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Abstract

With the emergence of new biomedical technologies, statistical methods for the analysis
of high dimensional survival data have become increasingly important. In this work we aim to
provide a general overview of the application of regularization methods to the Cox PHM for
automatic variable selection, and show how this regularization may be done under a proximal
optimization paradigm, which to our knowledge, is a novel approximation to the problem.
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1.  Introduction

In the last few years, new technologies in the field of genomics have led to a great amount
of biomedical data. Gene expression data have changed our understanding of complex diseases
such as cancer. However, it has a main characteristic: the number of features greatly exceeds the
number of observations. As a result, many classical statistical approaches cannot be applied to
these data without major modifications.

Moreover, when there is survival data avilable, we may be interested in assessing which
features are most associated with a survival outcome.

Consider a traditional survival analysis framework with data of the form (y1, 1, 1), ..., (Yn, Tn, On)s
where y; is the observed time of failure if §; = 1, or is right-censored if §; = 0. The vector x;
contains the features (z;1, zj2, ..., Zip). Assuming no ties and letting t; < t3 < ... < t,, be the
increasing list of unique failure times, the Cox Proportional Hazards Model (PHM) assumes a
semi-parametric form for the hazard defined as

h(t|w) = ho(t) exp(w’x), (1)

where ho(t) is a completely unspecified baseline hazard function, and w’ = (w1, ws, ..., wp)T is
an unknown vector of regression coefficients. Note that in (1) we have decomposed the hazard into
a product of two elements, where h(t), depends on time but not on the covariates, and exp(w? x),
which depends on the covariates but not on time.
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We want to fit (1) to a given sample and estimate the optimal w parameters. For the esti-
mation of these regression parameters, we propose to minimize the minus partial log likelihood
function, a convex defined as

(w)=— Z wlx; — log Z exp (Wij) . 2)

i=1 jeR(t:)

This minimization problem is equivalent to maximizing the partial log likelihood function
proposed by [1]. Because (2) is convex, its solution is unique and the minimization may be done
using various algorithms, where perhaps the most common is the Newton Raphson algorithm, a
standard tool for solving unconstrained smooth optimization problems.

2. Algorithm

Considering the framework described in section 1, we are interested in a regularized version
of the Cox PHM [6], where a Lasso penalty is added to the minus log partial likelihood function
for shrinkage and variable selection. This method is based on the Lasso [5], which was originally
designed for the linear regression problem. In this work, we have the following unconstrained
minimization problem.

N
W = arg min, { — Z wlx; —log Z exp (wix;) || + A |[wl ¢, 3)
i=1 jeR(t;)

where A controls the amount of shrinkage applied to the coefficients.

Several algorithms have been proposed for solving the reguarized Cox PHM. [6] proposes
to solve (3) through constrained reweighted least squares. This approach is very similar to the
traditional Newton Raphson updates, although the Lasso constrain is added to the problem. [2]
approaches the problem with an algorithm based on a combination of gradient ascent optimization
with the traditional Newton Raphson updates. A characteristic of this approach is that it follows
the gradient of the likelihood from a given starting point using the full gradient at each step. [2]
has available an algorithms named penalized, freely available at CRAN.

In this work we propose solving (3) using FISTA, an algorithm that uses the proximal op-
erator. Proximal algorithms may be viewed as an analogous tool for non-smooth, large scale
optimization problems [4]. They are very applicable and well-suited to problems of recent inter-
est involving high-dimensional datasets. Even though the most popular application of proximal
algorithms is for solving the Lasso, with a minor modification we can make it solve the regu-
larized Cox PHM given that it only requires to know the function we want to minimize, and its
gradient. Our minimization problem (3) is hence formed by two convex functions, f(w) = I(w)
and g(w) = ||wl|;, where f(w) is differentiable and Lipschitz continuous and g(w) is non-
differentiable.
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Following [4], a definition for the proximal operator is given by

. 1
prow () = arg min { 3 ot — vl + el | @
WEk+1

Equation (4) gives already an idea of the iterative procedure we are going to employ. Con-
sider wy, as some possible values for g(w). Of course, they are not the minimum, but they can
be though as a starting point. Now we need to find some wy; values that are a middle point
between wy, and the minimum of g(w). In other word, we take one step towards the minimum of
the g(w). If we repeat this procedure, it is possible to show that it will converge to the solution of
the problem.

However, (4) only minimizes the g(w). Our interest lies in minimizing (3) which is com-
posed by the sum of two convex functions. For this task, we can re-write (4) as

proxs (Wk - %Vf(wk)> = arg min {; HWk+1 - (Wk - %Vf(wk)) HZ + Hwk+1‘|1} ,

Wk+1
&)
where L is the Lipschitz constant of V f(w), and 7y controls the step size.

The interpretation of (5) is similar to the interpretation of (4). The proximal operator again
minimizes g(w). However, notice that at each step, the algorithm receives wi, — +V f(wy,), rather
than just wy. It is easy to see that wy — 7V f(wy,) is a traditional gradient descent step, which
means that we first do a gradient descent step, controlled by =y, towards the minimum of f(w),
and then, with the result given by the gradient descent step, we take a step towards the minimum
of g(w). This way, we sequentially minimize both functions at the same time.

This algorithm is referred as “Iterative Shrinkage Thresholding Algorithm” or ISTA, and
includes a backtracking step if the Lipschitz constant is unknown and needs to be approximated.
An interesting property is that ISTA has a convergence rate equal to O(1/k), which is similar
to gradient descent. However, we can improve its convergence rate to O(1/k?) by mean of the
Nesterov’s accelerated gradient [3]. ISTA with the Nesterov’s accelerated gradient receives the
name of FISTA, which stands for “Fast Iterative Shrinkage Thresholding Algorithm”.

3. Experiments

To illustrate the performance of our proposal, we test it using a genomic dataset with the
competing algorithm in the field of regularized Cox PHM: penalized. This algorithm has been
already introduced in section 2.

We are interested in assessing the number of iterations and time until convergence of each
algorithm. Results are showed at Fig. 1 and we can see that FISTA outperforms penalized in
both time and iterations until convergence. Notice that, because the convex nature of the problem,
there is a unique solution for a given A value, and hence an accuracy comparison is not needed.
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Figure 1: Time and iterations until convergence of FISTA (blue) and penalized algorithm (red)
for different values of \.

4. Conclusions

In this work we propose to solve the regularized Cox PHM under a proximal optimization
paradigm, which to our knowlege, is a novel approach to this problem. Proximal methods were
originally developed for the Lasso, but can be easily modified for our purpose. We show that
proximal methods offer not only a natural solution of the problem, which is unique given its
convex nature, but require less time and iterations to converge than a competing algorithm in this
field.
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