
1

Partial Likelihood and Models for binary response
Ana Vázquez1, Anna Espinal2, Olga Julià3

1ana.vazquez@uab.cat, Servei d’Estadística Aplicada, Universitat Autònoma de Barcelona
2anna.espinal@uab.cat, Servei d’Estadística Aplicada, Universitat Autònoma de Barcelona

3olgajulia@ub.edu, Departament de probabilitat, lògica i estadística, Universitat de Barcelona

Abstract

Usually time until an event is measured in continuous scale, but for various reasons we
can find time measured in discrete scale. In this paper compares different models for ana-
lyzing discrete time from a set of covariates: the Proportional Hazards model (Cox, 1972)
with different methodologies for tied data and models for binary response with link logit and
cloglog.
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1. Partial likelihood for tied event times
Let ((t1, δ1), (t2, δ2), . . . , (tn, δn)) be a sample of survival times where ti are the observed

times and δi the censorship indicator. Suppose that there are r different and uncensored times
and Zi = (Z1i, . . . , Zpi) be the vector of covariates for individual i = 1, . . . , n. To obtain esti-
mates of the covariate effects, Cox (1972) proposed a semiparametric method based on the Partial
Likelihood (PL) given by:

PL(β1, . . . , βp) =
r∏

m=1

exp(
∑p
k=1 βkZ(m)k)∑

l∈R(t(m))
exp(

∑p
k=1 βkZjk)

where R(t(m)) is the risk set in t(m).
The PL factors correspond to the probabilities: P ( individual dies at tm| one death at tm).

The PL is treated as a usual likelihood function and inferences are carried by usual way: the
estimation of parameters is obtained by maximizing ln(PL(β)).

Sometimes, due to the way that times is measured, there is tied values for the observed
time. That is, more than one individual have the same observed time. Suppose that dm individuals
failling at tm.
There are some alternatives taking into account for ties into the PL:

• Breslow (1974): all individuals failing in tm have the same denominator in PL.

• Efron (1977): individuals failing in tm contributes with different weights, due to the denom-
inator decrease proportionally.
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• Discrete (1972): this method assumes discrete times, therefore no underlying ordering of
ties is considered. The denominator takes into account for all possible subsets (without
replacement) of di individuals that we can take from the risk set.

• Exact (1980): this method assumes that the survival time comes from a continuous ran-
dom variable and we observed tied values because data are grouped. The PL takes into
account all possible orders of tied individuals. This method is often very close to the Efron
approximation.

2. Likelihood for discrete times
Suppose our sample of times to event comes from a discrete random variable:

((t1, δ1), (t2, δ2), . . . , (tn, δn)) where ti are the observed times and δi the censorship indicator.

The likelihood function is proportional to:
∏n
i=1

[
P (t = ti)

δiP (t > ti)
(1−δi)

]
We can relate the risk function, h(·), with previous probabilities as:

P (T = ti) = hti

ti−1∏
m=1

(1− hm) and P (T > ti) =
ti∏

m=1

(1− hm)

where hj = P (T = j|T ≥ j)

Substituting the above equalities is obtained:

L ≈
n∏
i=1

[
hti

ti−1∏
m=1

(1− hm)
]δi [ ti∏

m=1

(1− hm)
](1−δi)

Taking rim = δi l1(ti = m), we obtained that:

L ≈
n∏
i=1

ti∏
m=1

(
hm

1− hm

)rim
(1− hm) =

n∏
i=1

ti∏
m=1

hrimm (1− hm)1−rim (1)

which is the same likelihood function coming from a model for a binary response, where if rim = 1
we have hm and if rim = 0 we have (1− hm).

This is the likelihood for a response variable,Bernoulli(hm) that is we could also establish
the usual models for a binary response:

• Model for binary response with link logit:

ln

(
h(tk|Z)

1− h(tk|Z)

)
= αk + βlZ ⇐⇒ h(tk|Z) =

eαk+βlZ

1 + eαk+βlZ

• Model for binary response with link cloglog:

ln (− ln(1− h(tk|Z))) = ηk + βclZ ⇐⇒ h(tk|Z) = exp(−eηk+βclZ)
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3. Relationships between Likelihood, Partial likelihood and Models for binary
response

Regardless of the nature of time variable, according with Cox argument, to estimate the
effect of covariates we can work directly using the PL without going through the likelihood.
following this argument, we can justify the next relationships depending on the nature of time:

• Time as a discrete variable:

1. Likelihood vs Logit: If hm, from (1) are parameterized using the link logit, so that,
h(tm|Z) = eαm+βZl

1+eαm+βlZ
, we just get the same likelihood corresponding to a model for

binary response with link logit.

2. Partial likelihood vs Discrete: If the probabilities used in the PL, are parameterized by
the link logit, we get the PL of the Discrete method for dealing with tied data in a Cox
model.

• Time as a continuous variable with grouped values:

1. Likelihood vs Cloglog: If hm, from (1) are parameterized using the link cloglog, so
that, h(tm|Z) = exp(−eηm+βclZ), we just get the same likelihood corresponding to a
model for binary response with link cloglog.

2. Partial likelihood vs Cloglog: Prentice and Gloeckler (1978), presents an equivalent
version of continuous Proportional Hazards model, when time is a discrete variable. If
T comes from grouping a continuous variable U , and assuming a Cox model for the
continuous time variable U , then the risk function at time tj can be expressed as:

h(tj |Z) = 1− exp
(
−eβ′Z+ηj

)
where ηj = ln

(∫ tj
tj−1

λ0(t)dt
)

. Note that this is exactly a model for a binary response
with a link cloglog.

3. Partial likelihood vs Exact: because the probabilities used in the PL and in the Exact
method are based in the all possible orders of tied individuals.

4. Simulations
The relationships argued in the previous section have been analyzed by simulation studies

for the two cases: time as a discrete variable and time as a continuous grouped variable. Geometric
and exponential distributions have been used, respectively, because they have a constant hazard
function.

In both simulations we show that Discrete and Logit give concordant estimates as well as
Exact and Cloglog.
It is important to note that the magnitude eβ not always corresponds to Hazard Ratio (HR).
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• Time as a discrete variable: the term eβ corresponds to HR only with Breslow approxima-
tion. For obtaining estimates of the HR, it must use models for binary response.

• Time as a continuous grouped variable: the term eβ corresponds to HR of original con-
tinuous variable with Exact and Cloglog. To obtain estimates of the HR for the grouped
variablemust be used models for binary response.

As an illustration, Figure 1 displays a plot for the geometric and exponential distribution
results. Different sample sizes are presented. HR=2 in both simulations. We can observe:

• In both cases, there are three different estimations depending on the used method: Breslow,
Discrete and Logit, Exact and Cloglog.

• For the geometric distribution, eβ̂ only is a good estimate for HR when Breslow is used. For
the other methods eβ̂ do not estimate HR but odds ratio (OR) in some cases.

• For the exponential distribution, eβ̂ is a good estimate for HR when Efron, Exact and
Cloglog are used.

Figure 1: Geometric distribution (Left) Exponential distribution (Right)
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