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Abstract

Bayesian correlated binary models were formulated to assess the prevalence of three
viruses in organic and non organic agriculture. Markov chain Monte Carlo (MCMC) methods
have been used to approximate the posterior distribution of the uncertainties in the model.
Sensitivity analysis to prior assumptions of the random effects is examined through a measure
based on the Hellinger distance, calibrated with respect to the standard normal distribution.
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1. Introduction
Agriculture is evolving towards a sustainable productivity in conjunction with the protection

of the environment and the human health [1]. Organic farming has suffered a strong development
during the last decade but susceptibility to diseases caused by viruses is, in comparison to conven-
tional agriculture, poorly studied. Research in the field of virus epidemiology under new growing
conditions will probably become an important line of future research. Nevertheless, this study
requires a characterization of agroecosystem balance [6] where the application of robust statistical
techniques will be essential. Hierarchical Bayesian models are a very suitable choice due to its
ability to capture and model a great quantity of uncertainties in a study, in particular correlation
structures among the data.

2. Plots, viruses and data
In the summer of 2012, a total of 30 plots, 18 organic and 12 non organic, were selected in

order to compare their susceptibility to virus infection. For this purpose, eight tomato or pepper
plants were randomly selected in each plot to analyse the presence or absence of three relevant
virus: Cucumber mosaic virus (CMV), Tomato mosaic virus (ToMV), and Tomato spotted wilt
virus (TSWV). Virus presence in each plot was defined when the specific virus was detected in at
least one of the eight selected plants. Data also included information of the altitude of the plots
and a binary greenhouse factor for the non-organic plots.

3. A Bayesian correlated binary model
The main scientific question addressed in the study was to compare the probability of virus

infection under organic and conventional conditions, with a special interest of detecting a possible
organic effect. Agroecosystem state was kept in mind in the model through the inclusion of a set
of generic covariates. Furthemore, an individual random effect which depicts plot susceptibility to
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be infected was also introduced to capture intra-plot variability and correlated prevalence among
the different viruses

We construct a Generalized Linear Mixed Model (GLMM) for the Bernoulli random vari-
ables Yij which describe the presence or absence of virus j (j = 1 corresponds to ToMV, j = 2
with CMV and j = 3 with TSWV) in the plot i with i = 1, . . . , 30.

(Yij | θij) ∼ Bernoulli(θij)

logit(θij) = x
T
i βpj + bi

(1)

where θij is the probability that virus j was detected in plot i; βpj the regression coefficients
associated to greenhouse and organic factors, and to the altitude of the plot in logaritmic scale; bi
is a normal random effect for plot i with zero mean and standard deviation σb (or precision τb).

The Bayesian model is completed with the specification of the prior distribution for the
subsequent parameters and hyperparameters. We consider prior independence and normal distri-
butions, N(0, σ2 = 1000), for the regression coefficients, and a Uniform distribution, Un(0, 100),
for the standard deviation of the random effect. The posterior distribution is approximated by
means of MCMC through WinBUGS software [3]. The MCMC algorithm have ran for three
Markov chains with 1 000 000 iterations after a burn-in period with 100 000 iterations. The effec-
tive iterations were thinned by storing every 10th iteration in order to decrease autocorrelation in
the sample.

Variable mean sd Q2.5% Q50% Q97.5%

P (ToMV |org) 0.125 0.089 0.012 0.105 0.345
P (ToMV |noorg ∩ green) 0.214 0.198 0.005 0.152 0.726
P (ToMV |noorg ∩ nogreen) 0.056 0.085 0.000 0.023 0.309
P (CMV |org) 0.095 0.075 0.007 0.077 0.287
P (CMV |noorg ∩ green) 0.102 0.133 0.001 0.049 0.495
P (CMV |noorg ∩ nogreen) 0.158 0.152 0.004 0.109 0.565
P (TSWV |org) 0.032 0.040 0.000 0.018 0.145
P (TSWV |noorg ∩ green) 0.134 0.162 0.001 0.070 0.602
P (TSWV |noorg ∩ nogreen) 0.197 0.175 0.006 0.146 0.648

Table 1: Descriptive of the posterior distribution of the probability that a reference plot at an
altitude of 151 metres is infected with the virus CMV, ToMV, and TSWV

The estimated model shows a strong association between all the covariates regarding to the
probability of infection. Table 1 shows a descriptive for the posterior distribution of the probability
of infection for each viruses and reference plot populations: organic, non organic-greenhouse and
non organic-non greenhouse plots for an altitude of 151 metres. Organic plots were less susceptible
than non organic plots for TSWV and CMV infections. With regard to ToMV, the organic effect
was weaker and the tendency changed. Altitude increase has an inverse effect in probabilty of
infection as we can see in Figure 1. This effect is the same for the rest of viruses.
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Figure 1: Posterior distribution of the probability of infection with TSWV for each reference plot
with regard to two altitudes: 34 (solid) and 151 metres (dashed).

4. Sensitivity analysis
Prior robustness is a relevant issue in applied statistics, mainly when dealing with models

with random effects. We have conducted a analysis for comparing influence of the hyperprior dis-
tribution of the random effect based on the proposals in [5]. We have considered different random
effect scale parameters assumptions (see Table 1), and have quantified sensitivity to these choices
comparing hyperparamter marginal posterior distribution and also the fixed effects (regression
coefficients) ones. We have used a general local sensitivity measure [4]

S(π1, π2) =
H(π1(γ | data), π2(γ | data))

H(π1(γ), π2(γ))
, (2)

where H() is the Hellinger distance [2] between the posterior (prior) distributions π1(γ | data)
and π2(γ | data) (π1(γ) and π2(γ)). The Hellinger distance is a symmetric and invariant measure

Hyperparameter Hyperprior distributions
τb (1): Ga(0.001, 0.001), (2): Ga(0.01, 0.01)
σb (3): Unif(0, 100), (4): Unif(0, 10)
σb (5): HN(0, 2025), (6): HN(0, 25)

Table 2: Hyperprior distributions for the precision and scale parameters associated to the random
effects in the model. HN(0, σ2) represents a half-normal distribution with scale parameter σ.

of discrepancy between two probability distributions which maximal value is 1 and is equal to 0
when both distributions are equal.

Table 3 shows the Hellinger distance of the marginal posterior distribution of the regression
coefficients associated with virus ToMV and sensitivity of the random effects hyperparameter.
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Parameter H(1, 2) H(3, 4) H(5, 6) C(H(1, 2)) C(H(3, 4)) C(H(5, 6))

β01 0.039 0.01 0.011 0.109 0.027 0.032
β11 0.031 0.007 0.009 0.088 0.020 0.027
β21 0.02 0.006 0.008 0.057 0.017 0.024
β31 0.045 0.01 0.01 0.129 0.030 0.030

Hyperparameter S(1, 2) S(3, 4) S(5, 6) C(S(1, 2)) C(S(3, 4)) C(S(5, 6))
σb, τb 0.503 0.012 0.026 0.492 0.011 0.025

Table 3: Hellinger distance and its calibration between the posterior marginal distributions of the
regression coefficients, and sensitivity and its calibration of the random effects precision for the
different hyperpriors introduced in Table 2.

Note that prior distribution of regression coefficientes is fixed in all models due to sensitivity is
quantified through the Hellinger distance. Calibration of the differences is also provided. The
marginal posterior distribution for the regression coefficients are very similar in all models. How-
ever, Gamma hyperpriors always produce the greatest discrepancies. In the case of sensitivity of
the random effects precision, we also obtain that Gamma and Uniform hyperpriors provide the
greatest and smallest sensitivity values and calibrations, respectively.

Calibration was made with respect to the unit invariance normal distribution. For instante,
a value C(H(1, 2))= 0.192 means that the difference between marginal posterior ditributions of
the paramater β01 is comparable with the difference between a N(0, 1) and N(0.192, 1). In the
case of the hyperparameter the value C(S(1, 2))= 0.492 means that two priors whose difference
is comparable with the difference between a N(0, 1) and N(1, 1) generate two posteriors whose
difference is comparable with the difference between N(0, 1) and N(0.492, 1). These tendencies
were also observed in the rest of parameters.
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