Computational Simulations of a pair of Rectangular Vortex Generators on a flat plate.

*Presenting author: unai.fernandez@ehu.es
UNIVERSITY LOCATION

THE BASQUE COUNTRY
Area: 7,089 Km²

VITORIA-GASTEIZ
Population: 236,525 inhab.
OUTLINE

1. INTRODUCTION
2. COMPUTATIONAL SET UP
3. RESULTS
4. CONCLUSIONS
5. FUTURE WORK
Introduction

Applied aerodynamics on aircraft wings

Source: Vortex generators on the wing of an airplane at the Air Force Museum of the German Federal Armed Forces in Berlin. Image credit: Wikimedia Commons
http://phys.org/news/2012-09-scientists-purpose-vortex.html#JCP
What is a VG? How does it work?

These passive devices are used for flow control:

- Modifying the boundary layer motion.
- Generation of longitudinal vortices.
- Overturn of the BL flow via large scale motions.
- Bringing high momentum fluid down into the near wall region of the boundary layer.
- In short: separation of the flow is delayed.
VGs on Airfoils

- GEOMETRY: triangular or rectangular vanes.
- Dimensioned: to the local boundary layer thickness.
- Lay-out: in cascades in groups of two.

Ref.: G. Godard, M. Stanislas 2005

Figure 3: Counter rotating passive device configuration.
VGs on Airfoils

- Main functionality:
 - to delay or prevent separation of the flow.

Figure 4: (a) Flow across an airfoil. (b) Separated flow over the top surface of an airfoil.

Figure 5: Effect of vortex generators on the performance of DU 97-W-300.

Source: J.D. Anderson Jr., *Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics*. Wiley & Sons 2010

VGs on Wind Turbines

Increased wind turbine performance from implementing VGs on the blades has also been confirmed through various field tests.

Figure 6 (a): Effects of VGs on a 2.5 MW wind turbine performance.

Figure 6 (b): Effects of VGs on a 1 MW wind turbine performance.
VGs on Wind Turbines
VGs on Wind Turbines

SOURCE: pictures were taken by the author in EWEA Conference 2012, Copenhagen.
Computational Set Up

- The flow domain dimensions: 32h, 10h and 30h.

\[\text{Re} = \frac{\rho U_{\infty} H}{\mu} = 20000 \]

Figure 7: Computational domain and plane location where the measurements were conducted.
Computational Set Up

- **Unsteady state** computations have been carried.

- CFD computations: EllipSys3D code. RANS equations.

- The convective terms are discretized utilising the third order Quadratic Upstream Interpolation for Convective Kinematics (QUICK).

- **k-ω SST** (Shear Stress Transport)

\[
Re = \frac{\rho U_\infty H}{\mu} = 20000
\]

$H = 0.01 \text{ m}$

$L = 2H$
Mesh

- Block structured mesh (2x10^6 cells)
- Around the VG geometry: 7x10^5 cells.
 Downstream the VG: 4x10^5 cells.

Figure 8: Mesh Sections on the VG. (a) Cross flow section and (b) top view.
Analytical model

• The axial, u_z, and rotational, u_θ, velocities are linearly related:

$$u_z = u_0 - ru_\theta / l$$

Together with the Batchelor vortex model four parameters:

$$u_\theta(r, \theta, z) = \frac{\Gamma(z)}{2\pi r} \left[1 - \exp\left(-\frac{r^2}{\varepsilon^2(\theta, z)} \right) \right]$$

$$u_z(r, \theta, z) = u_0(z) - \frac{\Gamma(z)}{2\pi l(\theta, z)} \left[1 - \exp\left(-\frac{r^2}{\varepsilon^2(\theta, z)} \right) \right]$$

four parameters: $\varepsilon(\Theta,z)$, circulation $\Gamma(z)$, $u_0(z)$ and $l(\Theta,z)$,
Axial Velocity Fields

Figure 9: Axial velocity fields at five plane positions: $z/h = 5-15$.

$x/h = 5$
Axial Velocity Fields

Figure 9: Axial velocity fields at five plane positions: $z/h = 5-15$.

$z/h = 7.5$
Axial Velocity Fields

$\frac{x}{h} = 10$

Figure 9: Axial velocity fields at five plane positions: $z/h = 5-15$.
Axial Velocity Fields

$x/h = 12.5$

Figure 9: Axial velocity fields at five plane positions: $z/h = 5-15$.

INTRODUCTION

COMPUTATIONAL SET UP

ANALYTICAL MODEL

RESULTS

CONCLUSIONS
Axial Velocity Fields

Figure 9: Axial velocity fields at five plane positions: $z/h = 5-15$.

$x/h = 15$
FORCES PLOT

Total Force = \(0.0418(\beta) - 0.0287\)

\[R^2 = 0.9911\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.009</td>
<td>0.019</td>
<td>0.021</td>
</tr>
<tr>
<td>10</td>
<td>0.016</td>
<td>0.046</td>
<td>0.049</td>
</tr>
<tr>
<td>15</td>
<td>0.030</td>
<td>0.085</td>
<td>0.090</td>
</tr>
<tr>
<td>20</td>
<td>0.053</td>
<td>0.128</td>
<td>0.139</td>
</tr>
<tr>
<td>25</td>
<td>0.083</td>
<td>0.165</td>
<td>0.185</td>
</tr>
</tbody>
</table>
Conclusions

- The main vortex generated by the VG possesses helical symmetry and self-similar behavior for both the axial and azimuthal velocity profiles. It has been proven based on five plane positions $z/h=5-15$ downstream of the trailing edge of the VG and with $\beta=20^\circ$ of the vane to the incoming flow.

- From the point of view of self-similarity, computational simulations are able to reproduce the physics of the vortex generated by a rectangular VG with considerable reliability.
Future Work

- Additional work:
 - Comparison with wind tunnel experimental data.
 - Computations with Different VG geometries.
Future Work

• Additional work:
 – Comparison with wind tunnel experimental data.
 – Computations with different VG geometries.
Future Work

• Additional work:
 – Comparison with wind tunnel experimental data.
 – Computations with different VG geometries.
Future Work

• Additional work:
 – Comparison with wind tunnel experimental data.
 – Computations with Different VG geometries.
Future Work

• Additional work:
 – Comparison with wind tunnel experimental data.
 – Computations with Different VG geometries.
Future Work

• Additional work:
 – Comparison with wind tunnel experimental data.
 – Computations with Different VG geometries.
Future Work

• Additional work:
 – Comparison with wind tunnel experimental data.
 – Computations with Different VG geometries.
Thank you very much for your attention!

Eskerrik asko zuen arretagatik!

¡Muchas Gracias por vuestra atención!