutuko ahozko aurkezpena egingo dute azterketara aurkezten diren ikasleek ordenagailugelan bertan. Aurkezpena egiteko diapositibak prest ekarri beharko dituzte azterketa egiten duten ikasleek.

TEST MOTAKO PROBA % 20 (NAHITAEZ APROBATU BEHARREKOA) ARIKETA PRAKTIKOA(K) % 25 IDAZLANA % 25 AHOZKO AURKEZPENA % 30

NAHITAEZ ERABILI BEHARREKO MATERIALAK

Irakasleak emandakoa: apunteak, artikuluak eta ikasleak berak erabili beharko dituenak lanak prestatzeko.

BIBLIOGRAFÍA

Oinarrizko bibliografia

EZEIZA, J; ALDEZABAL, I., ELORDUI, A., ZABALA, I., UGARTEBURU, I., ELOSEGI, K. (2010) PREST: Unibertsitateko komunikazio-gaitasunen eskuliburua. EHUko Euskara Errektoreordetzaren sareko argitalpena:

http://testubiltegia.ehu.es/Prest-komunikazio-gidaliburua

ETXEBARRIA, J.R. (2011) Zientzia eta teknikako euskara arautzeko gomendioak. EIMAren estilo-liburua http://www.hezkuntza.ejgv.euskadi.eus/r43-

573/eu/contenidos/informacion/dih/es 5490/adjuntos/estilo liburua/Zientzia 22 06.pdf

ETXEBARRIA, J.R. (2014) Komunikazioa euskaraz ingeniaritzan. Bilbo. EHU eta UEU

EUSKALTZAINDIA (2018) Euskara Batuaren Eskuliburua (EBE).

https://www.euskaltzaindia.eus/index.php?option=com_ebe&view=bilaketa&task=sarrera<emid=1161

EUSKALTZAINDIA "Euskara Batuaren Ahoskera Zaindua" (Euskaltzaindiaren 87 araua)

https://www.euskaltzaindia.eus/dok/arauak/Araua_0087.pdf

EUSKALTZAINDIA " Adierazpena euskalkien erabileraz: irakaskuntzan, komunikabideetan eta administrazioan" (Euskaltzaindiaren 137 araua) https://www.euskaltzaindia.eus/dok/arauak/Araua_0137.pdf

Gehiago sakontzeko bibliografia

ALVARADO CANTERO, L. (2017) "Géneros académicos orales: Estructura y estrategias de la exposición académica" Revista Nebrija de Lingüística Aplicada a la Enseñanza de las Lenguas.

ALCOBA, S. (1999) La oralización. Barcelona: Ariel Practicum.

BONDI, M. eta LORÉS, R. (ed.) (2014) Abstracts in Academic Discourse. Berna: Peter Lang

CASTELLÓ, M. (koord.) (2007) Escribir y comunicarse en contextos científicos y académicos. Conocimientos y estrategias. Crítica y fundamentos. Bartzelona: Graó

EUSKALTZAINDIA. (1986). Maileguzko hitz berriei buruz Euskaltzaindiaren erabakiak

EUSKALTZAINDIA (1992) Hitz elkartuen osaera eta idazkera

GOTTI, M. (ed.) (2012) Academic Identity Traits. Berna: Peter Lang

GUTIÉRREZ RODILLA, B.M. (2003) Aproximaciones al lenguaje de la ciencia. Burgos: Fundación Instituto Castellano y Leonés de la Lengua. Colección Beltenebros.

ITURBE, J. eta TXURRUKA, J.M. (2020) Amets bikoitza. Euskara zientifikotzen eta zientzia euskaratzen. EHUko Argitalpen Zerbitzua.

KAUR, K., AFIDA, M.A. (2018) "Exploring the Genre of Academic Oral Presentations: A Critical Review" International Journal of Applied Linguistics & English Literature. Vol.7, 1

UZEI. 1982. Maileguzko hitzak: ebakera eta idazkera

VALEIRAS, J., RUIZ, M.N., JACOBS, G. (2018) "Revisiting persuasion in oral academic and professional genres: Towards a methodological framework for Multimodal Discourse Analysis of research dissemination talks" Ibérica: Revista de la

Asociación Europea de Lenguas para Fines Específicos (AELFE), Nº. 35: 93-118

VÁZQUEZ, G. (2001) El discurso académico oral. Guía didáctica para la comprensión auditiva y visual de clases magistrales. Madrid: ADIEU.

YOUNG, K.S. eta TRAVIS, H. P. (2018) Oral communication: skills, choices, and consequences. Illinois: Waveland press. (4. argitalpena, 1. argitalpena 2012)

ZUAZO, K. (2005) Euskara batua. Ezina ekinez egina. Elkar.

ZUAZO, K. (2008) Euskalkiak euskararen dialektoak. Elkar.

Aldizkariak

Elhuyar aldizkaria http://aldizkaria.elhuyar.eus/

Ekaia. Euskal Herriko Unibertsitateko Zientzia Aldizkaria http://www.ehu.eus/ojs/index.php/ekaia

Interneteko helbide interesgarriak

htttp://www.euskaltzaindia.eus/

http://www.hiztegia.net/

http://hiztegiak.elhuyar.eus/

http://garaterm.ehu.es/garaterm ataria/kontsultak/

http://ehu.eus/ehg/zehazki/

http://www.euskara.euskadi.eus

http://www.ei.ehu.es

http://www.elhuyar.eus/

https://www.ehu.eus/eu/web/euskara/ehulku-aurkibidea/

http://ehuskaratuak.ehu.eus/kontsulta/

http://www.euskara-errektoreordetza.ehu.eus/p267-http://garaterm.ehu.es/garaterm_ataria/eu http://31eskutik.eizie.eus/

http://www.erabili.eus/

http://gaika.ehu.eus/eu

https://zientziakaiera.eus/

http://teknopolis.elhuyar.eus/?lang=eu

https://ahotsak.eus/

OHARRAK

GUÍA DOCENTE

2023/24

Centro 310 - Facultad de Ciencia y Tecnología

Plan GINQUI30 - Grado en Ingeniería Química

Curso 4º curso

ASIGNATURA

26764 - Ingenieria Ambiental

Créditos ECTS: 6

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

La asignatura Ingeniería Ambiental es obligatoria de 4º curso del Grado de Ingeniería Química. Está dividida tres partes fundamentales: contaminación atmosférica, contaminación de aguas y residuos sólidos. Inicialmente, se describen los contaminantes atmosféricos y los problemas de contaminación más importantes, criterios para la evaluación de la calidad del aire. La dinámica atmosférica y la meteorología, dispersión de los contaminantes atmosféricos. En la segunda parte, se dan los criterios y parámetros de medida y evaluación de la calidad del agua, los procesos físicos y químicos de tratamiento de aguas residuales y se establecen los fundamentos de los procesos biológicos para la depuración (procesos con cultivos en suspensión y cultivos fijos). Finalmente, se incide en la problemática de los residuos sólidos. Residuos urbanos e industriales. Residuos tóxicos y peligrosos y los sistemas de gestión.

Códigos de UNESCO:

3303 Ingeniería y Tecnología Químicas

3308 Ingeniería y Tecnología del Medio Ambiente

3308.01 Control de la Contaminación Atmosférica (Ver 2509.02)

3308.02 Residuos Industriales

3308.04 Ingeniería de la Contaminación

3308.05 Eliminación de Residuos Radioactivos

3308.07 Eliminación de Residuos

3308.09 Ingeniería Sanitaria (Ver 3305.30)

3308.10 Tecnología de Aguas Residuales (Ver 3305.30)

3308.11 Control de la Contaminación del Agua (Ver 3305.30 y 2508.11)

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

COMPETENCIAS:

Conocimiento básico de los aspectos de salud e higiene industrial y de seguridad, en un proceso existente o en fase de diseño, para:

- 1. Ser capaz de aplicar las medidas pertinentes para la prevención y solución de problemas ambientales.
- 2. Comparar y seleccionar alternativas tecnológicas integrando criterios técnicos, económicos, medioambientales y de impacto social.
- 3. Adoptar tecnologías para la solución de problemas medioambientales, en base a la normativa establecida, criterios éticos y sostenibilidad.

OBJETIVOS:

Los objetivos docentes de esta asignatura se orientan hacia una formación básica del alumno en la problemática y la tecnología medioambiental.

Conocimiento básico de los principios y una revisión de los métodos para la eliminación y gestión sostenible de los contaminantes, efluentes y los residuos.

CONTENIDOS TEÓRICO-PRÁCTICOS

- 1.- EL MEDIO AMBIENTE Y LA CONTAMINACIÓN. El medio ambiente. Flujos de materia y energía en ecosistemas. Efectos de la actividad humana. Contaminación. Análisis histórico. Aspectos económicos de la contaminación ambiental.
- 2.- LA ATMÓSFERA Y LOS CONTAMINANTES ATMOSFÉRICOS. Composición media. Estándares de calidad. Fuentes de contaminación atmosférica. Emisión e inmisión. Cuantificación y unidades. Efectos de los contaminantes. Captación y muestreo. Métodos y aparatos de análisis de partículas. Métodos y aparatos de análisis de gases y vapores.
- 3.- DISPERSIÓN DE CONTAMINANTES A LA ATMÓSFERA. Fundamentos de meteorología. Gradiente térmico y estabilidad atmosférica. Capa de mezcla. Dispersión y dilución de las emisiones de chimeneas. Diseño de chimeneas. Selección de otros factores geométricos y materiales de construcción.
- 4.- TRATAMIENTO DE EFLUENTES GASEOSOS. SEPARACIÓN DE PARTÍCULAS Conceptos generales. Separadores gravitatorios, inerciales y centrífugos. Diseño de ciclones. Sistemas de filtración. Precipitación electrostática. Lavadores y absorbedores húmedos. Criterios de selección y aplicaciones.
- 5.- TRATAMIENTO DE EFLUENTES GASEOSOS. ELIMINACIÓN DE GASES Y VAPORES. Combustión: directa, indirecta y catalítica. Absorción y adsorción. Control de óxidos de azufre. Control de óxidos de nitrógeno. Eliminación y enmascaramiento de olores.
- 6.- PROBLEMÁTICA DE LA CONTAMINACIÓN ACUOSA. Los contaminantes y sus fuentes. Medida de la contaminación acuosa. Parámetros de caracterización de aguas residuales Medida del caudal. Demanda Química de Oxígeno. Demanda

Bioquímica de Oxígeno. Canon de vertido.

- 7.- MÉTODOS FÍSICO-QUÍMICOS. Métodos de tratamiento y depuración de aguas residuales. Depósitos de regulación y homogeneización. Coagulación y floculación. Sedimentación. Flotación. Neutralización. Oxidación Química.
- 8.- TRATAMIENTO BIOLÓGICO DE AGUAS RESIDUALES. Microbiología básica. Cinética de crecimiento microbiano. Estequiometría y rendimientos. Diseño de contactores para lodos activos. Tipos de reactores. Nitrificación-desnitrificación. Eliminación de fósforo.
- 9.-PROBLEMÁTICA DE LOS RESIDUOS SÓLIDOS Definición de residuo. Tipos de residuos sólidos. Residuos sólidos urbanos. Residuos tóxicos y peligrosos. Efectos contaminantes y valor potencial. Reciclaje y otras alternativas de gestión de residuos.
- 10.- Tratamiento de residuos tóxicos y peligrosos. Características y composición. Gestión de residuos tóxicos y peligrosos. Incineración. Tratamiento físico-químico. Depósitos de seguridad.
- 11.- Residuos sólidos urbanos. Características generales. Recogida y transporte. Estaciones de transferencia. Separación y concentración selectiva. Reducción de volumen. Vertedero controlado: Incineración. Pirólisis. Compostaje. Digestión anaerobia.

METODOLOGÍA

Los alumnos vistarán una instalación industrial para el tratamiento de residuos/efluentes industriales (4 horas GCA)

TIPOS DE DOCENCIA

Tipo de Docencia	М	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	28	14	14						4
Horas de Actividad No Presencial del Alumno/a	45	20	25						

 Leyenda:
 M: Magistral
 S: Seminario
 GA: P. de Aula

 GL: P. Laboratorio
 GO: P. Ordenador
 GCL: P. Clínicas

 TA: Taller
 TI: Taller Ind.
 GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 80%
- Realización de prácticas (ejercicios, casos o problemas) 10%
- Trabajos individuales 10%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

El sistema de evaluación continua será el ordinario.

Evaluación CONTINUA. La calificación global necesaria para superar la materia es del 50% (un 5 sobre 10).

Pruebas de valoración escritas: Valoración del 70 al 90%.

Durante el curso se realizarán pruebas escritas que evaluarán la adquisición de las competencias de la materia. La última prueba (Prueba Final) es una evaluación del conjunto de la asignatura, donde el alumno deberá mostrar que ha integrado todos los conocimientos.

Mínimos: En la última prueba escrita (Prueba Final) debe obtenerse más de un 4,0 sobre 10 en teoría y más de una 4,0 sobre 10 en problemas para superar la asignatura. En la Prueba de Problemas deberá puntuar en todos los ejercicios, un ejercicio sin contestar o puntuación cero será prueba no superada.

Realización de trabajos individuales y/o en grupo: Valoración 10-30%

En este apartado se considerarán las siguientes actividades:

Resolución de ejercicios/problemas/casos prácticos.

Prácticas de ordenador.

Informes escritos.

Participación en seminarios.

.../.

Mínimos: Asistir y/o participar y/o entregar el 60% de las actividades propuestas.

Evaluación NO CONTINUA: Se podrá renunciar al sistema de evaluación continua y optar por la evaluación final. El alumnado que desee ser evaluado mediante sistema de evaluación final deberá comunicarlo al profesorado en los términos y plazos establecidos en la Normativa de Evaluación del Alumnado. El alumnado interesado deberá enviar un escrito al profesor responsable comunicando la renuncia a la evaluación mixta en un plazo no superior a 9 semanas, a contar desde el comienzo del curso.

En este caso, el 100% de la nota se obtendrá en la Prueba Final. Los alumnos que opten por el sistema de evaluación final deberán realizar el examen final escrito más las pruebas adicionales que demuestren la adquisición de las competencias de la materia. Los mínimos a superar en la examen final y pruebas adicionales son los mismos que los señalados anteriormente.

Tanto en el caso de evaluación final como en el caso de evaluación continua, bastará con no presentarse a la prueba final para que la calificación de la asignatura sea NO PRESENTADO o NO PRESENTADA.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

Se siguen los mismos criterios que para la evaluación final de la convocatoria ordinaria, es decir, el 100% de la nota se obtendrá en la Prueba Final escrita.

MATERIALES DE USO OBLIGATORIO

Ingeniería ambiental: fundamentos, entornos, tecnologías y sistemas de gestión, G. Kiely, McGraw-Hill, Madrid (1999) Contaminación ambiental: una visión desde la Química, C. Orozco Barrenetxea y cols., Thomson-Paraninfo, Madrid (2003)

BIBLIOGRAFÍA

Bibliografía básica

* Contaminación ambiental: una visión desde la Química, C. Orozco Barrenetxea y cols., Thomson-Paraninfo, Madrid (2003)

Bibliografía de profundización

- * Ingeniería ambiental: fundamentos, entornos, tecnologías y sistemas de gestión, G. Kiely, McGraw-Hill, Madrid (1999)
- * Gestión de Residuos Tóxicos, Mc Lagrega, Buckingham, P.L., Evans J.C. Graw Hill, Madrid, 1996
- * Contaminación del aire. Origen y Control, Wark, K. Y Warner, C.F. Limusa, Mexico, (1990).
- * Depuración de aguas residuales. Colección Seinor. S.P. Hernandez Muñoz, A. (1990).
- * Los residuos peligrosos: caracterización, tratamiento y gestión, J.J. Rodríguez, A. Irabien, Síntesis, Madrid, (1999)
- * Gestión integral de residuos sólidos, G. Tchobanoglous, H. Theisen, A.V. Samuel, McGraw-Hill, Madrid (1994)

Revistas

Applied Catalysis B: Environmental Environmental Science & Technology Industrial & Engineering Chemistry Research Journal of Hazardous Materials Water Research Water Science & Technology

Direcciones de internet de interés

http://www.magrama.gob.es/es/ http://www.ambientum.com/

http://www.ingurumena.ejgv.euskadi.net/r49-3614/es/contenidos

OBSERVACIONES

GUÍA DOCENTE 2023/24	
Centro 310 - Facultad de Ciencia y Tecnología	Ciclo Indiferente
Plan GINQUI30 - Grado en Ingeniería Química	Curso 4º curso
ASIGNATURA	
26768 - Ingenieria de Procesos Biotecnológicos	Créditos ECTS: 4,5
DECODIDCIÓN V CONTEXTUALIZACIÓN DE LA ACIONATUDA	

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

La asignatura Ingeniería de Procesos Biotecnológicos es optativa de cuarto curso del Grado en Ingeniería Química.

Los objetivos docentes de esta asignatura se orientan hacia una formación extensiva en las aplicaciones de los sistemas biológicos por su capacidad para el reconocimiento y la catálisis. Se orienta el temario hacia la enzimología, para abordar con cierto rigor la catálisis enzimática homogénea y heterogénea (enzimas inmovilizados). La revisión de los principales reactores enzimáticos se basa en los conocimientos adquiridos para los reactores químicos y, consecuentemente, se realiza de modo comparativo. El crecimiento microbiano, estequiometría y energética celular, sirven para el análisis cinético que toma como base la ecuación de Monod y modelos no estructurados para el metabolismo y el crecimiento, donde se explican las interacciones microbianas. Otro aspecto es el análisis y diseño de biorreactores, donde se incluyen aquellos no convencionales y las técnicas de recuperación de bioproductos. En relación con los bioprocesos industriales, en esta asignatura se revisan algunos ejemplos carismáticos relacionados con ciertos sectores de interés: productos químicos, industria alimentaria y medio ambiente. Así se describen, entre otros, los procesos para la obtención de alcoholes, ácido cítrico, antibióticos, la fermentación alcohólica y láctica junto con algunas aplicaciones medioambientales de los microorganismos.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

COMPETENCIAS

- 1)Conocer la biología de los microorganismos que permita la comprensión, descripción y solución de problemas de la Ingeniería Biotecnológica.
- 2) Aplicar métodos de análisis cinético a sistemas enzimáticos y microbianos.
- 3) Abordar el diseño de biorreactores industriales.
- 4) Conocer las tendencias y perspectivas innovadoras de la Industria Bioquímica y de la Ingeniería del bioproducto en cada uno de sus sectores productivos.

OBJETIVOS

Los objetivos docentes de esta asignatura se orientan hacia una formación extensiva del alumno en las aplicaciones de los sistemas biológicos por su capacidad para el reconocimiento y la catálisis.

Alcanzar un conocimiento general en: Microorganismos de interés industrial. Reacciones enzimáticas homogéneas. Cinética y estequiometría del crecimiento microbiano. Análisis y diseño de biorreactores. Recuperación de bioproductos. Procesos microbianos en la industria. Aplicaciones medioambientales.

CONTENIDOS TEÓRICO-PRÁCTICOS

TEMA 1. Introducción a los procesos biotecnológicos

Introducción. Perspectiva histórica. Disciplinas afines. Desarrollo reciente de la industria biotecnológica. Prospectivas de desarrollo de la Biotecnología. Aspectos económicos y empresariales.

TEMA 2. Biología de los microorganismos de interés industrial.

Bioproductos comerciales principales. Estructura de los procesos fermentativos. Microorganismos de interés industrial. Factores del crecimiento celular. Mejora de microorganismos. Práctica de la esterilización. Procesos metabólicos. Principales rutas metabólicas. Regulación de las vías metabólicas. Metabolitos primarios y secundarios.

TEMA 3. Reacciones enzimáticas homogéneas.

Características generales de los sistemas enzimáticos Fuentes y producción de enzimas. Aplicaciones y usos industriales. Modelo de Michaelis-Menten. Modulación y regulación de la actividad enzimática. Reacciones con sustratos de solubilidad limitada Reacciones con enzimas inmovilizados. Efecto del tamaño de partícula y de la temperatura en sistemas heterogéneos.

TEMA 4. Cinética y estequiometría del crecimiento microbiano.

Estequiometría y energética celular. Fases del crecimiento microbiano discontinuo. Modelos de crecimiento no estructurados. Inhibición por el sustrato. Inhibición por el producto. Competición por dos sustratos limitantes. Modelo de Lotka-Volterra.

TEMA 5. Análisis y diseño de biorreactores.

Biorreactores CSTR y de lecho fijo. Reactores con alimentación discontinua. Sistemas con recirculación. Pulsantes. Biorreactores agitados por fluidos: air-lift y lechos fluidizados. Fermentadores de membrana. Fotobiorreactores.

TEMA 6. Recuperación de bioproductos.

Aspectos generales de la recuperación de bioproductos. Métodos de ruptura celular. Separación de insolubles. Separación, concentración y purificación de bioproductos.

TEMA 7. Obtención de productos químicos por procesos microbianos...

Antibióticos. Enzimas. Disolventes. Ácidos orgánicos. Aminoácidos.. Moléculas orgánicas complejas: Polisacáridos microbianos.

TEMA 8. Procesos microbianos en la industria alimentaria.

Fermentación alcohólica.. Elaboración de vinos de mesa. Fabricación de la cerveza. Vinagre. Proteínas unicelulares. Levadura de panadería comercial. Cultivo masivo de algas. Fermentaciones principales de la leche. Deterioro microbiano de los alimentos.

TEMA 9. Aplicaciones de los microorganismos al medio ambiente.

Procesos aerobios de tratamiento biológico de aguas residuales. Sistemas anaerobios. Eliminación de nitrógeno. Eliminación de fósforo. Compostaje. Tratamientos de residuos tóxicos y peligrosos. Tratamiento de gases.

METODOLOGÍA

Las clases se estructuran de un modo dinámico y participativo para abordar los aspectos fundamentales del temario. Los conceptos aplicados se trabajan a través de los grupos de aula, seminarios, problemas y el estudio de casos de interés.

TIPOS DE DOCENCIA

Tipo de Docencia	М	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	27	8	10						
Horas de Actividad No Presencial del Alumno/a	40	12,5	15						

 Leyenda:
 M: Magistral
 S: Seminario
 GA: P. de Aula

 GL: P. Laboratorio
 GO: P. Ordenador
 GCL: P. Clínicas

TA: Taller Ind. GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 60%
- Realización de prácticas (ejercicios, casos o problemas) 20%
- Trabajos individuales 20%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

El sistema de evaluación mixta será el ordinario. De este modo, el examen escrito ponderará el 60 % en la nota final, siempre que la valoración del mismo sea superior a 4/10, en caso contrario, la nota final será la obtenida en el examen. La realización de prácticas y ejercicios aportará el 20 % de la nota final y los trabajos individuales supondrán el otro 20 % de la nota final.

Se podrá renunciar al sistema de evaluación mixta y optar por la evaluación final. El alumnado interesado deberá enviar un escrito al profesor responsable comunicando la renuncia a la evaluación mixta en un plazo no superior a 9 semanas, a contar desde el comienzo del curso. En este caso, el 100 % de la nota se obtendrá en la prueba final escrita que podrá ser diferente a la prueba escrita realizada por los alumnos que no hayan renunciado a la evaluación mixta.

Tanto en el caso de evaluación final como en el caso de evaluación continua, bastará con no presentarse a la prueba final para que la calificación de la asignatura sea NO PRESENTADO o NO PRESENTADA.

En el caso de que las condiciones sanitarias impidan la realización de la evaluación en los términos descritos con anterioridad, para todo o parte del alumnado matriculado en la asignatura, se atenderán las directrices emitidas por el Rectorado sobre la evaluación en el momento de realizarla.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

Se siguen los mismos criterios que para la evaluación final de la convocatoria ordinaria, es decir, el 100 % de la nota se obtendrá en la prueba final escrita.

En el caso de que las condiciones sanitarias impidan la realización de la evaluación en los términos descritos con anterioridad, para todo o parte del alumnado matriculado en la asignatura, se atenderán las directrices emitidas por el

Rectorado sobre la evaluación en el momento de realizarla.

MATERIALES DE USO OBLIGATORIO

Aiba, S., Humphrey, A.E., Millis, N.,F., Biochemical Engineering, Academic Press, New York, 1973.

Atkinson, B., Reactores bioquímicos, Reverté, Barcelona, 1986.

Bailey, J.E., Ollis, D.F., Biochemical Engineering Fundamentals, McGraw-Hill New York, 1977

Blanch, H.W., Clark, D.S., Biochemical Engineering, Marcel Dekker, New York, 1997.

Brown, C.M., Campbell, I., Priest, F.G., Introduction to Biotechnology; Blackwell Scientific Publications, Oxford, 1987.

Bullock, J.D., Kristiansen, B., Biotecnología Básica, Acribia, Zaragoza, 1991.

Coombs, J., Macmillan Dictionary of Biotechnology, Macmillan, Basingstoke, England, 1986.

Crueger, W., Crueger, A., Biotecnología: Manual de Microbiología Industrial, Acribia, Zaragoza, 1993.

Gódia, F., López, J., Ingeniería Bioquímica, Síntesis, Madrid, 1998.

Schugerl, K., Bioreaction engineering, D.A. John Wase. (Ed.), John Wiley & Sons, Chichester, 1987-1991.

Smith, J.E., Biotechnology principles, Van Nostrand Reinhold, Wokingham, England, 1985.

Webb, F.C., Ingeniería Bioquímica, Acribia, Zaragoza, 1966.

Whitaker, J.R., Principles of enzymology for the food sciences, Marcel Dekker, New York, 1994.

Wiseman, A., Principios de biotecnología, Acribia, Zaragoza, 1985.

BIBLIOGRAFÍA

Bibliografía básica

Blanch, H.W., Clark, D.S., Biochemical Engineering, Marcel Dekker, New York, 1997.

Gódia, F., López, J., Ingeniería Bioquímica, Síntesis, Madrid, 1998.

Renneberg, R.; Biotecnología para Principiantes, Ed. Reverté, Barcelona, 2009.

Bibliografía de profundización

Aiba, S., Humphrey, A.E., Millis, N.F., Biochemical Engineering, Academic Press, New York, 1973.

Atkinson, B., Reactores Bioquímicos, Reverté, Barcelona, 1986.

Bailey, J.E., Ollis, D.F., Biochemical Engineering Fundamentals, McGraw-Hill New York, 1977

Brown, C.M., Campbell, I., Priest, F.G., Introduction to Biotechnology, Blackwell Scientific Publications, Oxford, 1987.

Bullock, J.D., Kristiansen, B., Biotecnología Básica; Acribia, Zaragoza, 1991.

Coombs, J., Macmillan Dictionary of Biotechnology, Macmillan, Basingstoke, England, 1986.

Crueger, W., Crueger, A., Biotecnología: Manual de Microbiología Industrial, Acribia, Zaragoza, 1993.

Schugerl, K., Bioreaction Engineering, D.A. John Wase. (Ed.), John Wiley & Sons, Chichester, 1987-1991.

Smith, J.E., Biotechnology Principles, Van Nostrand Reinhold, Wokingham, England, 1985.

Webb, F.C., Ingeniería Bioquimica, Acribia, Zaragoza, 1966.

Whitaker, J.R., Principles of Enzymology for the Food Sciences, Marcel Dekker, New York, 1994.

Wiseman, A., Principios de Biotecnología, Acribia, Zaragoza, 1985.

Revistas

Direcciones de internet de interés

GUÍA DOCENTE

2023/24

Centro 310 - Facultad de Ciencia y Tecnología

Plan GINQUI30 - Grado en Ingeniería Química

Curso 4º curso

ASIGNATURA

26767 - Ingeniería Energética

Créditos ECTS: 4,5

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

La asignatura desarrolla competencias con utilidad posterior en el campo de la Ingeniería Energética. En concreto la asignatura analizará las diferentes fuentes de la energía y su clasificación y estudiará las estrategias de la transformación de la energía calorífica en energía mecánica.

La docencia es de tipo presencial y se completa con diversas tareas no presenciales. Así, se fomentará principalmente el desarrollo de habilidades y competencias genéricas como el aprendizaje autónomo, el trabajo en equipo y la resolución de problemas. Para seguir la asignatura adecuadamente hay que haber adquirido las competencias y los conceptos elementales de la Termodinámica.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

- A- Conocer las formas de energía (Energía primaria y final).
- B- Adquirir bases científicas de la producción y conversión de la Energía.
- C- Aplicar los principios básicos de termodinámica y termotecnia y su aplicación a la resolución de problemas de ingeniería.
- D- Comprender los principios y los objetivos de las diferentes estrategias de transformación de la energía con una alta eficiencia (Motores, turbinas, co-generación, energías renovables, política energética... etc).
- E- Desarrollar competencias para resolver los problemas prácticos.

A continuación se especifican los principales resultados de aprendizaje, en base a tareas/actividades que el alumnado debería ser capaz de desarrollar finalizado el curso.

• Identificar las diferentes formas de energía primaria y final y conocer los principios termodinámicos para la conversión de energía primaria en energía final.

• Entender e interpretar balances energéticos.

• Realizar balances de materia y energía en instalaciones de combustión. Calcular el consumo de combustible y cantidad y composición de gases de combustión.

• Conocer las propiedades físico-químicas de combustibles sólidos, líquidos y gaseosos así como la metodología de cálculo del poder calorífico superior e inferior.

• Conocer los ciclos termodinámicos para la producción de energía eléctrica en centrales térmicas con turbinas de vapor y turbinas de gas.

• Diseñar centrales térmicas con turbinas de vapor y/o turbinas de gas: cálculo de requerimientos de combustible, selección del fluido de trabajo, presión de entrada a la turbina, presión del condensador, cálculo de la potencia desarrollada y eficiencia de la planta.

• Conocer las estrategias para el aumento del rendimiento: cogeneración y ciclo combinado.

• Conocer los ciclos termodinámicos para la producción de energía mecánica en motores de combustión interna.

• Clasificar y conocer la tecnología para el aprovechamiento de energías renovables.

A continuación se enumeran las competencias genéricas y transversales que el estudiante deberá adquirir una vez completada la asignatura. Dichas competencias se enmarcan dentro del módulo (M04) de intensificación en el Grado en Ingeniería Química.

Genéricas:

M04CM01. Aplicar los conocimientos adquiridos al desarrollo de tecnologías y procesos innovadores en sectores estratégicos de la Industria Química, centrados en energías renovables, medio ambiente y campos frontera. M04CM02. Adaptar equipos y procesos a las nuevas tendencias tecnológicas, a requerimientos de mercado.

Transversales:

M04CM04. Manejar con destreza las fuentes de información y bases de datos relacionadas con las materias específicas cursadas en el módulo de intensificación, así como herramientas ofimáticas de apoyo a presentaciones orales.

M04CM05. Comunicar y transmitir, eficazmente, por escrito y de forma oral, los conocimientos, resultados, habilidades y destrezas adquiridos, en un entorno pluridisciplinar y multilingüe.

M04CM06. Organizar, planificar y liderar actividades en grupos de trabajo, con reconocimiento de la diversidad y multiculturalidad.

M04CM08. Resolver problemas específicos de las materias cursadas, proponer problemas alternativos, todos ellos planteados con criterios de calidad, sensibilidad por el medio ambiente, sostenibilidad, criterio ético y fomento de la paz.

CONTENIDOS TEÓRICO-PRÁCTICOS

Temario:

- 1. INTRODUCCIÓN. Objetivos de la Ingeniería Energética. Formas de energía: Energía primaria y final. Formas de Energía. Bases científicas de la producción y conversión de la Energía.
- 2. COMBUSTIBLES Y COMBUSTIÓN. Tipos y Propiedades de combustibles. Poder calorífico y su estimación.
- 3. INSTALACIONES DE COMBUSTIÓN. Balance de materia: Cálculo de aire teórico y real. Generadores de vapor. Balance de energía.
- 4. MOTOR TÉRMICO. Concepto de Motor Térmico. Clasificación de Motores Térmicos. Criterios de eficiencia. Cálculo de las propiedades termodinámicas de las sustancias puras. Calidad de Vapor. Representación de procesos térmicos en diagramas P-V, T-V, T-S, H-S.
- 5.CENTRALES TERMOELÉCTRICAS DE VAPOR. Ciclo de Rankine. Estrategias para aumentar la eficiencia: regeneración y sobrecalentamiento. Centrales termonucleares.
- 6. TURBINAS DE GAS. Ciclo de Brayton. Estrategias para aumentar la eficiencia: regeneración, sobrecalentamiento y compresión escalonada y refrigerada. Ciclo Combinado.
- 7. MOTORES DE COMBUSTIÓN INTERNA. Motores Otto y Diesel. Ciclo Mixto.
- 8. COGENERACIÓN. Generación y Cogeneración. Tecnologías de Cogeneración. Ciclos de Cabecera y Ciclos de Cola. Criterios de eficiencia en plantas de cogeneración.
- 9. ENERGÍAS RENOVABLES. Clasificación y descripción de las energías renovables: tecnologías consolidadas y en desarrollo. Vector hidrógeno y celdas de combustibles.
- 10. ASPECTOS ECONÓMICOS Y MEDIOAMBIENTALES DE LA ENERGÍA. Gestión de la oferta y demanda de energía eléctrica. Planes energéticos. Reservas de energías: Teoría del pico de Hubbert. El calentamiento global del Planeta. Acuerdos internacionales: Protocolo de Kyoto y sus implicaciones.

METODOLOGÍA

Para que el alumnado pueda adquirir las competencias específicas y transversales anteriormente expuestas, se han programado tres tipos diferentes de modalidades docentes: clases de teoría, clases prácticas y seminarios. En las clases de teoría (T) el profesor presenta al estudiante un resumen del tema en el que incluirá los objetivos y conceptos fundamentales, información sobre material para preparar el tema y las aclaraciones que considere necesarias. En las clases prácticas (GA) se plantearán ejemplos (resolución de problemas y/o cuestionarios) para aplicar los conocimientos adquiridos. Serán clases interactivas que permiten discutir diferentes metodologías de resolución, identificando ventajas e inconvenientes de cada una de ellas. Los seminarios o tutorías de aula (S), se realizarán en grupos más reducidos, para procurar un ambiente de grupo de trabajo y facilitar la discusión de dudas. Aquí se programarán y analizarán tareas más personalizadas en función de las necesidades del estudiante. Se evaluarán además, junto al dominio de conocimientos, competencias sobre capacidad de expresión oral y de síntesis y razonamiento (competencias transversales). Los seminarios también se utilizarán para revisar y poner en común tareas asignadas durante el curso que permitan afianzar los conceptos trabajados. En general, en las actividades planificadas, el estudiante debe implicarse en procesos de búsqueda de información, análisis y razonamiento crítico.

TIPOS DE DOCENCIA

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	15	8	22						
Horas de Actividad No Presencial del Alumno/a	23	12	32,5						

Leyenda:M: MagistralS: SeminarioGA: P. de AulaGL: P. LaboratorioGO: P. OrdenadorGCL: P. ClínicasTA: TallerTI: Taller Ind.GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 70%
- Trabajos individuales 10%
- Trabajos en equipo (resolución de problemas, diseño de proyectos) 10%
- Exposición de trabajos, lecturas... 10%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

Existen dos metodologías de evaluación: i) evaluación continua, y ii) evaluación final. En la evaluación continua, los

estudiantes deberán completar las tareas programadas durante el curso, con los siguientes porcentajes de calificación: resolución de tareas individuales (10%), desarrollo de proyectos en equipo (10%), trabajo en grupo con exposición oral (10%) y pruebas escritas individuales (70%). Se realizarán dos pruebas escritas individuales durante el curso, la primera a mediados del cuatrimestre y la segunda durante el periodo de exámenes. Para poder optar a aprobar la asignatura en evaluación continua se requiere obtener una calificación mínima de 4,0 como media de las dos pruebas escritas individuales. Cumpliendo dicho criterio, se requiere una calificación mínima de 5,0 para APROBAR la asignatura en su modalidad de evaluación continua, atendiendo a los porcentajes de calificación. En el caso de no haber obtenido una calificación mínima de 4,0 como media de las pruebas escritas o de no obtener una calificación mínima de 5,0 como media final de la asignatura, la calificación de la asignatura en convocatoria ordinaria será NO APROBADO.

El alumnado podrá optar a ser evaluado mediante el sistema de evaluación final, independientemente de que haya participado o no en el sistema de evaluación continua. Para ello, el alumnado deberá comunicar por escrito al profesor responsable de la asignatura la renuncia a la evaluación continua, para lo que dispondrán de un plazo de 9 semanas desde el inicio de la asignatura, de acuerdo con el calendario académico del centro.

El hecho de no presentarse al examen de la convocatoria ordinaria de la asignatura conllevará la calificación de NO PRESENTADO independientemente de haber cursado la asignatura en modalidad de evaluación continua o final.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

La prueba de evaluación final de la convocatoria extraordinaria constará de cuantos exámenes y actividades de evaluación sean necesarias para poder medir y evaluar los resultados de aprendizaje. Dichos resultados comprenderán el 100% de la calificación final.

MATERIALES DE USO OBLIGATORIO

Se detallará el contenido de este apartado en eGela.

BIBLIOGRAFÍA

Bibliografía básica

Fundamentos de Termodinámica Técnica. M.J. Moran y H.N. Shapiro, Reverté, 2004.

Energy Science: principles, technologies, and impacts. J. Andrews and Nick Jelley, Oxford University Press, New York, 2017.

Combustion Science and Engineering. K. Annamalai, I.K. Puri, Taylor & Francis, New York, 2007.

Combustion Engineering. K.W. Ragland, K.M. Bryden, Taylor & Francis, New York, 2011.

Bibliografía de profundización

Revistas

Fuel

Combustion and Flame.

Combustion Science and Technology.

Direcciones de internet de interés

Ente Vasco de la Energía (EVE): http://www.eve.eus

Instituto para la Diversificación y Ahorro de la Energía (IDAE): http://www.idae.es

Web de la Agencia Internacional de la Energía: https://www.iea.org/

GUÍA DOCENTE 2023/24

Centro 310 - Facultad de Ciencia y Tecnología

y Tecnología Ciclo Indiferente

Plan GINQUI30 - Grado en Ingeniería Química

Curso 4º curso

ASIGNATURA

26770 - Ingeniería Química y Sostenibilidad

Créditos ECTS:

4,5

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

LoLa asignatura "Ingeniería Química y Sostenibilidad" de 4,5 créditos, es de carácter optativo y se imparte en el primer cuatrimestre del cuarto curso. Con esta asignatura se pretende acercar al alumno a la situación actual y a los planteamientos de futuro en la industria química, donde la variable medio ambiente debe también ser considerada en el diseño de los procesos junto al resto de variables. Se hace incidencia en los aspectos e impactos medio ambientales de los procesos químicos y se ofrece una visión de las actuaciones europeas enfocadas hacia un desarrollo sostenible.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

Principios de la Química Sostenible. Economía atómica. Aplicaciones de la Catálisis en Química Sostenible. Fuentes Renovables para la Obtención de Energía. Evaluación de Ciclos de Vida. Conceptos de Mejor Tecnología Disponible e IPPC.

CM01 - Aplicar los conocimientos adquiridos al desarrollo de tecnologías y procesos innovadores en sectores estratégicos de la Industria Química, centrados en energía renovables, medio ambiente y campos frontera. CM04 - Manejar con destreza las fuentes de información y bases de datos relacionadas con las materias específicas cursadas en el módulo de intensificación, así como herramientas ofimáticas de apoyo a presentaciones orales. CM05 - Comunicar y transmitir, eficazmente, por escrito y de forma oral, los conocimientos, resultados, habilidades y destrezas adquiridos, en un entorno pluridisciplinar y multilingüe.

CM06 - Organizar, planificar y liderar actividades en grupos de trabajo, con reconocimiento de la diversidad y multiculturalidad.

CM08 - Resolver problemas específicos de las materias cursadas, proponer problemas alternativos, todos ellos planteados con criterios de calidad, sensibilidad por el medio ambiente, sostenibilidad, criterio ético y fomento de la paz.

CONTENIDOS TEÓRICO-PRÁCTICOS

- 1.- CONCEPTOS BÁSICOS DE QUÍMICA SOSTENIBLE: Principios de la Química Verde. Parámetros de Sostenibilidad.
- 2.- LA ECONOMÍA DEL ÁTOMO: Rendimiento de un Proceso. Tipos de Reacciones Químicas. Ejemplos de Procesos.
- 3.- CATÁLISIS EN QUÍMICA SOSTENIBLE: Concepto de Catálisis. Concepto de Selectividad y tipos de Selectividad. Catálisis Heterogénea y Homogénea. Aplicaciones Catalíticas Industriales.
- 4.- FUENTES DE ENERGÍA RENOVABLES: Bases Generales. Materias Primas Renovables. Combustibles Renovables. Hidrógeno. Biomasa, Bioetanol y Biodiésel. Pilas de Combustible.
- 5.- ANÁLISIS DEL CICLO DE VÍDA: Principios y Fundamentos del ACV. Metodologías: Unidad Funcional, Reglas de Asignación, Evaluación de Impacto Ambiental.
- 6.- LOS PROCESOS INDUSTRIALES EN EL CONTEXTO DEL IPPC: La Directiva IPPC. Concepto de Mejor Tecnología Disponible. Documentos BREF. Transparencia Informativa: Inventario EPER. Aplicaciones.

METODOLOGÍA

Previa a las clases magistrales donde el profesor desarrollará los contenidos de los diferentes temas planteados, el alumno dispondrá a través de la plataforma e-gela del material gráfico utilizado, así como documentos de interés relacionados con la temática. Durante las clases de seminario, los alumnos en grupos pequeños resolverán pequeñas cuestiones planteadas por el profesor o indagaran sobre alguna temática.

El trabajo no presencial del alumno consistirá en elaborar un trabajo en equipo donde se desarrolle alguna de las temáticas planteadas en la asignatura.

TIPOS DE DOCENCIA

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	30	15							
Horas de Actividad No Presencial del Alumno/a	45	22,5							

Leyenda:M: MagistralS: SeminarioGA: P. de AulaGL: P. LaboratorioGO: P. OrdenadorGCL: P. ClínicasTA: TallerTI: Taller Ind.GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba tipo test 50%
- Realización de prácticas (ejercicios, casos o problemas) 20%
- Exposición de trabajos, lecturas... 30%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

En el caso de evaluación continua, la evaluación sería de acorde a:

EXAMEN FINAL: 50% DEL TOTAL (nota mínima que se debe obtener: 4.0)

REALIZACIÓN DE CASOS PRÁCTICOS E INFORMES ESCRITOS (SEMINARIOS): 20% DEL TOTAL

TRABAJO (INFORME, EXPOSICIÓN ORAL): 30% DEL TOTAL

El alumno que desee renunciar a la evaluación continua y elegir evaluación final deberá comunicarlo por escrito al profesor antes de la semana 9.

En el caso de evaluación continua, el alumnado podrá renunciar a la convocatoria en un plazo que, como mínimo, será hasta un mes antes de la fecha de finalización del período docente de la asignatura. Esta renuncia deberá presentarse por escrito al profesor.

En el caso de evaluación final la calificación de la asignatura se corresponde con un 100% del examen.

En esta asignatura, tanto si la evaluación es continua o final, bastará con no presentarse a la prueba final para que la calificación final de la asignatura sea no presentado o no presentada.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

La evaluación es mediante una EXAMEN FINAL (100 %). Se considera que el alumno renuncia a la convocatoria si no se presenta al examen final.

MATERIALES DE USO OBLIGATORIO

Material suministrado por el profesor

BIBLIOGRAFÍA

Bibliografía básica

- T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, 2000.
- A.S. Matlack, Introduction to Green Chemistry, Marcel Dekker, 2001.
- J.H. Clark, D. Macquarry, Handbook of Green Chemistry and Technology; Blackwell, 2002.
- J.J. Bozell, M.K. Patel (eds.) Feedstocks for the Future: Renewables for the Production of Chemicals and Materials. American Chemical Society, 2006.
- G. Rothenberg, Catalysis: Concepts and Green Applications, Wiley-VCH, 2008.
- J.B. Guinee. Handbook on Life Cycle Assessment, Springer, 2002

Bibliografía de profundización

- P.T. Anastas, L.G. Heine, T.C. Williamson (Eds.), Green Chemical Synthesis and Processes, ACS Symp. Series 767, ACS 2000.
- R.A. Sheldon, I. Arends, U. Hanefeld. Green Chemistry and Catalysis, Wiley-VCH, 2007.
- M.F. Hordeski. Alternative Fuels: The Future of Hydrogen, Second Edition, CRC Press, 2008.
- A. Züttel (Editor), Hydrogen as a Future Energy Carrier, Wiley, 2008.
- H. Baumann; A.M. Tillman. The Hitch Hiker¿s Guide to LCA. An orientation in life cycle assessment methodology and application, Studentlitteratur, 2004.
- W.M. Nelson. Green Solvents for Chemistry, Oxford University Press, 2004.

Revistas

Green Chemistry
The International Journal of Life Cycle Assessment
Catalysis Today

Direcciones de internet de interés

http://www.epa.gov/ http://www.pte-quimicasostenible.org/ http://www.usc.es/biogrup/redciclovida.htm http://lct.jrc.ec.europa.eu/ http://feique.org http://eippcb.jrc.es

GUÍA DOCENTE 2023/24

Centro 310 - Facultad de Ciencia y Tecnología

Ciclo Indiferente

Plan GINQUI30 - 0

GINQUI30 - Grado en Ingeniería Química

Curso 4º curso

ASIGNATURA

26769 - Organización y Gestión de Proyectos

Créditos ECTS:

7.5

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

El objeto de la asignatura consiste en la adquisición por parte del alumno de los conocimientos necesarios acerca de la terminología, contenido, estructura y desarrollo del proyecto y su aplicación en relación con los perfiles profesionales y competencias propias de la titulación

Con el programa propuesto se pretende que el alumno:

Conozca el ámbito profesional del Ingeniero Químico en relación con los Proyectos

Adquiera una visión global de los Proyectos, y domine los fundamentos relativos a su formulación, morfología y evaluación.

Conozca y comprenda las funciones de la Gestión de Proyectos.

Adquiera destreza en las técnicas de Gestión de Proyectos.

Sea capaz de integrarse en cualquier equipo de trabajo para el diseño o la gestión de proyectos de ingeniería, de empresa o de desarrollo.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

Metodología de proyectos. Organización, planificación y programación. Ejecución del proyecto. Control y seguimiento. Cierre del proyecto. Normas y legislación.

COMPETENCIAS A DESARROLLAR:

M02CM07

Dominar las fases de redacción, planificación y gestión de proyectos industriales en general y de la Industria Química en particular.

M02CM08

Utilizar las tecnologías de la información y comunicación aplicadas al aprendizaje a nivel avanzado, y manejar de forma básica las fuentes de información, incluyendo bases de datos específicas de las materias del módulo, así como herramientas ofimáticas de apoyo a las presentaciones orales.

M02CM09

Comunicar y transmitir, básicamente, por escrito y de forma oral, los conocimientos, resultados, habilidades y destrezas adquiridos, en un entorno pluridisciplinar y multilingüe.

M02CM10

Organizar y planificar actividades, adaptándose al trabajo en grupo, con reconocimiento de la diversidad y multiculturalidad, razonamiento crítico y espíritu constructivo.

M02CM11

Participar y liderar, en su caso, grupos de trabajo con razonamiento crítico y espíritu constructivo.

M02CM12

Resolver problemas de las materias comunes de la rama industrial, planteados con criterios de calidad, sensibilidad por el medio ambiente, sostenibilidad, criterio ético y fomento de la paz.

RESULTADOS DE APRENDIZAJE

Aplicar los conceptos teóricos de la Gestión de Proyectos a un caso práctico.

Realizar un estudio de viabilidad ecónomica.

Realizar un organigrama/planificación temporal de las tareas de un proyecto.

CONTENIDOS TEÓRICO-PRÁCTICOS

TEMA 1. Introducción a la Organización y Gestión De Proyectos. Concepto y definición de proyecto. Conceptos básicos de dirección y gestión de proyectos (Project Management). Concepto del Project Management. Funciones del Project Management. Ámbitos del Project Management. Objetivos y procesos del Project Management.

TEMA 2. Estructura del proyecto. Morfología del proyecto. Etapa de planteamiento, diseño e ingeniería. Etapa de producción y consumo. Proceso del proyecto. Matriz de actividades del proyecto. Ciclo del proyecto. Origen (tipos) de proyecto.

TEMA 3. Contenidos y documentos del proyecto. Memoria. Planos. Pliego de condiciones. Presupuestos. Estudios de entidad propia. Prevención de Riesgos Laborales (Estudio de Seguridad y Salud). Evaluación (Estudio) de Impacto Ambiental.

TEMA 4. Etapas del proyecto. Estudio de viabilidad (o factibilidad)/ estudio preliminar (Fase I). El anteproyecto (Fase II). Proyecto de desarrollo (Fase III). Realización / puesta en marcha / explotación del proyecto (Fase IV).

TEMA 5. Legislación industrial. Documentación para la obtención de permisos y licencias. Normativa municipal aplicable.

Permisos y licencias. Otros permisos de proyectos de instalaciones industriales. Legislación general aplicable.

TEMA 6. Gestión de compras. Contratación de la construcción y montaje del proyecto. Gestión de compras. Contratación de obras civiles. Contratación de montaje. 'Unidades paquete'. Construcción y montaje del proyecto.

TEMA 7. Presupuestos y evaluación de proyectos. Análisis económico de proyectos. Partidas económicas en proyectos. Estimación de las partidas económicas. Métodos económicos de evaluación y análisis de inversiones. Métodos que no tienen en cuenta el valor del dinero en el tiempo. Métodos que tienen en cuenta el valor del dinero en el tiempo (valor cronológico del dinero).

TEMA 8. Planificación y programación de proyectos. Diagramas de Gantt/modelos de red. Métodos programáticos: PERT, CPM. Optimización de tiempo/coste. Nivelación de personal y de equipo. Verificación y ajuste de la programación.

METODOL OGÍA

La docencia de la asignatura está compuesta por diferentes modalidades.

En las clases magistrales se hará incidencia sobre los principales contenidos de cada uno de los temas.

En las clases de aula los alumnos realizarán diferentes ejercicios prácticos que complementará a la teoría expuesta.

En los seminarios se complementará las destrezas adquiridas algunos ejemplos prácticos o casos a discutir, normalmente en grupos.

En las clases de ordenador se resolverán actividades relacionadas fundamentalmente con los estudios de viabilidad y planificación de proyectos

Los alumonos mediante la realización de un trabajo deben aplicar los conocimientos y destrezas adquiridas a un proyecto de una instalación industrial.

TIPOS DE DOCENCIA

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	45	12,5	7,5		10				
Horas de Actividad No Presencial del Alumno/a	67,5	18,75	11,25		15				

Leyenda:M: MagistralS: SeminarioGA: P. de AulaGL: P. LaboratorioGO: P. OrdenadorGCL: P. Clínicas

TA: Taller TI: Taller Ind. GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 65%
- Exposición de trabajos, lecturas... 35%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

En convocatoria ordinaria la evaluación de la asignatura será un promedio de una prueba escrita a desarrollar y una exposición de trabajo (incluida la presentación en papel) realizado en grupo. Las contribuciones serán del 65% y 35%, respectivamente.

Trabajo escrito

Presentación Oral (MS Power Point)

Asistencia obligatoria de todos los alumnos a las exposiciones orales

Turno de discusión

Grupos de dos/tres alumnos

Temática libre (a consensuar con los profesores)

La renuncia a este sistema de evaluación debe ser comunicada por escrito al profesor antes de finalizar la novena semana del curso.

En esta asignatura, tanto en el caso de evaluación continua como evaluación final, bastará con no presentarse a la prueba final para que la calificación final sea no presentado o no presentada.

La prueba escrita contendrá dos partes, una de carácter teórico-aplicacada y otra de carácter práctico. Las contribuciones respectivas serán (60% y 40%). La parte práctica se centrará en un estudio de viabilidad económico y una planificacción temporal de un proyecto.

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

La nota se determinará al 100% a partir de una única prueba escrita que incluirá cuestiones a desarrollar y problemas, teniéndose en cuenta la exposición del trabajo como elemento consultor.

Para renunciar a este sistema de evaluación basta con no presentarse al examen.

MATERIALES DE USO OBLIGATORIO

Materiales proporcionados por el profesor y libros de texto

BIBLIOGRAFÍA

Bibliografía básica

"Dirección y gestión de proyectos: un enfoque práctico" Domingo, A., Editorial RA-MA, Madrid (2005).

"Teoría general del proyecto. Vol. I: Dirección de proyectos = Project management" Cos Castillo, M., Ed. Síntesis, Madrid (2003)

"Cuadernos de ingeniería de proyectos: III. Dirección, gestión y organización de proyectos"

Capuz, S., Gómez-Senent, E., Torrealba, A., Ferrer, P., Gómez, T., Vivancos, J.L., Universidad Politécnica de Valencia (2000)

"El proyecto y su dirección y gestión" Aragonés, P, Capuz, S., Ferrer, P., Gómez, T., Gómez-Senent, E., González, M.C., Lozano, F., Peris, J., Sánchez, M.A., Vivancos, J.L., Universidad Politécnica de Valencia, Valencia (2002)

Bibliografía de profundización

"Project management: a systems approach to planning, scheduling, and controlling" 9th ed.

Kerzner, H., John Wiley & Sons, (2006)

"Project Management Case Studies, 3rd Edition", Kerzner, H., John Wiley & Sons, (2009)

"Handbook for Process Plant Project Engineers", Peter Watermeyer, John Wiley & Sons, (2002)

"Gerenciamiento de proyectos con Excel y Project", Salvarredy, J.R., García, V., García, J.I., Omicron System S.A., Buenos Aires (2003)

"Engineering Economy", Sullivan, W.G., Wicks, E.M., Luxhoj, J.T., Prentice Hall, 2003.

Revistas

Direcciones de internet de interés

GUÍA DOCENTE 2023/24						
Centro 310 - Facultad de Ciencia y Tecnología	Ciclo Indiferente					
Plan GINQUI30 - Grado en Ingeniería Química Curso 4º 0						
ASIGNATURA						
26765 - Petróleo y Petroquímica	Créditos ECTS: 4,5					
DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ACIONATURA						

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

La asignatura "Petróleo y Petroquímica" es una de las materias optativas que se imparte en el primer cuatrimestre del 4º curso del Grado en Ingeniería Química. Se sitúa dentro del módulo denominado Intensificación. En esta asignatura se estudian los fundamentos del refino del petróleo y se hace una introducción a los diferentes procesos que forman parte de la industria petroquímica.

Dado su carácter de intensificación en el conocimiento y aplicación de materias primas de la Ingeniería Química, se contribuye al desempeño de los ingenieros químicos mediante el desarrollo de procesos químicos para convertir el crudo y las fracciones de petróleo (incluida la valorización de residuos) en productos de interés para la sociedad de consumo. En este sentido, el conocimiento científico y técnico de los procesos químicos relacionados con la industria del petróleo y la petroquímica permitirá al ingeniero químico optimizar los procesos productivos e introducir mejoras en los diferentes aspectos del proceso con objeto de obtener combustibles y productos petroquímicos más eficientes, más sostenibles y respetuosos con el medio ambiente.

El trabajo que se desarrollará en esta asignatura permitirá a los estudiantes analizar el origen y las etapas de formación del petróleo y caracterizar las propiedades físicas y químicas de sus fracciones. A su vez, se estudiarán desde un punto de vista científico y técnico los diferentes procesos de transformación química del petróleo y las materias primas de la industria petroquímica (gas natural, olefinas, aromáticos, etc.) para obtener numerosos productos de interés, desde carburantes, combustibles y aceites lubricantes en el caso de una refinería, hasta polímeros y muchos otros productos derivados en el caso de la industria petroquímica.

Para poder desarrollar "Petróleo y Petroquímica" sin excesiva dificultad debe tenerse un dominio básico de resolución de balances de materia y energía. Además, son necesarios los conocimientos básicos de diseño de equipos para el transporte de fluidos y de intercambio de calor, así como de equipos de reacción y operaciones de separación, vistos en otras asignaturas del Grado.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

Las competencias a trabajar en la asignatura son las siguientes:

- -Dominar y valorar el estado tecnológico y socioeconómico en la Industria Química en general y en particular del entorno próximo (G010).
- -Aplicar los conocimientos adquiridos, al desarrollo de tecnologías y procesos innovadores en sectores estratégicos de la Industria Química (M04CM01).
- -Manejar con destreza las fuentes de información y bases de datos relacionadas con las materias específicas cursadas en el módulo de intensificación, así como herramientas ofimáticas de apoyo a presentaciones orales (M04CM04).
- -Comunicar y transmitir, eficazmente, por escrito y de forma oral, los conocimientos, resultados, habilidades y destrezas adquiridos, en un entorno pluridisciplinar y multilingüe (M04CM05).

Los resultados de aprendizaje que deben adquirir los estudiantes son:

- 1. Buscar información técnica y científica, incluyendo la literatura en lengua extranjera (inglés), para el análisis y justificación de los procesos de refino y petroquímica.
- 2. Emplear criterios de seguridad y de protección del medio ambiente en el análisis científico y técnico de los procesos del petróleo.
- 3. Integrar mediante diagramas de bloques las diferentes unidades de la refinería en el esquema general de una refinería
- 4. Manejar adecuadamente las herramientas de caracterización de fracciones del petróleo
- 5. Realizar diagramas de flujo de las diferentes unidades de refinería.
- 6. Analizar los procesos para la producción de productos derivados del petróleo y del gas natural en base a estrategias de diseño y de operación.

CONTENIDOS TEÓRICO-PRÁCTICOS

Temario:

BLOQUE I.-REFINO DEL PETRÓLEO

- 1.- INTRODUCCIÓN. Origen y formación del crudo. Extracción. Producción y reservas. Tipos de crudo. Química del crudo. Análisis y ensayos. Caracterización del crudo y sus fracciones. Correlaciones de caracterización. Esquema general y objetivos de una refinería
- 2.- FRACCIONAMIENTO DEL CRUDO. Recepción del crudo. Almacenamiento. Desalado. Destilación atmosférica. Fracciones. Destilación a vacío. Fracciones para procesos de conversión y bases de aceites lubricantes
- 3.- PROCESOS DE REFORMADO. Reformado catalítico de naftas. Otros procesos de refinería: Alquilación, Isomerización y Síntesis de compuestos oxigenados (MTBE, etc). Integración de los procesos y unidades complementarias
- 4.- PROCESOS DE CONVERSIÓN NO CATALÍTICOS. Reacciones de pirólisis. Craqueo térmico. Coquización. Unidad reductora de viscosidad
- 5.- PROCESOS DE CONVERSIÓN CATALÍTICOS. Reacciones de craqueo en presencia de catalizador. Craqueo catalítico (FCC). Craqueo catalítico con hidrógeno (Hidrocraqueo).
- 6.- REFINO DE FRACCIONES PETROLÍFERAS. Procesos de desulfuración: Desulfuración Merox. Hidrodesulfuración. Recuperación del azufre: Proceso Claus. Refino de fracciones pesadas: obtención de aceites lubricantes
- 7.- INTEGRACIÓN DE UNIDADES EN LAS REFINERÍAS. Tipos de refinerías: Refinerías con esquema "hidroskiming". Refinerías con grado medio de conversión. Refinerías con alto grado de conversión. Refinerías mixtas.
- 8.- PRODUCTOS DE UNA REFINERÍA. Destilados ligeros y medios. Gases licuados del petróleo. Gasolina auto. Especificaciones. Formulación de gasolinas. Gasóleo de automoción (diesel). Especificaciones del aceite diesel. Destilados pesados. Aceites lubricantes minerales. Asfaltos. Fueloil. Coque de petróleo.

BLOQUE II.- INDUSTRIA PETROQUÍMICA

- 10.- PROCESOS PETROQUÍMICOS DE BASE (I). Descomposición de hidrocarburos. Obtención de Gas de síntesis (SYNGAS). Reformado con vapor. Oxidación Parcial. Aplicaciones del Gas de síntesis: Hidrógeno, Amoniaco y derivados, Metanol y derivados
- 11.- PROCESOS PETROQUÍMICOS DE BASE (II). Transformación de hidrocarburos. Producción de Olefinas por craqueo con vapor. Otras fuentes de olefinas. Producción de Aromáticos. Procesos de separación de hidrocarburos.
- 12.- PROCESOS PETROQUÍMICOS DE SÍNTESIS. Etileno, Propileno. Fracción C4 y Diolefinas. Benceno, Tolueno, Xilenos (BTX) y condensados. Tecnología de polímeros: Monómeros. Síntesis y Procesado. Polímeros más importantes y sus aplicaciones.

Prácticas de campo

El alumnado realizará una visita guiada a la refinería de Petronor (Muskiz), centrando el interés en los laboratorios de análisis y caracterización del crudo y sus fracciones y también tendrá la posibilidad de visitar las diferentes unidades de la refinería. Esta salida está sujeta a la normativa de la refinería.

METODOLOGÍA

A continuación, se detallan los tipos de actividades de aprendizaje que se emplean en la asignatura:

- 1. Clases magistrales, combinadas con otras técnicas de aprendizaje cooperativo y metodologías activas (Flipped Classroom, Gamificación, técnica cooperativas, etc.).
- 2. Lectura y síntesis de material de libros de texto.
- 3. Resolución de ejercicios (caracterización del petróleo y sus fracciones).
- 4. Elaboración de un Portfolio.
- 5. Exposición de trabajos.
- 6. Cuestionarios.
- 7. Pruebas escritas.

TIPOS DE DOCENCIA

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial	27	7	8						3
Horas de Actividad No Presencial del Alumno/a	30,5	15	19						3

 Leyenda:
 M: Magistral
 S: Seminario
 GA: P. de Aula

 GL: P. Laboratorio
 GO: P. Ordenador
 GCL: P. Clínicas

 TA: Taller
 TI: Taller Ind.
 GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación continua
- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Prueba escrita a desarrollar 40%
- Realización de prácticas (ejercicios, casos o problemas) 10%
- Trabajos en equipo (resolución de problemas, diseño de proyectos) 50%

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

Criterios de evaluación:

EVALUACIÓN CONTINUA

- Prueba escrita a desarrollar: 40% (mínimo 5 sobre 10)
- Realización de prácticas, resolución de casos y/o problemas: 10%
- Trabajos en equipo (incluida la exposición de los mismos): 50%

EVALUACIÓN FINAL

En caso de renunciar a la evaluación continua, la evaluación final (100%) será un conjunto de pruebas que permitan evaluar los resultados de aprendizaje definidos anteriormente.

SOLICITUD DE SISTEMA DE EVALUACIÓN FINAL

Si no desea participar en el sistema de evaluación continua, deberá presentarse en mano y por escrito al profesorado responsable de la asignatura la renuncia a la evaluación continua, para lo que dispondrá de 9 semanas, a contar desde el comienzo del curso, de acuerdo con el calendario académico del centro (Artículo 8.3 Normativa reguladora de la evaluación del alumnado en las titulaciones oficiales de Grado, UPV/EHU).

RENUNCIA A LA CONVOCATORIA

En el caso de evaluación continua, como el peso de la prueba final es igual o inferior al 40% de la calificación de la asignatura, el alumnado podrá renunciar a la convocatoria en un plazo que, como mínimo, será hasta un mes antes de la fecha de finalización del período docente de la asignatura correspondiente. Esta renuncia deberá presentarse por escrito ante el profesorado responsable de la asignatura (Art. 12.2).

En el caso de evaluación continua, si el peso de la prueba final es superior al 40% de la calificación de la asignatura, bastará con no presentarse a dicha prueba final para que la calificación final de la asignatura sea no presentado o no presentada. (Artículo 12.2 Normativa reguladora de la evaluación del alumnado en las titulaciones oficiales de Grado, UPV/EHU).

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

En la convocatoria extraordinaria la evaluación es únicamente final.

Criterio de evaluación:

Prueba escrita a desarrollar: 100%

En el caso de evaluación continua, si el peso de la prueba final es superior al 40% de la calificación de la asignatura, bastará con no presentarse a dicha prueba final para que la calificación final de la asignatura sea no presentado o no presentada. (Artículo 12.2 Normativa reguladora de la evaluación del alumnado en las titulaciones oficiales de Grado, UPV/EHU).

MATERIALES DE USO OBLIGATORIO

Material suministrado en la plataforma e-Gela.

BIBLIOGRAFÍA

Bibliografía básica

BIBLIOGRAFIA BÁSICA (Petróleo):

Speight J. G.; "The Chemistry and Technology of Petroleum". Fourth edition. CRC Press (2007) Ramos Carpio, M. A.; "Refino de petróleo, gas natural y petroquímica"; Ed. Fundación Fomento Innovación Industrial, Madrid (1997)

Wauquier, J. P. "El refino del Petróleo: Petróleo crudo, Productos petrolíferos, Esquemas de Fabricación". Ed. Díaz de Santos, Madrid (2004).

Wauquier, J.P.; "Petroleum Refining: Separation Processes". Editions Technip, Paris (2000).

Leprince, P; "Petroleum Refining: Conversion Processes". Editions Technip, Paris (2001).

BIBLIOGRAFÍA BÁSICA (Petroquímica):

Chauvel, A., Lefebvre, G., "Petrochemical Processes. Technical and Economic Characteristics". 2 Tomos (Tomo 1: Synthesis-Gas Derivatives and major Hydrocarbons, Tomo 2: Major Oxigenated, Chlorinated and Nitrated Derivatives); Ed. Technip, Paris, (1989).

Matar S. and Hatch L. F.; "Chemistry of Petrochemical Processes".2nd edition. Gulf Publishing Company, Houston, Texas (2000)

Weissermel K. and Arpe H-J.;"Industrial Organic Chemistry". Third edition VCH Publishers, Inc., New York (1997)

Bibliografía de profundización

Hsu, C., Robinson, P.; "Handbook of Petroleum Technology". Springer. New York (2017). Meyers R. A.; "Handbook of Petroleum Refining Processes". Third edition. MacGraw Hill. New York (2004).

Tresse, S.A., Pujadó, P.R., Jones, D.S.; "Handbook of Petroleum Processing" 2º ed. Springer, New York (2015).

Parkash S.; "Refining Processes Handbook". Elsevier. (2003)

Trambouze, P.; "Petroleum Refining: Materials and Equipment". Editions Technip, Paris (2000)

Favennec, J.P.; "Refinery Operation and Management". Editions Technip, Paris (2001)

Gary, R.Y., Handwerk, G.E.; "Petroleum Refining - Technology and Economics" 4a Ed., Marcel Dekker, New York (2001)

Revistas

Hydrocarbon Processing

Fuel

Fuel Processing Technology

Energy & Fuels

Journal of Petroleum Science and Engineering

Petroleum Science

Chemistry and Technology of Fuels and Oils

International Journal of Oil, Gas and Coal Technology

Direcciones de internet de interés

REPSOL: http://www.repsol.com

BP OIL:http://www.bp.com

Honeywell UOP: http://www.uop.com

Instituto Francés del Petróleo: http://www.ifpenergiesnouvelles.fr/

Total: https://www.total.com/en/spain

OBSERVACIONES	
OBSERVACIONES	

GUÍA DOCENTE 2023/24

Centro 310 - Facultad de Ciencia y Tecnología

Ciclo Indiferente

Plan

GINQUI30 - Grado en Ingeniería Química

Curso 4º curso

ASIGNATURA

26772 - Practicas externas Créditos ECTS: | 12

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

Las prácticas externas proporcionan una visión aplicada de los conocimientos y un contacto directo con la industria.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

- * M05CM01 Específica Disponer de una visión aplicada de los conocimientos y un contacto directo con los componentes de la industria.
- * M05CM02 Específica Materializar los conocimientos de trabajo multidisciplinar y de grupo.
- * M05CM03 Específica Intensificar los conocimientos en un campo industrial y en un entorno específico sujeto a normativas y condicionantes de calidad y medioambientales.
- * M05CM04 Específica Realizar informes en un entorno multidisciplinar industrial.
- * M05CM05 Transversal- Aplicar las tecnologías de la información y comunicación, y el manejo de las fuentes de información, al entorno del trabajo en las prácticas externas y al desarrollo del informe final.
- * M05CM06 Transversal Comunicar y transmitir, eficazmente y de forma ordenada, mediante un informe escrito, los resultados de aprendizaje adquiridos durante la práctica externa.
- * M05CM07 Transversal Organizar y planificar actividades, en el ámbito de las prácticas externas, liderando propuestas de actividades, guiados por los tutores académico e industrial.
- * M05CM08 Transversal Adaptarse a grupos de trabajo externos al ámbito académico, entorno industrial, con razonamiento crítico y espíritu constructivo.
- * M05CM09 Transversal- Versatilidad para adaptarse a diferentes situaciones en el ambiente de trabajo, fomentando la iniciativa, la creatividad, el razonamiento crítico, el compromiso ético y la paz.

CONTENIDOS TEÓRICO-PRÁCTICOS

Ver Normativa Prácticas Externas Curriculares en el Grado en Ingeniería Química

http://www.zientzia-teknologia.ehu.es/ => Normativa => Normativa Prácticas Externas Curriculares en el Grado en Ingeniería Química

METODOLOGÍA

El/la alumno/a desarrollará en una empresa del ámbito de la Ingeniería Química o afines, o en una unidad organizativa de la UPV/EHU, una labor relacionada con las competencias adquiridas a largo del grado. La labor se relacionará con la gestión, producción o control de calidad.

Dispondrá de un tutor técnico en la propia empresa que llevará a cabo in situ el seguimiento de las prácticas desarrolladas. El tutor académico supervisará el tipo de labor realizada y el nivel de adquisición de competencias de este módulo mediante reuniones periódicas con el tutor técnico y el propio alumno, tanto presenciales como on-line, mediante los portales TICs.

TIPOS DE DOCENCIA

Tipo de Docencia	M	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial									
Horas de Actividad No Presencial del Alumno/a									

Leyenda: M: Magistral

S: Seminario
GO: P. Ordenador
TI: Taller Ind

GA: P. de Aula GCL: P. Clínicas GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación final

TA: Taller

GL: P. Laboratorio

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

Las competencias adquiridas por el/la estudiante durante la realización de la asignatura de Prácticas Externas serán evaluadas por el tutor académico, basándose en el informe emitido por el tutor técnico y la memoria presentada por el estudiante, que deberá recoger las actividades realizadas durante el periodo de prácticas y los resultados de las mismas. El instructor o instructora de la entidad colaboradora realizará y remitirá al tutor/a de la ZTF-FCT y al alumno/a un informe final, a la conclusión de las prácticas, según un modelo normalizado (Anexo IV de la Normativa de Prácticas Externas de la UPV/EHU) y podrá elaborarse un informe intermedio de seguimiento una vez transcurrida la mitad del periodo de la duración de las prácticas, cuando así se establezca en el convenio, .

Por su parte, el alumno o alumna elaborará y entregará al tutor/a de la ZTF-FCT de una memoria final, a la conclusión de las prácticas, que recoja la valoración del desarrollo del proyecto formativo, conforme a un modelo normalizado (Anexo V de la Normativa de Prácticas Externas de la UPV/EHU) y, cuando le sea requerido por el tutor/a, elaborará igualmente un informe de seguimiento intermedio, preferentemente una vez transcurrida la mitad del período de duración de las prácticas.

Sobre la base del informe del instructor y del informe y memoria del alumno, el tutor/a de la ZTF-FCT evaluará las prácticas desarrolladas cumplimentando el correspondiente informe final de valoración (que recogerá los extremos contemplados en el Anexo VI de la Normativa de Prácticas Externas) y que servirá como documento acreditativo de las mismas

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

MATERIALES DE USO OBLIGATORIO

BIBLIOGRAFÍA

Bibliografía básica

- 1. Normativa Prácticas Externas en Ingeniería Química
- 2. Normativa Prácticas Externas de la UPV/EHU

Bibliografía de profundización

Revistas

Direcciones de internet de interés

http://www.zientzia-teknologia.ehu.es/ => Normativa => Normativa Prácticas Externas Curriculares en el Grado en Ingeniería Química

GUÍA DOCENTE 2023/24

Centro 310 - Facultad de Ciencia y Tecnología

Ciclo Indiferente Curso

4º curso

Plan GINQUI30 - Grado en Ingeniería Química

ASIGNATURA

26771 - Trabajo Fin de Grado Créditos ECTS : 10,5

DESCRIPCIÓN Y CONTEXTUALIZACIÓN DE LA ASIGNATURA

El objetivo fundamental del trabajo es que el/la estudiante demuestre su madurez a la hora de abordar un tema propio, teórico o práctico, de la titulación de manera independiente y de modo que refuerce aquellas competencias que capacitan para el ejercicio profesional.

COMPETENCIAS / RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

El TFG deberá estar orientado a la aplicación de las competencias generales asociadas a la titulación, a capacitar para la búsqueda, gestión, organización e interpretación de datos relevantes, normalmente de su área de estudio, para emitir juicios que incluyan una reflexión sobre temas relevantes de índole científica y/o tecnológica, y que facilite el desarrollo de un pensamiento y juicio crítico, lógico y creativo. Las actividades formativas podrán ser de carácter amplio y estarán orientadas al desarrollo y aplicación de las competencias adquiridas a lo largo de toda la titulación de Grado.

El TFG deberá estar orientado a la aplicación de las siguientes competencias asociadas a la titulación:

- Sintetizar las competencias adquiridas en el grado mediante el desarrollo y defensa de un proyecto.
- Concebir de forma dirigida y desarrollar la propuesta de implantación, a escala industrial o con un escalado previo, de una instalación o proceso justificado por su carácter innovador, o de estudio de una etapa de interés por su carácter innovador.
- Establecer la justificación de la viabilidad económica e impacto ambiental de un proyecto.
- Redactar y dirigir las actividades objeto del proyecto y la propuesta final bajo la consideración de las diferentes especificaciones, reglamentos y normas de obligado cumplimiento.
- Utilizar las tecnologías de información aplicadas al aprendizaje.
- Comunicar conocimientos y resultados de forma oral y escrita.
- Tener habilidades en las relaciones interpersonales con reconocimiento de la diversidad y multiculturalidad.
- Adaptarse a grupos de trabajo con razonamiento crítico y espíritu constructivo.
- Incorporar al trabajo de aprendizaje criterios de calidad, sensibilidad por el medio ambiente, sostenibilidad y criterio ético.

CONTENIDOS TEÓRICO-PRÁCTICOS

Ver Normativa Trabajo Fin de Grado en Ingeniería Química

http://www.zientzia-teknologia.ehu.es/ => Trabajo Fin de Grado

METODOLOGÍA

El TFG comprenderá las siguientes actividades:

- 1) Tutorías individualizadas. Habrá un mínimo de 3 tutorías acordadas entre el/la director/a y el/la estudiante.
- 2) Trabajo autónomo del/de la estudiante guiado por su Director/a en las fases de desarrollo, entrega, exposición y defensa del TFG.
- 3) Seminarios. Será obligatoria la asistencia a los siguientes seminarios organizados por la FCT-ZTF:
- Búsquedas bibliográficas con los recursos de la UPV/EHU
- Redacción de la memoria del Trabajo Fin de Grado
- Exposición del Trabajo Fin de Grado

TIPOS DE DOCENCIA

Tipo de Docencia	М	S	GA	GL	GO	GCL	TA	TI	GCA
Horas de Docencia Presencial									
Horas de Actividad No Presencial del Alumno/a									

Levenda: M: Magistral S: Seminario GA: P. de Aula GL: P. Laboratorio GO: P. Ordenador GCL: P. Clínicas TA: Taller TI: Taller Ind. GCA: P. de Campo

SISTEMAS DE EVALUACIÓN

- Sistema de evaluación final

HERRAMIENTAS Y PORCENTAJES DE CALIFICACIÓN

- Defensa oral %

CONVOCATORIA ORDINARIA: ORIENTACIONES Y RENUNCIA

* Memoria presentada: 65 %

* Defensa: 35 %

Para más detalle sobre los criterios de evaluación del TFG consultar Normativa Trabajo fin de Grado en Ingeniería Química:

http://www.zientzia-teknologia.ehu.es/ => Trabajo Fin de Grado

CONVOCATORIA EXTRAORDINARIA: ORIENTACIONES Y RENUNCIA

* Memoria presentada: 65 %

* Defensa: 35 %

Para más detalle sobre los criterios de evaluación del TFG consultar Normativa Trabajo fin de Grado en Ingeniería Química:

http://www.zientzia-teknologia.ehu.es/ => Trabajo Fin de Grado

MATERIALES DE USO OBLIGATORIO

BIBLIOGRAFÍA

Bibliografía básica

- 1. Normativa Trabajo Fin de Grado en Ingeniería Química
- 2. Normativa Trabajo Fin de Grado de la ZTF-FCT
- 3. Normativa Trabajo Fin de Grado de la UPV/EHU

Bibliografía de profundización

Revistas

Direcciones de internet de interés

http://www.zientzia-teknologia.ehu.es/ => Trabajo Fin de Grado