Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells

Aroa Morán-Ruiz a, Karmele Vidal a, Aitor Larrañaga a, Jose Manuel Porras-Vázquez c, Peter Raymond Slater c, María Isabel Arriortua a,b,*

a Universidad del País Vasco (UPV/EHU), Facultad de Ciencia y Tecnología, Departamento de Mineralogía y Petrología, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
b BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Technological Park of Zamudio, Camino de Ibaizabal, Bndg. 500-1st, 48160, Derio, Spain
c University of Birmingham, School of Chemistry, Birmingham, B15 2TT, UK

A R T I C L E I N F O

Article history:
Received 3 November 2014
Received in revised form 12 January 2015
Accepted 2 February 2015
Available online 7 March 2015

Keywords:
SOFC
Composite contact coating
Channeled interconnect
Chromium poisoning
Contact resistance

A B S T R A C T

An uncoated and MnCo1.9Fe0.1O4 (MCF) coated Fe-22Cr meshes were dipped into LaNi0.6Fe0.4O3 (LNF) slurry to form a continuous protective/conductive layer for Crofer22APU interconnect. After aged these samples at 800 °C for 1000 h, energy dispersive X-ray (EDX) results concluded that: if the deposition of the protective coating was not enough to form a dense and continuous layer across the width of the mesh, then the use of MCF spinel layer is not enough to prevent chromium migration. For mesh-LNF/interconnect structure the area specific resistance (ASR) value of 0.0425(2) Ω cm² was stable for 400 min at 800 °C, indicating initial good adherence between both materials. After aged this structure at 800 °C for 1000 h, without applying a current source, X-ray micro-diffraction (XRD) results, performed at the rib and channel of the interconnect, revealed that the LNF material is acting as a protective layer. Moreover, X-ray photoelectron spectroscopy (XPS) analysis indicated that manganese is concentrated on the mesh/LNF contact surface.

Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Alternative technologies need to be developed for long-term sustainable energy supply due to socio-political, economic and environmental problems associated with the burning of fossil fuels. Solid oxide fuel cells (SOFCs) have the potential to be efficient and cost-effective system for the direct conversion of a wide variety of fuels to clean electricity. These benefits will only be achieved by society if SOFC technology can become commercially available [1,2].

Despite SOFC advantages, they still have problems related to: i) poor contact between cell component and ii)...
microstructure degradation of the porous electrodes due to chromium poisoning [3,4]. Growth of a poorly conductive oxide layer between the metallic interconnect ribs and the electrode results in a lack of contact between both materials. Moreover, the use of ferritic steel substrates is associated with another issue called “cathode Cr poisoning” [5]. Thus, the application of conductive/protective coatings acting as an adhesive to connect cathode with substrate, and as chromium diffusion barrier and oxide scale inhibitor is the subject of many research [6–8]. It is important to ensure that the materials exhibit high chemical and microstructural stability, high electrical conductivity, compatibility with the interconnect materials, reasonable thermal compatibility match with other cell components, and high sinterability to ensure high mechanical strength and good bonding with the adjacent components [9,10]. Various materials have been used in an effort to inhibit Cr migration from the chromia-rich subscales and to improve oxide scale-to-electrode adhesion, reducing oxide growth kinetics. Basically, SOFC interconnect coatings fall into four main categories [9]: reactive element oxides (REOs), MAICrYO (M represents a metal, e.g., Co, Mn, Ti or Ni), conductive perovskites and spinels.

The perovskite structure oxides, $A^{3+}B^{3+}O_{3-d}$, where A is a rare-earth element and B is a first row transition metal, have been investigated widely for cathode contact applications [11–13]. Compositions with B=Co, Ni have been used because of their high conductivity, while the oxides with B=Cr, Fe, Mn are known to be stable at high temperatures [1,14,15]. Moreover, the introduction of alkali-earth elements, such as Sr, increases the sintering activity and the conductivity [10,16]. Other authors indicated that (La$_{1-x}$Sr$_x$)MnO$_3$ coatings change the oxidation behavior and enhance the long term stability of metallic interconnects [17]. Moreover, more studies reported that [18] La$_{0.5}$Sr$_0.5$CrO$_3$ and La$_{0.8}$Sr$_{0.2}$FeO$_3$ coatings on ferritic alloys are not effective to prevent Cr outward diffusion. In another work, (La, Sr)CoO$_3$, (La, Sr)Co$_2$FeO$_4$ and La(Ni,Fe)$_2$O$_3$ coated ferritic alloys (Crofer22APU, E-Brite and 430) were studied [19], concluding that perovskite B-site cations (Ni,Fe,Co) diffuse to form stable spinel with transition metals from the interconnect. In our previous studies [20] (La$_{0.5}$Sr$_{0.5}$)$_{0.95}$Fe$_{0.05}$MnO$_3$, LaNi$_{0.8}$Fe$_{0.2}$O$_{3.5}$, LaNi$_{0.6}$Ce$_{0.4}$O$_{3.5}$ were evaluated as contact materials between a Crofer22APU interconnect and a La$_{0.6}$Sr$_{0.4}$FeO$_3$ cathode. The formation of phases like SrCrO$_3$ and Cr-containing perovskite in short exposure times was observed. However, an adequate integrity and low reactivity is achieved when LNF contact coating is applied without compromising the contact resistance of the system.

Comparing to uncoated samples, perovskite coatings reduced the oxide scale growth so these coatings decrease the interfacial contact resistance; however, high sintering temperature of the perovskites leads to low compaction of these coatings and cell performance may still be degraded due to Cr poisoning. In addition to the perovskites, AB$_2$O$_4$ (A and B: divalent, trivalent and quadrivalent cations) spinel oxides can reduce oxidation and inhibit chromium volatility from ferritic stainless steels [9]. Mn$_{1.3}$Co$_{0.4}$O$_3$ spinel oxides have been the most extensively studied [21–26]. However, ASR test of MCO coated Crofer22 showed that the adhesion of these coatings may be an issue for long-term applications [21,27]. For this reason Ce was added to the coating as reactive element in order to increase oxide scale and coating adherence to the metal substrate. A composition of Ce$_{0.55}$Mn$_{1.475}$Co$_{0.475}$O$_4$ was used and results have looked promising [28,29]. Moreover, other research groups have also studied Mn—Co spinels doped with Fe, Ti or Cu which exhibits higher electrical conductivity and a better densification than MnCo$_2$O$_4$ due to a partial substitution of Co by Fe, Ti and/or Cu [30–34]. Our previous work also concluded that [35] MnCo$_{0.8}$Fe$_{0.2}$O$_3$ was a more effective barrier than MnCo$_2$O$_4$, resulting in better electrochemical results and a similar microstructure; the presence of a low Fe content in MnCo$_{0.8}$Fe$_{0.2}$O$_3$ improved the stability of coating. In addition, due to the low cost of Ni, NiMn$_2$O$_4$ [36] and NiFe$_2$O$_4$ spinels were also studied as protective coatings, providing effective conducting path to metallic substrate.

Despite the usefulness of conductive/protective coatings, the stack degradation rates are still higher than the required values for SOFC commercialization. It was found that Ni$_{0.8}$Cr$_{0.2}$/ (La$_{0.75}$Sr$_{0.25}$)$_{0.95}$MnO$_3$ dual-layer coating can improve the thermal stability and electrical performance of metallic interconnect [38]. In this context, according to other studies [39], the incorporation of conduction wires in the electrodes could increase cell performance via improved transport of electrons. In our previous work [40] a Fe—Cr mesh coated with LaNi$_{0.8}$Co$_{0.2}$O$_{3.5}$ high conductive perovskite was developed as an alternative to conventional contact materials. Taking into account that the generally accepted upper limit of ASR for SOFC interconnect is 0.1 Ω cm2 [9,41,42], low and reproducible area specific resistance value (ASR) was achieved, being 0.0054(1) Ω cm2, when this metallic/ceramic material was used to coat a channeled Crofer22APU interconnect.

In this study, LNF paste is developed to dip coated on Fe-22Cr mesh, forming a metallic/ceramic continuous layer in which ferritic mesh is fully covered with slurry. Because of Cr diffusion from steel was expected [40], the effectiveness of using MCF to protect mesh, prior to coat with LNF conductive perovskite, was discussed based on the long term behavior of these samples at 800 °C. LNF/MCF conductive/protective coatings were selected due to our previous experience and good results with these materials [20,35,43].

The obtained mixed material is expected to increase the conductivity and adhesive ability of the formed interface with interconnect ribs. Therefore, in order to evaluate this adherence, the resistance between these both materials was determined by relatively short-time ASR testing. Finally, this system was aged for 1000 h at 800 °C in order to establish the degradation trends under the rib (direct contact) and channel (no-contact) of the interconnect.

Experimental

The powder of LaNi$_{0.8}$Fe$_{0.2}$O$_{3.5}$ (LNF) was from fuel cell materials and, uncoated and MnCo$_{0.8}$Fe$_{0.2}$O$_3$ (MCF)-coated Fe-22Cr mesh (both with mesh opening of 175 μm and thickness of 250 μm) from Flexcell SOFC Technologies (Crofer22H M. grid™ micro mesh). According to technical specifications the MCF coated mesh was sintered at 850 °C for 6 h, in air. LNF coating was applied onto uncoated and coated mesh squares (10 × 10 mm) by dipping them into the prepared ceramic
slurry, thus obtaining a metallic/ceramic material. The LNF slurry was composed of ceramic powder (LNF, 12.5% in volume), dispersant (Dolapix, 1% relative to the ceramic powder, Zschimmer & Schwarz, Chemische Fabriken), binder (PVB, polyvinyl butyral, 5% relative to the ceramic powder, Solutia Solutions) and solvent (ethanol, 87.5% in volume, Panreac). The process performed to form a contact composite was described in Ref. [20]. The rheology of the suspensions was analyzed using a rheometer (HAAKE MARS II) at shear rates from 0.1 s\(^{-1}\) to 1000 s\(^{-1}\), at room temperature. Composite materials were sintered at 1050 °C for 2 h and then treated at 800 °C for 1000 h, in air.

The composite contact material was directly bonded to a Crofer22APU channeled interconnect (ThyssenKrupp VDM). Nominal steel composition given by the supplier is summarized in Ref. [44]. The interconnect squares (10 × 10 × 1 mm) were preoxidized at 800 °C for 100 h, reducing Cr and Fe transport into the contact coating after long oxidation times [45]. The channel dimensions of the contact as well as the procedure to obtain [composite contact material/interconnect] system was detailed in previous work [40]. The obtained structure was sintered at 1050 °C for 2 h and then treated at 800 °C for 1000 h, in air.

X-ray diffraction (XRD) patterns of the samples were measured with an Philips XPert PRO diffractometer, powered at 40 kV and 40 mA using Cu Kα radiation (\(\lambda = 1.5418 \text{ Å}\)) in air at room temperature. The patterns were recorded in 20 steps of 0.026° in the 20°–90° range, counting for 181 s for step. X-ray micro-diffraction (XRMD) data were collected using a Bruker D8 Discover diffractometer equipped with a Cr Twist tube, V filter (\(\lambda = 2.2898 \text{ Å}\)), PolyCap™ (1 μ single crystal cylinders) system for parallel beam generation (divergence of 0.25°), and a 1-D LynxEye PSD detector (active length in 2θ 2.7°). The sample was mounted on an Eulerian Cradle with automatically controlled X-Y-Z stage. The sample illumination was adjusted with 1 mm PinHole collimator in the incident beam, the position control was tested by using the interference of two lasers. Data were collected from 10 to 100° 2θ (step size = 0.04 and time per step = 10 s total time 6.5 h) at RT. Phases were identified from the measured XRD and XRMD patterns using XPert HighScore software based on the powder diffraction file (PDF) database. The fitting of a measured and calculated pattern was done by Rietveld method using the FULLPROF program [46].

X-ray photoelectron spectroscopy (XPS) measurements were performed using a XPS spectrometer (SPECS). All XPS

Fig. 1 — Schematic views of the used system configurations for ASR measurements: (a) composite contact material and (b) composite contact material on channeled interconnect.

Fig. 2 — Rietveld X-ray diffraction patterns for (a) commercial uncoated and (b) MnCo\(_{1.9}\)Fe\(_{0.1}\)O\(_4\) spinel coated Fe-22Cr mesh.
spectra were acquired using a monochromatic X-ray source producing Al Kα radiation (hν = 1486.6 eV) and recorded using a SPECS PHOIBOS 150 analyzer. An initial analysis of the elements present in the sample was carried out (wide scan: step energy 1 eV, dwell time 0.1 s, pass energy 80 eV) and individual high resolution spectra were obtained (detail scan: step energy 0.1 eV, dwell time 0.1 s, pass energy 20 eV). The take-off angle of the photoelectrons was 90° with respect to the sample. The binding energies (BEs) were calibrated against the surface carbon contamination at 284.6 eV. The spectra were fitted by CasaXPS 2.3.16 software, modeling properly weighted sum of Gaussian and Lorentzian component curves, after background subtraction according to Shirley.

For microstructure and composition analysis, sample cross-sections were mounted in resin, polished and sputtered with coal graphite. A JEOL LSM-6400 instrument equipped with a tungsten filament gun and an Oxford Inca Pentafet X3 energy dispersive X-ray analyzer (EDX) was used to examine the samples. The operating voltage used was 20 kV and a current density of 10^{-7} A. The EDX analysis was carried out through point analysis (the live time was set to 100 s).

Area Specific Resistance (ASR) measurements were performed using a DC four-probe method (the resistance value was estimated from the voltage value (Thurlby Thandar Instruments PL300 current source)), on both a composite and on a system, which were prepared according to the geometries shown in Fig. 1. Electrical contacts between samples and external measuring circuit were obtained by two Pt wires welded directly onto the sides of the interconnect and by Pt paste onto the surface of the composite contact material in combination with a Pt mesh.

Results and discussion

In order to investigate the crystal structure of uncoated and coated FeCr mesh squares, the samples were analyzed using X-ray diffraction (XRD) measurements (Fig. 2).

The refined cell parameters, unit cell volumes and the quality of the refinements are summarized in Table 1. For the coated mesh, MCF (3.1(1) % in weight) was quantified (Fig. 2b).

The phase structures of studied commercial LaNi$_{0.6}$Fe$_{0.4}$O$_3$ and Crofer22APU were analyzed in detail in our group [20]. The chemical composition of the surface of the alloys used as interconnect and, as mesh to form composite material were quantitatively analyzed using SEM-EDX. The measured values of the elements were checked on different points to obtain the average composition grade (Table 2). In order to ensure the determined chemical formulation of the samples, nominal compositions for each steel given by the technical specifications are also listed in Table 2.

As an example, Fig. 3 shows EDX spectra from one point results. The quantitative EDX analysis revealed that Fe–Cr mesh contains tungsten (W) and niobium (Nb), in contrast to interconnect which did not present these elements.

The strength of a steel is related to the combination of solid solution and precipitation strengthening given by Nb and W addition [47]. Lanthanum, titanium and niobium additives are concentrated in specific regions of the alloy (identified as A point of each sample in Fig. 4) differently from tungsten, which is dissolved in the ferritic matrix. Thus, the average chemical composition of steels showed undetectable levels of La and low concentrations for Ti and Nb for EDX technique.

The characterization of LNF slurry rheology is important for coated thickness control during the dip coating process. The effort against the shear rate of LNF paste is represented graphically in Fig. 5. As shown, the slurry behaves like a Newtonian fluid, and so the viscosity values are independent of the shear rate.

The viscosity value can be extracted from the slope of the represented line, being 0.038 Pa s, in good agreement with obtained results in our previous studies [40].

Effectiveness of using a protective coating on Fe–Cr mesh

The formed Fe–Cr mesh/LNF and Fe–Cr mesh/MCF/LNF composites, after sintering at 1050 °C for 2 h in air, are shown

Table 1 – Structural parameters for Fe-22Cr mesh and MnCo$_{1.9}$Fe$_{0.1}$O$_4$-coated Fe-22Cr mesh from the Rietveld refinement by using X-ray power diffraction data at room temperature.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phase</th>
<th>Space group</th>
<th>Lattice parameters a (Å)</th>
<th>V (Å3)</th>
<th>% in weight</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCr mesh</td>
<td>FeCr</td>
<td>Im-3m</td>
<td>2.876(1)</td>
<td>23.78(1)</td>
<td>100</td>
<td>5.42</td>
</tr>
<tr>
<td>MCF-FeCr mesh</td>
<td>MCF</td>
<td>Fd-3m</td>
<td>8.324(1)</td>
<td>576.78(1)</td>
<td>3.1(1)</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>FeCr</td>
<td>Im-3m</td>
<td>2.871(1)</td>
<td>23.67(1)</td>
<td>96.9(8)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 – Chemical composition in wt (%) of Fe-22Cr alloy used as interconnect and as mesh, given by the technical specifications and obtained by EDX microanalysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fe (%wt.)</th>
<th>Cr (%wt.)</th>
<th>Mn (%wt.)</th>
<th>Ti (%wt.)</th>
<th>Nb (%wt.)</th>
<th>W (%wt.)</th>
<th>Si (%wt.)</th>
<th>Al (%wt.)</th>
<th>Cu (%wt.)</th>
<th>La (%wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crofer22H</td>
<td>Min. Bal.</td>
<td>20.0</td>
<td>0.3</td>
<td>0.02</td>
<td>0.2</td>
<td>1.0</td>
<td>0.1</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>24.0</td>
<td>0.8</td>
<td>0.20</td>
<td>1.0</td>
<td>3.0</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5</td>
<td>0.20</td>
</tr>
<tr>
<td>Mesh EDX</td>
<td>73.1(3)</td>
<td>23.5(2)</td>
<td>0.6(1)</td>
<td>0.03</td>
<td>0.1</td>
<td>2.3(2)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Crofer22APU</td>
<td>Min. Bal.</td>
<td>20.0</td>
<td>0.3</td>
<td>0.03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>24.0</td>
<td>0.8</td>
<td>0.20</td>
<td>–</td>
<td>–</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>Interconnect</td>
<td>EDX</td>
<td>76.3(2)</td>
<td>23.0(2)</td>
<td>0.6(1)</td>
<td>0.03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* Balance.
in Fig. 6. As observed from Fig. 6a, the ceramic coating is continuous and homogeneous along the samples. However, the MCF protective coating was not a continuous layer along the width of the Fe–Cr mesh (Fig. 6b). Laves phase precipitates were observed along the steel grain boundaries [48], in good agreement with Fig. 6.

The area specific resistance (ASR) values of sintered Fe–Cr/LNF and Fe–Cr/MCF/LNF composite materials were 0.00453(1) and 0.00341(1) Ω cm², respectively. Despite the observed porous coarse microstructure in both LNC and MCF coatings (Fig. 6), the determined low ohmic resistance confirms that the use of these composite materials as a contact layer is adequate.

EDX point analysis was performed on a cross-section of just sintering at 1050 °C for 2 h mesh/LNF material (Fig. 7), and compared with another sample after heat treated at 800 °C for 1000 h in air (Fig. 8).

The obtained k ratios for identified elements, in these both samples, were listed in Table 3 (corresponding to Fig. 7) and Table 4 (corresponding to Fig. 8).

Moreover, Fig. 9 and Table 5 show a cross-section microstructure image of MnCo₁₉Fe₀₁O₄ coated mesh after dipping
into LaNi$_{0.6}$Fe$_{0.4}$O$_3$/C0 slurry with EDX point analysis, and the obtained elemental k ratios, respectively. The INCA 350 software from Oxford was used to reconstruct the spectra, separating the overlapping peaks.

The ceramic/metallic interface was relatively smooth in the initial composite (Fig. 7), while the interface was more irregular in the LNF dip coated mesh after 1000 h at 800 °C (Fig. 8), as was expected [49]. Moreover, locally internal precipitates, which could be related to the external not uniform oxide scale [50], were also found. According to microstructure, LNF showed relatively inhomogeneity between sintered particles, which could decrease their adherence to the alloy [51,52]. Thus, these particle contact points are irregular through the mesh surface that might also be associated to the observed irregular oxide scale, being noticeable after 1000 h at 800 °C. Therefore, for both Fe—Cr mesh/LNF materials ceramic layer contains pores whereas some of them are formed at the scale interface. Thus, especially the long-term heat treated sample shows areas without contact. As observed from Fig. 9, for spinel coated mesh loss of adherence was observed between the MnCo$_{1.9}$Fe$_{0.1}$O$_4$ protective and LNF contact layers. According to Ref. [30] the formation of these cracks could be as

<table>
<thead>
<tr>
<th>Sintered at 1050 °C 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
</tbody>
</table>

Fig. 6 – SEM cross-section of (a) Fe-22Cr mesh and (b) MCF coated Fe-22Cr mesh after dipping into LNF slurry and the following sintering at 1050 °C for 2 h, in air.

Fig. 7 – (a) Cross-section microstructure image obtained by backscattered electrons signal (BSE) and (b) EDX analysis on different points of LNF/mesh sintered at 1050 °C for 2 h, in air.
a result of cooling down to room temperature. However, MCF spinel layer showed different microstructures between points 3, 4 and 5 (Fig. 9), which could be related to the protective layer thickness, being in the zone where point 3, 4 were analyzed higher than in the point 5 analyzed area. In this way, the highest thickness allowed high enough density to improve adherence between metallic substrate and protective coating. The EDX point analysis, which were made on alloy, revealed in

![Image](image-url)

Fig. 8 – (a) Cross-section microstructure (BSE) and (b) EDX analysis on different points of LNF/mesh sintered at 1050 °C and then treated at 800 °C for 1000 h, in air.

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Cr (k ratio)</th>
<th>Fe (k ratio)</th>
<th>Mn (k ratio)</th>
<th>La (k ratio)</th>
<th>Ni (k ratio)</th>
<th>Nb (k ratio)</th>
<th>W (k ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.24</td>
<td>0.65</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.58</td>
<td>0.03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>0.57</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
<td>0.06</td>
<td>–</td>
<td>0.43</td>
<td>0.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>0.08</td>
<td>–</td>
<td>0.50</td>
<td>0.13</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 3 – Elemental k ratios measured by EDX point analysis performed on mesh/LNF just sintering at 1050 °C for 2 h, in air (corresponding to Fig. 7).

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Cr (k ratio)</th>
<th>Fe (k ratio)</th>
<th>Mn (k ratio)</th>
<th>La (k ratio)</th>
<th>Ni (k ratio)</th>
<th>Nb (k ratio)</th>
<th>W (k ratio)</th>
<th>Si (k ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.19</td>
<td>0.74</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.01</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>0.09</td>
<td>0.41</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>0.61</td>
<td>0.01</td>
<td>0.01</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.01</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
<td>0.19</td>
<td>–</td>
<td>0.01</td>
<td>–</td>
<td>–</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>0.08</td>
<td>–</td>
<td>0.52</td>
<td>0.13</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 4 – K ratios for identified elements on mesh/LNF sample after sintered and aged at 800 °C for 1000 h, in air (corresponding to Fig. 8).

![Image](image-url)

Fig. 9 – (a) Cross-section BSE image and (b) EDX point analysis of MCF coated mesh after dipping into LNF paste and the following sintering and aging processes.
most of the cases \(\alpha \)-Fe(Cr,W) phase. The analysed Laves phase precipitates (Fig. 8, point 2) were composed of \((\text{Fe},\text{Cr})_2\text{(Nb,W)}\), in good agreement with Ref. [48], in which Laves phase precipitates of \(\text{Fe}_2\text{Nb} \) type were formed on small additions of Nb. The combined additions of Nb and Si, which came from the alloy, allowed the formation of \(\text{Fe}--\text{Cr}--\text{Nb}--\text{Si} \) system [53], as can observed in Fig. 8, point 4. However, the results showed that the Nb was also incorporated in the external oxide scale. In some areas of Figs. 8 and 9, there is undissolved Laves phase in contact with the scale, indicating the thermodynamic stability of this compound.

According to EDX analysis, for sample without MCF protective layer, a passive chromia layer \((\text{Cr}_2\text{O}_3/(\text{Mn,Cr})_3\text{O}_4) [35] \) about \(1.3 \mu \text{m} \) thick (measured directly from Fig. 8) was grown between the metal substrate and the LNF coating. For the spinel coated mesh specimen, an oxide scale was also formed beneath the MCF coating, in good agreement with EDX analysis. According to our previous studies [44], the presence of Fe in oxide scale indicated the formation of small amount of hematite phase \((\alpha-\text{Fe}_2\text{O}_3)\) and/or \(\text{Fe}_3\text{O}_4 \) phases. Moreover, the appearance, in the oxide scale, of Cr, Mn and Fe simultaneously allows the formation of \((\text{Mn,Fe,Cr})_3\text{O}_4\) spinel. In addition, EDX point analyses, performed on the interface close to the contact coating, indicated the migration of lanthanum and nickel from the LNF layer into the passive oxide scale or MCF protective layer. However, due to the porosity of the sample, and because the resolution of the energy dispersive X-rays source from the sample is approximately \(1 \mu \text{m} \), it is noted that the point analysis results should be interpreted with caution.

With EDX, evidence of Cr penetration through the protective spinel coating, as well as into the LNF coating, was found. Darker grey-colored Cr-rich grains were observed in the LNF coating for uncoated and coated FeCr mesh samples, which decrease as the distance from the mesh is increased (Figs. 8 and 9). In terms of the microstructure, the open porosity observed in LNF and MCF coatings might reduce the adherence to the alloy and enhance the transport of Cr to gas phase.

Since the deposition of the commercial protective coating was not homogeneous across the width of the Fe-22Cr mesh, the use of an MCF spinel protective layer is not enough to prevent chromium migration up to the contact coating. Thus, the uncoated sample was selected to evaluate the electrical performances of the composite contact material/interconnect system, including long-term contact stability of the metallic/ceramic composite material under the rib (direct contact) and channel (no-contact) of the interconnect.

Characterization of the composite contact material with channeled Crofer22APU interconnect

Ceramic/metallic material was directly adhered to the channeled substrate and sintered at \(1050 \, ^\circ \text{C} \) for \(2 \) h. Results from ASR test (Fig. 10) showed initial good stability of the signal during the contact resistance measurements, and thus a good adherence between both materials, exhibiting ASR value of \(0.0425(2) \Omega \text{cm}^2 \) for 400 min, in air.

Fig. 11 shows a representative SEM cross-section of the post-test composite-coated Crofer22APU interconnect on which EDX point analyses were performed. When comparing different EDX spectra, similar compositions were observed. All of the analyzed particles are composed mainly of La, Ni, Fe, and amounts of Cr. However, Fig. 10b shows the lowest chromium content distribution in point 1.

The results of the initial characterization indicate that the developed coated interconnect system shows a low area specific resistance value since the generally accepted upper limit of ASR for SOFC substrate is \(0.1 \Omega \text{cm}^2 \) [9,41,42]. Its contact resistance is also smaller than those reported in other studies [13,54,55], in which the electrical performance of perovskite coated metallic interconnect was studied. Thus, the mesh/LNF layer could be a suitable alternative for the SOFC interconnect coatings development.

Long-term stability of the system

The sintered system composed of \((\text{LNF-steel mesh composite/Crofer22APU channeled interconnect})\) was treated at \(800 \, ^\circ \text{C} \) for \(1000 \) h, in air. Fig. 12 shows X-ray micro-

Table 5 — The corresponding k ratios for identified elements on mesh/MCF/LNF sample after sintered and heat treated at \(800 \, ^\circ \text{C} \) for \(1000 \) h, in air (corresponding to Fig. 9).

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Cr (k ratio)</th>
<th>Fe (k ratio)</th>
<th>Mn (k ratio)</th>
<th>La (k ratio)</th>
<th>Ni (k ratio)</th>
<th>Co (k ratio)</th>
<th>W (k ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.19</td>
<td>0.65</td>
<td>0.01</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.56</td>
<td>0.01</td>
<td>0.01</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>0.2</td>
<td>0.07</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.19</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td>0.33</td>
<td>0.07</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0.02</td>
<td>0.19</td>
<td>–</td>
<td>0.01</td>
<td>0.28</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>0.07</td>
<td>–</td>
<td>0.47</td>
<td>0.13</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 10 — ASR for \(\{\text{composite contact material/channeled interconnect}\} \) interface as a function of time.
Diffraction pattern refinements performed on the rib (Fig. 12a) and the channel (Fig. 12b) of the interconnect in contact with the composite material, after the long term treatment.

The formed phases and their quantitative analysis (% in weight) are presented in Table 6. These analyses reveal that in the rib zone the main and secondary phases were LaNi$_{0.6}$Fe$_{0.4}$O$_3$ (83.4(8)% in weight) and La(Ni,Fe,Cr)O$_3$ (13.3(4)% in weight).

Fig. 11 – (a) SEM cross-section of studied system after ASR test with corresponding (b) EDX point analysis.

Fig. 12 – X-ray micro-diffraction pattern refinements performed (a) on the rib and (b) on channel of the interconnect in contact with composite material, after long term heat treatment.
weight) as well as, NiO, Fe–Cr, and (Cr,B)₃O₄ spinel (B = Fe, Mn, Ni), respectively. In contrast, the channel zone results show as the main phase Fe₃O₄ (69.9(8)% in weight) and as secondary phases: Fe–Cr, and Cr₂O₃.

The original Fe–Cr substrate was identified indicating that the X-ray penetration was enough to observe the signal of all the formed layers. The presence of NiO might entail that Ni is partially extracted from the LNF perovskite lattice, allowing the formation of La(Ni,Fe,Cr)O₃, in good agreement with Ref. [56].

The LNF ceramic coating might act as a protective coating. Hence, Cr₂O₃ and Fe₃O₄ phases are observed on the channels. Furthermore, the absence of Cr₂O₃ on the rib of the interconnect, can also imply that chromium has completely reacted to form Cr-perovskite and/or (Cr,B)₃O₄ (B = Mn, Fe, Ni) spinel phase. An interconnect without ceramic coating at long exposure to air, can promote Fe₃O₄ formation rather than the formation of a chromia/spinel protective scale, concluding in the formation of a non-protective or Fe-rich scale [57–60].

Fig. 13 shows the surface of the composite material which was in contact with the interconnect, after long-term heat treatment, using wide scan to 1385 eV, attributable to O 1s, Cr 2p, Mn 2p, Fe 2p and La 3d photoelectrons in Fig. 14. The deconvolution of these peaks for both studied zones is shown in Fig. 15 (surface of the composite under channel) and Fig. 16 (surface of the composite under the rib).

Detailed analysis of the main deconvolution peaks, including binding energies (BEs) and relative atomic percentage concentration of detected elements are listed in Table 8. The data measured in the present study were compared with the XPS spectra for perovskite-type oxide structures [62,63]. This comparison indicated, in both areas, for La, there are two peaks, one at ~833 eV corresponding to La³⁺ in perovskite phase and, another at ~835 eV which is assigned to La³⁺ in La₂O₃, in good agreement with our previous studies [20]. In addition, the binding energies of ~710 eV and ~712 eV could allow the presence of iron in perovskite [64].

Table 6 - X-ray micro-diffraction quantitative (%wt.) analysis of the formed phases on the rib and channel of the interconnect in contact with composite material after long-term heating in air.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Space group</th>
<th>PDF</th>
<th>Rib (%wt.)</th>
<th>Channel (%wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaNi₀.₆Fe₀.₄O₃</td>
<td>R-3c</td>
<td>88-0637</td>
<td>83.2(8)</td>
<td>--</td>
</tr>
<tr>
<td>La(Ni,Fe,Cr)O₃</td>
<td>Pbnn</td>
<td>24-1016</td>
<td>13.3(4)</td>
<td>--</td>
</tr>
<tr>
<td>Fe–Cr</td>
<td>Im3m</td>
<td>34-0396</td>
<td>1.1(1)</td>
<td>16.2(2)</td>
</tr>
<tr>
<td>NiO</td>
<td>Fm-3m</td>
<td>73-1519</td>
<td>2.2(2)</td>
<td>--</td>
</tr>
<tr>
<td>MnCr₂O₄</td>
<td>Fd-3m</td>
<td>31-0630</td>
<td><0.2</td>
<td>--</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>R-3c</td>
<td>85-0730</td>
<td>--</td>
<td>13.9(3)</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>Fd-3m</td>
<td>19-0629</td>
<td>--</td>
<td>69.9(8)</td>
</tr>
</tbody>
</table>

Table 7 - Elemental k ratios measured by EDX point analysis performed on mesh/LNF material which was in contact with the interconnect after 1000 h at 800 °C, in air (corresponding to Fig. 13).

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>La (k ratio)</th>
<th>Ni (k ratio)</th>
<th>Fe (k ratio)</th>
<th>Cr (k ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.11</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.34</td>
<td>0.1</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.46</td>
<td>0.12</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>0.08</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>0.45</td>
<td>0.12</td>
<td>0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Fig. 13 – (a) SEM image and (b) EDX point analysis of the surface of the composite material which was in contact with the interconnect, after heated at 800 °C for 1000 h, in air.
peaks appearing at ~575 eV, ~576 eV and ~579 eV indicated the appearance of chromium in perovskite with ABO$_3$ structure [40,65] (Table 8), in good agreement with the obtained XRMD results in which Cr-perovskite was quantified (Table 6). Besides, in Ref. [56], the LaNi$_{0.6}$Fe$_{0.4}$O$_3$ stability in the presence of chromia was investigated, concluding Cr-cations moves into the perovskite structure, replacing first Ni- and then Fe-cations. The presence of nickel was not detected by XPS, which could indicate the exchange of Ni with Cr in the initial perovskite structure. In addition, for both analyzed zones, the presence of Mn is observed from the peaks at ~642 eV, ~644 eV and ~647 eV (Mn 2p$_{3/2}$), in good agreement with other authors [66–68].

Analyses from both EDX and XPS showed similar results for the analyzed composite material areas which were in contact with interconnect. According to other authors [69], the XPS technique is more sensitive for surface composition analysis and detects a depth of ~5 nm while EDX is able to measure ~1 μm depth. Thus, the difference means that Mn is more concentrated on the composite surface (surface in contact with the rib and under channel of the interconnect), not through the bulk, providing the formation of a low thickness.
Mn-spinel barrier layer [70]. This might also partly explain why the detected (% in weight) MnCr$_2$O$_4$ by XRMD, is low.

Evaluation of the long-term chemical compatibility of the studied system revealed that the direct exposure to air increased the oxidation of interconnect, leading to the growth of a Cr$_2$O$_3$ layer and formation of Fe$_3$O$_4$ oxide on the channel of the alloy substrate. Since chromium appears to have a tendency to incorporate into the LNF structure, this material could be considered a suitable candidate for reducing the degradation of the cell.

Conclusions

An uncoated and MnCo$_{1.9}$Fe$_{0.1}$O$_4$ (MCF) coated Fe-22Cr meshes were dipped into LaNi$_{0.6}$Fe$_{0.4}$O$_3$ /C0 (LNF) slurry to form a continuous conductive/protective layer for Crofer22APU interconnect. It has been demonstrated that if the deposition of the protective coating was not enough to form a dense and continuous layer across the width of the Fe-22Cr mesh, then the use of MCF spinel layer is not enough to prevent chromium migration up to the LNF coating. However, when mesh/LNF material was directly adhered to the interconnect, the obtained ASR value of 0.0425(2) Ω cm2 was stable for 400 min, indicating initial good adherence between both materials. The evaluation of long-term chemical compatibility of this system, without applying a current source, revealed that the presence of a composite coating on the rib of interconnect limited the growth of the chromia-based layer and formation of iron oxides on alloy substrate, reducing the contact resistance of the system. Future work will include electrochemical measurements of mesh-LNF/interconnect structure for extended periods.

Table 8 – XPS analysis results of detected elements for the contact surface of the composite in contact with the rib and under channel of the interconnect, after heating at 800 °C for 1000 h in air.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Surface under channel</th>
<th>Surface in contact with the rib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BE (eV)</td>
<td>% at. conc.</td>
</tr>
<tr>
<td>La 3d$_{5/2}$ in ABO$_3$</td>
<td>833.22; 836.95 (sat.)</td>
<td>9.2</td>
</tr>
<tr>
<td>La 3d$_{5/2}$ in La$_2$O$_3$</td>
<td>834.65; 838.16 (sat.)</td>
<td>7.0</td>
</tr>
<tr>
<td>Cr 2p$_{3/2}$ in ABO$_3$</td>
<td>575.04; 576.17; 579</td>
<td>8.3</td>
</tr>
<tr>
<td>Cr 2p$_{3/2}$ in Cr$_2$O$_3$</td>
<td>577.35</td>
<td>1.7</td>
</tr>
<tr>
<td>Fe 2p$_{3/2}$ in ABO$_3$</td>
<td>710.1; 712.69; 717.53 (sat.)</td>
<td>1.7</td>
</tr>
<tr>
<td>Mn 2p$_{3/2}$</td>
<td>641.65; 644.42</td>
<td>2.6</td>
</tr>
<tr>
<td>O 1s</td>
<td>528.85; 530.46; 531.72; 532.9</td>
<td>69.5</td>
</tr>
</tbody>
</table>

Fig. 16 – Deconvolution of La 3d$_{5/2}$, Cr 2p$_{3/2}$, Mn 2p$_{3/2}$ and Fe 2p$_{3/2}$ XPS peaks identified on the surface of LNF/Fe-22Cr composite contact material under the rib of the interconnect, after long-term heated at 800 °C in air.
Acknowledgements

This research has been funded by the Dpto. Educación, Política Lingüística y Cultura of the Basque Government (Research Group of the Basque University System IT-630-13), Ministerio de Economía y Competitividad (MAT2013-42092-B) and Engineering and Physical Sciences Research Council (EP/I003932).

The authors wish to thank SGIker-UPV/EHU technical and human support. Dr. Mª Belén Sánchez Martínez de Ilarduya is acknowledged for useful scientific help in discussion of XPS measurements. The authors would also like to express their gratitude to Dr. Sergio Fernandez Armas for helping with EDX measurements. A. Morán-Ruiz thanks UPV/EHU for funding her PhD work.

REFERENCES

[31] Chou PY, Ciou CJ, Lee YC, Hung IM. Effect of La0.5Sr0.5CoO3-MnOx protective coating layer on the performance of La0.5Sr0.5CoO3-Gd0.5Fe0.5O3 solid oxide fuel cell cathode. J Power Sources 2012;217:12—9.

[54] Ming-Jui T, Chun-Lin C, Shyong L. La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing. J Alloy Compd 2010;489:576—81.

[68] Wei ZX, Xiao CM, Zeng WW, Liu JP. Magnetic properties and photocatalytic activity of La$_{0.8}$Ba$_{0.2}$Fe$_{0.9}$Mn$_{0.1}$O$_3$ and LaFe$_{0.9}$Mn$_{0.1}$O$_3$. J Mol Catal A-Chem 2013;370:35–43.

[69] Li W, Lu K, Xia Z. Interaction of (La$_{1-x}$Sr$_x$)$_2$Co$_{1-y}$Fe$_y$O$_{2.5}$ cathodes and AISI 441 interconnect for solid oxide fuel cells. J Power Sources 2013;237:119–27.