
F́ısica Estado Sólido I Examen parcial tema 5
ELECTRONES EN CRISTALES

Las puntuaciones se refieren a ejercicios completamente resueltos, incluyendo
valores numéricos finales y unidades (si corresponde), con soluciones razonadas.

1. (50 puntos) Se considera un cristal bidimensional con red cuadrada de
parámetro a = 3Å.

(5)Obtener los vectores de la red rećıproca y dibujar la primera zona
de Brillouin.

(15) La enerǵıa cinética, en la aproximación de electrón libre, en el
corner de la 1a Z.B. es mayor que el centro de la cara en un factor C.
Calcular el valor de C. Representar en el esquema de zona reducida
las bandas (1, 0), (1̄, 0), (0, 1) y (0, 1̄) en la aproximación de electrones
libres, verificando que las cuatro bandas son degeneradas en el punto
Γ(0, 0).

(15) El potencial en el cristal se describe por:

V (x, y) = −2Vo(cos
2πx

a
+ cos

2πy

a
)

Obtener el valor aproximado del gap de enerǵıa en el punto X =
π
a (1, 0)

(15)Escribir la matriz 4×4 que será preciso diagonalizar para conocer
las enerǵıas y funciones propias en un entorno del punto Γ en la
aproximación de campo débil.

Solución:

• Los vectores de la base directa son a1 = a(1, 0) y a2 = a(0, 1)
referidos a un sistema (~i,~j). Los vectores rećıprocos son b1 =
2π
a (1, 0) y b2 = 2π

a (0, 1).

La enerǵıa E = h̄2

2m (±G)2 es degenerada para G = ± 2π
a (1, 0) y

G = ± 2π
a (0, 1). También para k∓G con k = π

a . E = h̄2

2m (−πa )2 =
h̄2

2m (πa −
2π
a )2
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• En el modelo de electrón libre la enerǵıa cinética E ∼ k2. Para
el corner de coordenadas M = (π/a)(1, 1), kM = (πa )

√
2 y para

el medio de la cara en el punto X(π/a)(1, 0), kX = (πa ) de donde
obtenemos EM = 2EX con lo que tenemos C = 2.

• El potencial en el cristal podemos expresarlo como combinación
lineal de ondas planas:

V (x, y) = −Vo
[
e2πix/a + e−2πix/a + e2πiy/a + e−2πiy/a

]
donde intervienen ondas planas con los vectores de la red rećıpro-
ca K1 = 2π

a (1, 0), K2 = − 2π
a (1, 0), K3 = 2π

a (0, 1) y K4 =
− 2π

a (0, 1) y con el mismo coeficiente −Vo. En el punto X = π
a ,

la enerǵıa es degenerada para kX , kX − K1 y, en la ecuación
de Schrodinger en k se mezclan dichos vectores, aśı como los
coeficientes de la función de onda ck y ck−K1 a través de corres-
pondiente coeficiente del potencial. Esto nos lleva a 2 ecuaciones:

(E − Eok−Ki
)ck−Ki

=
∑
Kj

UKj−Ki
ck−Ki

(1)

con Ki = 0,K1:

(E − Eok)ck = U−K1
ck−K1

(2)

U−K1
ck = (E − Eok−K1

)ck−K1
(3)

Cuya solución viene dada por:[
E − Eok −U−K1

−U−K1
E − Eok−K1

]
= 0

Para k = π/a, Eok = Eok−K1
y U−K1

= −Vo de donde

(Eok=π/a − E)2 − V 2
o = 0

Cuya solución lleva a que el gap que se abre en X es |2Vo|.
• E, el entorno del punto Γ se mezclan las funciones de onda con
k−K1, k+K1, k−K3, k+K3, con K1 = 2π

a (1, 0) y K3 = 2π
a (0, 1).

Construimos las ecuaciones correspondientes a estos coeficientes:

(E − Eok−Ki
)ck−Ki =

∑
Kj

UKj−Kick−Ki (4)

cuya solución viene dada por la condición:


E − Eok−K1

0 0 0
0 E − Eok+K1

0 0
0 0 E − Eok−K3

0
0 0 0 E − Eok+K3

 = 0

que para k = 0 muestra una única solución trivial con degene-
ración. para ese punto, en la aproximación de primer orden, el
potencial dado no rompe la degeneración.
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2. (50 puntos) Considerar un cristal unidimensional con átoms separados
regularmente una distancia a. Las funciones de onda que describen el
electrón 1s del átomo vienen dadas por Ψ(r − Rn) donde Rn = na es la
posición del átomo en la celda n. En un modelo de ”tight-binding”tenemos
las siguientes integrales de solapamiento:∫

Ψ∗(r −Rn)HΨ(r −Rn)dr = Eo (5)∫
Ψ∗(r −Rn)HΨ(r −Rn±1)dr = −V (6)∫

Ψ∗(r −Rn)HΨ(r −Rm)dr = 0, n 6= m,m± 1 (7)

donde h es el Hamiltoniano. Calcular:

(25) La relación de dispersión E(k)

(25) La densidad de estados electrónicos

Solución:

Las funciones de onda del electrón en el cristal son funciones de Bloch:

Φk(r) =
1√
N

∑
eikRnΨ(r −Rn)

donde N es el número de celdas (átomos). La ecuación de Schrodinger
HΦ = E(k)Φ proyectada sobre < Φk| nos lleva a:

E(k) =< Φk|HΦk >=
1

N

∑
n,m

eik(Rn−Rm) < Φk(r−Rn)|H|Ψ(r−Rm) >=

=< Φk(r−Rn)|H|Ψ(r−Rn) > +eika < Φk(r−Rn)|H|Ψ(r−Rn−1) > +

+e−ika < Φk(r −Rn)|H|Ψ(r −Rn+1) >=

= Eo − 2V cos(ka)

Los valores de k vienen dados por k = πm/Na donde m=entero.
El número de estados hasta un valor de k es N(k) = k/(π/Na) =
(Na/π)k de donde N(k)dk = (Na/π)dk y, la densidad de estados
ρ(k)dk = (N(k)/Na)dk = dk/π. Para electrones con dos valores de
spin por estado tenemos ρ(k) = 2/π. Para calcular ρ(E) tenemos en
cuenta que ρ(k)dk = ρ(E)dE con

dE = 2aV sin(ka)dE = 2aV

√
1− (

Eo − E
2V

)2dE

ρ(E) =
2

2πV a sin(ka)
=

1

πV a
(1− (

Eo − E
2V

)2)−
1
2
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