

Computational Simulations of a pair of Rectangular Vortex Generators on a flat plate.

G. Esteban ,U. Fernández*,A. Peña,K. Olalde.

*Presenting author: unai.fernandez@ehu.es

UNIVERSITY LOCATION

OUTLINE

- 1. INTRODUCTION
- 2. COMPUTATIONAL SET UP
- RESULTS
- 4. CONCLUSIONS
- 5. FUTURE WORK

Introduction

Applied aerodynamics on aircraft wings

Source: Vortex generators on the wing of an airplane at the Air Force Museum of the German Federal Armed Forces in Berlin. Image credit: Wikimedia Commons http://phys.org/news/2012-09-scientists-purpose-vortex.html#jCp

What is a VG? How does it work?

Figure 1: Evolution of boundary layer velocity profiles with adverse pressure gradient.

Figure 2: Boundary layer motion alteration by a rectangular VG.

These passive devices are used for flow control:

- Modifying the boundary layer motion.
- Generation of longitudinal vortices.
- Overturn of the BL flow via large scale motions.
- Bringing high momentum fluid down into the near wall region of the boundary layer.
- In short: separation of the flow is delayed.

VGs on Airfoils

GEOMETRY: triangular or rectangular vanes.

VGs on Airfoils

Main functionality:

to delay or prevent separation of the flow.

Figure 4: (a) Flow across an airfoil. (b) Separated flow over the top surface of an airfoil)

SOURCE: J.D. Anderson Jr., Brief History of the Early Development of Therotical an Exp. Fluid Dynamics Willey&Sons 2010

Figure 5:: effect of vortex generators on the performance of DU 97-W-300.

Ref.: van Rooij R. P. J. O. M. and Timmer W A "Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils". AIAA-paper 2003-0350.

VGs on Wind Turbines

Increased wind turbine performance from implementing VGs on the blades has also been confirmed through various field tests.

Figure 6 (a): Effects of VGs on a 2.5 MW wind turbine performance.

Ref.: Miller, G.E., "Comparitive Performance Tests on the Mod-2 2.5 MW Wind Turbine With and Without Vortex Generators," NASA TM N95-27978, Presented at the DOE/NASA Workshop on Horizontal Axis Wind Turbine Technology, May 8-10, 1984, Cleveland, OH.

Figure 6 (b): Effects of VGs on a 1 MW wind turbine performance.

Ref.: S. Øye, The effect of Vortex Generators on the performance of the ELKRAFT 1000 kW Turbine, 9th IEA Symp. On Aerodynamics of Wind Turbines, 1995.

VGs on Wind Turbines

VGs on Wind Turbines

Congress on Numerical Methods in Engineering - CNM 2013 June 25 - 28, 2013, Bilbao, Spain

Computational Set Up

Figure 7: Computational domain and plane location where the measurements were conducted

Computational Set Up

- Unsteady state_computations have been carried.
- •CFD computations: EllipSys3D code. RANS equations.
- The convective terms are discretized utilising the third order Quadratic Upstream Interpolation for Convective Kinematics (QUICK).
- •k-ω SST (Shear Stress Transport)

$$Re = \frac{\rho U_{\infty} H}{\mu} = 20000$$

Mesh

- Block structured mesh (2x10⁶ cells)
- Around the VG geometry: 7x10⁵ cells.

Downstream the VG: 4x10⁵ cells.

Analytical model

• The axial, u_z , and rotational, u_Θ , velocities are linearly related:

Together with the Batchelor vortex model

$$u_{\theta}(r,\theta,z) = \frac{\Gamma(z)}{2\pi r} \left[1 - \exp\left(-\frac{r^2}{\varepsilon^2(\theta,z)}\right) \right]; \quad u_z(r,\theta,z) = u_0(z) - \frac{\Gamma(z)}{2\pi l(\theta,z)} \left[1 - \exp\left(-\frac{r^2}{\varepsilon^2(\theta,z)}\right) \right]$$

four parameters: $\varepsilon(\Theta,z)$, circulation $\Gamma(z)$, $u_0(z)$ and $l(\Theta,z)$,

x/h = 5**Figure 9:** Axial velocity fields at five plane positions: z/h = 5-15.

$$z/h = 7.5$$

$$x/h = 10$$

$$x/h = 12.5$$

$$x/h = 15$$

FORCES PLOT

Conclusions

- The main vortex generated by the VG possesses helical symmetry and self-similar behavior for both the axial and azimuthal velocity profiles. It has been proven based on five plane positions z/h=5-15 downstream of the trailing edge of the VG and with $\beta=20^{\circ}$ of the vane to the incoming flow.
- From the point of view of self-similarity, computational simulations are able to reproduce the physics of the vortex generated by a rectangular VG with considerable reliability.

Future Work

CONCLUSIONS

- Comparison with wind tunnel experimental data.
- Computations with Different VG geometries.

Future Work

- Additional work:
 - Comparison with wind tunnel experimental data.
 - Computations with with Different VG geometries.

- Comparison with wind tunnel experimental data.
- Computations with with Different VG geometries.

Future Work

- Comparison with wind tunnel experimental data.
- Computations with with Different VG geometries.

Future Work

- Comparison with wind tunnel experimental data.
- Computations with with Different VG geometries.

- Comparison with wind tunnel experimental data.
- Computations with with Different VG geometries.

Future Work

- Comparison with wind tunnel experimental data.
- Computations with with Different VG geometries.

