

Centre	University College of Engineering of Vitoria-Gasteiz
Name of subject	27820 – Chemical Process Control
Qualification	Degree in Industrial Chemical Engineering
Type	Compulsory
Credits	6 ECTS
Year	3
Term(s)	2nd
Department	Chemical and Environmental Engineering
Language	Spanish

Outcomes / Objectives

OUTCOMES.

Ability to design, manage and operate chemical process simulation, control and instrumentation procedures. Related to TEQI4.

Apply the strategies of scientific methodology: analyse the problem situation qualitatively and quantitatively; propose hypotheses and solutions to solve chemical engineering problems in the area of process control. Related to TEQI8.

Use specific vocabulary and terminology and the appropriate means to effectively communicate knowledge, procedures, results, skills and aspects inherent to industrial engineering in regard to chemical process control. Related to TEQI9.

Carry out measurements, calculations, studies, reports and other analogue tasks. Related to TEQI12.

BRIEF DESCRIPTION.

Feedback control in chemical engineering: flow rate, level, temperature and pH control.

PID control: study of the effect of control actions. Adjustment of parameters.

Control instrumentation: valves, controllers, transducers, sensors.

OBJECTIVES.

Apply the principles of process control to the field of chemical engineering. Have experimental knowledge of the implementation of regulation and control systems for the most common variables in chemical engineering.

Syllabus

UNIT 1.- Experimentation regarding fluid flow rate control.

UNIT 2.- Experimentation regarding level control.

UNIT 3. - Experimentation regarding temperature control.

UNIT 4.- Experimentation regarding regulating valves.

UNIT 5.- Experimentation regarding pH control.

Methodology

Teaching Method

Face-to-Face Teaching Hours									
Lectures	Seminars	Classroom practice	Lab. practice	Computer sessions	Clinical practice	Workshops	Industrial workshops	Field practice	
10			50						
Student Hours of Non Face-To-Face Activities									
Lectures	Seminars	Classroom practice	Lab. practice	Computer sessions	Clinical practice	Workshops	Industrial workshops	Field practice	
15			75						

Assessment System

General criteria

- Written essay exam
- Individual assignments
- Group assignments

Clarification regarding assessment

- Exam score: 30%
- Reports: 70%

Bibliography

Basic Bibliography

- Control Automático de Procesos; Smith, C. A. y Corripio, A. B. Ed. Limusa México, 1995.
- Control e Instrumentación de Procesos Químicos; Ollero de Castro, P. y Fernández Camacho, E. Ed. Síntesis, Madrid, 1997.
- Chemical Process Control; Stephanopoulos, G; Ed. Prentice Hall. New Jersey, 1987.

In-depth Bibliography

- Process Modeling, Simulation and Control for Chemical Engineers; Luyben, W.L.. Ed. McGraw-Hill, New York, 1990