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Abstract

In recent years, models incorporating splines have been considered for smoothing mortal-
ity risks in disease mapping. Although these models are very flexible, they can be computa-
tionally expensive when analyzing spatio-temporal data. In this work, alternative models are
proposed to avoid the dimension of the three-dimensional B-spline basis. Pancreatic cancer
mortality data in continental Spain during the period 1988-2012 will be used for illustration
purposes.
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1. Introduction
In recent years, models incorporating splines have been considered for smoothing mortality

risks in spatio-temporal disease mapping as an alternative to conditional autoregressive (CAR)
models. A sensible approach consists in using CAR distributions for spatial random effects and B-
splines for temporal smoothing [1]. Very recently, Lee and Durbán [2] consider two-dimensional
P-splines with B-spline bases for spatial count data. These authors also propose three-dimensional
P-splines to smooth ozone levels in space and time [3], whereas [4, 5] use three-dimensional P-
splines to smooth risks in space and time. These P-splines models have been embedded within
a generalized linear mixed model (GLMM) framework and model fitting and inference has been
carried out using the well-known penalized quasi-likelihood (PQL) technique [6]. From a fully
Bayes approach, P-splines have been also used to smooth risks in spatio-temporal disease mapping
[7]. Although these models are quite flexible, they rely on Markov chain Monte Carlo (McMC)
methods for model fitting and inference, with the inconvenience of large computing time. Very
recently, integrated nested Laplace approximations (INLA) [8] have been proposed for Bayesian
inference to reduce computational burden.

In this work, spatially structured (or unstructured) one-dimensional temporal P-splines as
well as temporally structured (or unstructured) two-dimensional spatial P-splines are proposed to
smooth risks and to avoid three-dimensional P-splines of large dimension. The spatial and tempo-
ral correlation will be specified giving appropriate prior distributions to the basis coefficients. The
models will be fitted using INLA.
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2. P-splines models for spatio-temporal count data
Let us assume that the region under study is divided into n contiguous small areas labeled

as i = 1, . . . , n and data are available for several time periods t = 1, . . . , T . Then, conditional
to the relative risks rit, the number of counts in each area and time period, Oit, is assumed to be
Poisson distributed with mean µit = Eitrit, where Eit represent the number of expected cases for
area i and time t. Namely

Oit|rit ∼ Poisson(µit = Eitrit) and log rit = logEit + log rit.

Depending on the specification of log rit, different models are defined.

2.1. Spatially structured temporal P-splines

An spatially structured temporal P-spline model is defined as

log rit = η + ξi + f(xt) + fi(xt) for i = 1, . . . , n; t = 1, . . . , T,

where η quantifies the logarithm of the global risk, ξi is a spatially structured random effect, f(xt)
is a temporal smooth function common to all areas and fi(xt) is a spatially structured temporal
smooth function specific for each area. That is, temporal trends from neighbouring regions tend to
be similar [7]. As suggested by [9], the Leroux et al. CAR prior [10] is considered for the spatial
effects ξi

ξ ∼ N
(
0, σ2s(λsQs + (1− λs)Is)−1

)
,

where λs is a spatial smoothing parameter taking values between 0 and 1, Is is an n × n identity
matrix, and Qs is the spatial neighborhood matrix. The common temporal trend is specified as
f(xt) = Btθt, where a random walk prior of first (RW1) or second (RW2) order is considered for
θt, and Bt is the temporal B-spline basis of dimension T × k (with k depending on the number
of knots and the degree of the B-spline basis). Finally, the spatially structured temporal trend
is defined as fi(xt) = Bstθst, where Bst = In ⊗ Bt is a block-diagonal matrix of dimension
nT × nk. Spatial correlation is included through a CAR prior distribution on the coefficients
θst = (θ11, . . . , θ1k, . . . , θn1, . . . , θnk)

′
such that

θ·j = (θ1j , . . . , θnj) ∼ N(0, σ2stQ
−
s ) for j = 1, . . . , k.

If spatial correlation on the coefficients is ignored, then the area-specific temporal trend will vary
randomly. Depending on the prior for neighbor coefficients in space and in time, different models
arise resembling the four types of interaction models defined in Knorr-Held [11].

2.2. Temporally structured spatial P-splines

Similarly, a temporally structured spatial P-spline model is defined as

log rit = η + f(x1i, x2i) + γt + ft(x1i, x2i) for i = 1, . . . , n; t = 1, . . . , T,
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where here f(x1i, x2i) is a smooth surface constant along the time periods, γt is a temporally struc-
tured random effect and ft(x1i, x2i) is a temporally structured spatial smooth function specific for
each time point. Here, random walks priors, RW1 or RW2, are considered for the temporal effects
γt, defined as

γ ∼ N(0, σ2tQ
−
t ),

where Qt is the structure matrix of a RW1/RW2 and the symbol − denotes the Moore-Penrose
generalized inverse of a matrix. The constant spatial smooth surface is specified as f(x1,x2) =
Bsθs, where Bs = B22B1 is the two-dimensional B-spline basis of dimension n×K (withK =
k1k2 depending on the number of knots and the degree of the marginal B-spline basis) obtained
from the row-wise tensor product of marginal B-spline bases for longitude x1 = (x11, . . . , x1n)

′

and latitude x2 = (x21, . . . , x2n)
′
. Finally, the temporally correlated spatial smooth function is

defined as ft(x1,x2) = Bstθst, where Bst = It ⊗ Bs is a block-diagonal matrix of dimension
nT ×KT . Temporal correlation is included through a RW1/RW2 prior on the coefficients θst =
(θ11, . . . , θK1, . . . , θ1T , . . . , θKT )

′
such that

θj· = (θj1, . . . , θjT ) ∼ N(0, σ2stQ
−
t ) for j = 1, . . . ,K.

3. Illustration
Pancreatic cancer mortality data in continental Spain during the period 1988-2012 will be

considered to illustrate these models. The INLA approach will be used for model fitting and
inference. It provides accurate approximations to the posterior marginals of the quantity of interest
in relatively short computational time (see for example [12]). The models can be implemented in
R using the package R-INLA.
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