

Centre	University College of Engineering of Vitoria-Gasteiz
Name of subject	26052- Computer Aided Structural Analysis
Qualification	Degree in Mechanical Engineering
Type	Compulsory
Credits	6 ECTS
Year	4
Term(s)	2nd
Department	Mechanical Engineering
Language	Spanish and English

Outcomes / Objectives

The course aims to provide students with an understanding of the methods of analysis and solution of mechanical structural systems. From an eminently practical approach and after a brief introduction to the FEM method, students will learn to use a finite element program and explore its potential uses in relation to mechanical design.

Syllabus

Articulated node structures. Analysis methods for roof trusses and planar trusses. Continuous node structures. Analysis methods for continuous planar systems. (Porticoes). Introduction to matrix analysis. Generalisation of the analysis for bar structures. Introduction to the finite element method. Definition, purpose, basic principles. Pre-processing: solid modelling and meshing practice. Parametric meshing, automatic meshing. Process: analysis practice. Linear static analysis. Post-process: results analysis. Study of the results obtained in the analysis practice.

Methodology

Teaching Method

Face-to-Face Teaching Hours								
Lectures	Seminars	Classroom practice	Lab. practice	Computer sessions	Clinical practice	Workshops	Industrial workshops	Field practice
36		12	12					
Student Hours of Non Face-To-Face Activities								
Lectures	Seminars	Classroom practice	Lab. practice	Computer sessions	Clinical practice	Workshops	Industrial workshops	Field practice
54		18	18					

Bibliography

Basic Bibliography

- Lecturer's notes
- Pedro José Landa. José Luis Ramírez. Teoría de Estructuras .Tomos I, II y III. ETSII y ITT. UPV/EHU - AVILES, R.; AJURIA, G. Elementos finitos para el análisis y diseño de sistemas mecánicos. Edit: ETSII y ITT. UPV/EHU
- ROMERA, L.E.; HERNANDEZ, S. Análisis estático y dinámico de estructuras con el programa COSMOS/M. Edit. ETTSICC y P. Universidad de la Coruña.

In-depth Bibliography

- TUTORIALES COSMOS GEOSTAR
- O. C. ZIENKIEWICZ, THE FINITE ELEMENT METHOD, McGRAW-HILL, LONDON, 3RD EDITION (1977).

Websites

- <http://moodle.ehu.es>