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Abstract

Underdispersion is a less common phenomenon which appears in count data. In the literature,
there exist many models which deal with the problem of overdispersion, but not with under-
dispersion. COM-Poisson model is one of the few which is able to deal with underdispersion.
In this work we propose a new count model generated from a Birth-death process which will
be applied to analyse several examples. One of them will be the number of chromosomal
aberrations in irradiated cells that is useful in dosimetry.
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1. The M/M/1 model.

The M/M/1 is the most elementary process in queuing theory whose state space is {0, 1,2, --}.
It is characteristic because the arrivals occur according to a Poisson process with rate \ (interar-
rival times are exponentially distributed with mean equal to %), service times are exponentially
distributed with mean % and the customers are served following the discipline first-come, first-
served. That is, when the service is complete the customer leaves the queue.

The stationary distribution of the process is the limiting distribution when time ¢ tends to infin-
ity. M/M/1 process only has stationary distribution when, on average, arrivals happen slower than
service completions. In other words, when p = %, which is defined as the proportion of time
the server is working, is less than 1. The M/M/1 process can be understood as a continuous time
Markov process, and it is also a Birth-death process.

In this talk we consider an M/M/1 model with state dependent service rate, that is, p, = uf(n),
where n is the number of customers in the queue.

An important point in a M/M/1 queue is the calculation of p,(t) n = 0,1,2,---, that is the
probability that at time ¢ there are n customers in the system. To obtain these probabilities, it
is necessary to use the memoryless property of the exponential distributions of the times in the
system and the assumption that V¢ — 0. Hence,

po (t+ Vi) = (1 = AVt) po(t) + pun Vipi(t) + 0 (V1) (D

Pn (t + Vt) = )‘thn—l(t) + (1 - (/\ + Mn))Vt) pn(t) + antpn—i-l(t) +o0 (Vt) . (2)
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By letting V¢ — 0 and assuming a steady state (p;1 (t) = 0 for all n), we obtain the following set
of difference equations for the probabilities p,,,

HnP1 = APo 3)

(A + Mn>pn = APn—1 + Hnt1Pnt1, 4

Therefore, the probabilities can be calculated recursively from (4). Even more, in some situations
a closed expression of these probabilities can also be found. The value of pg can be obtained from
the condition that all the probabilities have to sum 1.

The idea of customers in a queue can be used to model some biological events, as we will see in
section 4.

2. The COM —Poisson distribution.

The origin of the COM-Poisson distribution is the paper of Richard et all. (1962), where the
authors proposed a power function for y, taking into account that f(n) = n¢. Specifically, they
considered the following model for the service rate in a queuing system,

P = ML, (5)

where n is the number of units in the system and ¢ a constant which indicates the degree to which
the service rate of the system is affected by the system state.
Applying the equations (3) and (4), it was deduced a general expression for the probabilities,

_ P
and pg can be obtained using that the sum of the probabilities is 1.

The distribution of (6) is known as the Conway-Maxwell-Poisson distribution, also called COM-
Poisson. One important property of this distribution is that the parameter ¢ models the overdisper-
sion and underdispersion of the data.

3. A new underdispersed count model

The idea to incorporate an accurate behaviour of u, which is able to change the speed of the
service according to the size of the queue, allow us to propose an exponential function.

fin, = pe’™, (7)

that is, f(n) = e”™. Hence, n is also the number of customers in the queue, and /3 is the constant
which indicates the degree to which the service rate of the system is affected by the system state.
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Applying the method described above, that is the equations (3) and (4) and replacing (., by (7),
the following solution is obtained,

Pn= g rayPo 1 2 0. ®)

As the sum of the probabilities is 1, pg can be expressed as pg = ﬁ

S
n=0 eﬂn(nTH)

Note that, if 3 = 0 then pyg = 1 — p. However, for other values of 3, the exact expression of py is
difficult to obtain, and has to be numerically approximated.

4. Example of application

Data is composed of the number of aberrations in cells irradiated with different doses of radiation.
The description and the experimental procedure can be found in Pujol et al. (2014). They consid-
ered the samples of cells irradiated with doses 1, 3, 5, 7, 10, 15, 20 and 25. The means, variances
and dispersion indexes for each sample are summarized in Table 2 in Pujol et al. (2014).

We have detected that the dose is related with parameter 5. Therefore, we define a suitable function
for this parameter as a function of the applied dose. After several explorations, we chose the
link-function § = df}gz + 03d, where d is the dose. It was selected taking into account several
criteria: minimum AIC, the significance of the parameters, and the behaviour of the empirical and

theoretical means and variances.

The selected model was estimated by maximum likelihood. The following estimates were ob-
tained:

o (3.930)" .
b= a2 ®

Parameter Estimate Lower limit (95%) Upper limit (95%)

p 3.930 3.387 4.474
01 2.202 1.986 2.419
02 -0.369 -0.424 -0.316
03 0.001 0.0008 0.0015

Table 1: MLE of the selected model.
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Figure 1: Empirical and theoretical means and variances of the observed and estimated data.

Taking into account the interpretation of a queuing model with state dependent service rate, the
relation between this model and the example exposed can be understood in the following way:
when the cell is irradiated, the particles arrive to the cell and damage it. These arrivals follow a
Poisson process. At the time that a particle arrive and produce damage, the repair mechanism of
the cell (service) begins to repair the damage. While this mechanism is working, other damages
arrive to the cell. If the mechanism is able to repair the aberrations, these aberrations leave the
queue.
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