
PRUEBA DE ACCESO A LA UNIVERSIDAD · 2015

Física

- · BACHILLERATO
- · FORMACIÓN PROFESIONAL
- · CICLOS FORMATIVOS DE GRADO SUPERIOR

NAZIOARTEKO BIKAINTASUN CAMPUSA CAMPUS DE EXCELENCIA INTERNACIONAL

UNIBERTSITATERA SARTZEKO PROBAK

2015eko UZTAILA

PRUEBAS DE ACCESO A LA UNIVERSIDAD JULIO 2015

FISIKA

FÍSICA

Azterketa honek bi aukera ditu. Haietako bati erantzun behar diozu.

Ez ahaztu azterketako orrialde bakoitzean kodea jartzea.

- Aukera bakoitzak 2 ariketa eta 2 galdera ditu.
- Ariketa bakoitzak 3 puntu balio du. Atal guztiek balio berdina dute. Atal bakoitzaren emaitzak, zuzena zein okerra izan, ez du izango inolako eraginik beste ataletako emaitzen balioespenean.
- Galdera bakoitzak, gehienez, 2 puntu balio du.
- Kalkulagailu zientifikoa erabil daiteke.

Este examen tiene dos opciones. Debes contestar a una de ellas.

No olvides incluir el código en cada una de las hojas de examen.

- Cada opción consta de 2 problemas y 2 cuestiones.
- Cada problema tiene un valor de 3 puntos. Todos los apartados tienen igual valor. El resultado, correcto o incorrecto, de cada apartado no influirá en la valoración de los restantes.
- Cada cuestión se valora en un máximo de 2 puntos.
- Puede utilizarse una calculadora científica.

UNIBERTSITATERA SARTZEKO PROBAK

2015eko UZTAILA

PRUEBAS DE ACCESO A LA UNIVERSIDAD JULIO 2015

FISIKA

FÍSICA

OPCIÓN A

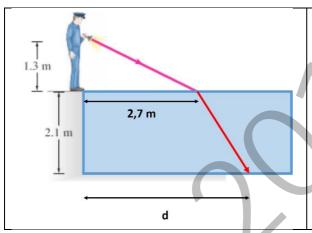
- **P1.** Una partícula con carga $0.5 \cdot 10^{-9}$ C se mueve con velocidad $\mathbf{v} = 4 \cdot 10^6 \, \mathbf{j} \, \text{m/s}$ y entra en una zona donde existe un campo magnético $\mathbf{B} = 0.5 \, \mathbf{i} \, \text{T}$.
- a) Determinar el valor de la fuerza magnética ejercida por el campo sobre la partícula y dibujar los vectores correspondientes a la velocidad de la partícula, al campo magnético y a la fuerza magnética.
- b) Calcular la masa de la partícula sabiendo que describe una trayectoria circular de radio 10⁻⁷ m.
- c) Justificar por qué es nulo el trabajo que realiza la fuerza magnética sobre la carga.
- **P2.** Hacemos vibrar armónicamente un punto P de una cuerda y se genera una onda transversal, descrita por la ecuación: $y = 4 \cdot sen \left[2\pi \left(\frac{t}{2} \frac{x}{4} \right) \right]$ en la que todas las magnitudes se miden en unidades del Sistema Internacional (SI). Calcular:
- a) La velocidad de vibración de un punto de la cuerda que dista 5 m del punto P, en el instante t = 3 s.
- b) La diferencia de fase entre dos puntos de la cuerda que distan 2 m el uno del otro.
- c) La velocidad de propagación de la onda.
- **C1.** Efecto fotoeléctrico. Descripción. Explicación cuántica. Teoría de Einstein. Frecuencia umbral. Trabajo de extracción.
- **C2.** Ley de Gravitación Universal de Newton. Intensidad de campo. Definición. Campo creado por una masa puntual (o esférica). Ejemplo: el campo gravitatorio terrestre.

UNIBERTSITATERA SARTZEKO PROBAK

2015eko UZTAILA

PRUEBAS DE ACCESO A LA UNIVERSIDAD JULIO 2015

FISIKA


FÍSICA

OPCIÓN B

- **P1.** Un satélite artificial de 500 kg de masa se encuentra en una órbita circular a una altura de 60660 km sobre la superficie de la Tierra.
- a) Determinar el período del satélite.
- b) Calcular la aceleración del satélite en su órbita.
- c) ¿Cuál será su período cuando se encuentre a una altura de la superficie terrestre igual a dos veces el radio de la Tierra?

Datos: $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; $M_T = 5.97 \cdot 10^{24} \text{ kg}$; $R_T = 6370 \text{ km}$.

P2. El vigilante de la figura ha utilizado su linterna para inspeccionar el fondo de la piscina.

- a) Observar la trayectoria seguida por el rayo de luz y determinar el valor de los ángulos de incidencia y de refracción.
- b) Determinar el valor de la distancia
 (d) a la que llegará la luz al fondo de la piscina.
- c) ¿Qué tiempo necesitará la luz para llegar hasta el fondo de la piscina desde que el vigilante enciende su linterna?

Datos: índices de refracción: n (aire) = 1 ; n (agua) = 1,33 ; Velocidad de la luz, $c = 3.10^8$ m/s

- **C1.** Ley de Faraday y Lenz para la inducción electromagnética. Valor de la fuerza electromotriz inducida. Sentido de la corriente.
- **C2.** Movimiento armónico simple. Ejemplos. Ecuación. Definición de las magnitudes. Ecuaciones de la velocidad y de la aceleración.

FÍSICA

1. Cada cuestión debidamente justificada y razonada con la solución se valorará con un máximo de 2 puntos.

En la puntuación de las cuestiones teóricas se tendrá en cuenta:

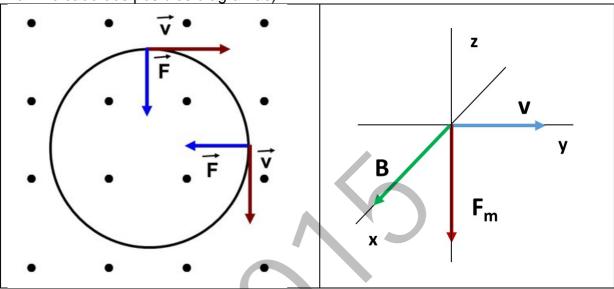
- La definición precisa de lamagnitud o propiedad física elegida.
- La precisión en la exposición del tema y el rigor en la demostración si la hubiera.
- La correcta formulación matemática. Siempre que venga acompañada de una explicación o justificación pertinente.
- 2. Cada problema con una respuesta correctamente planteada, justificada y con solución correcta se valorará con un máximo de 3 puntos.

En los problemas donde haya que resolver apartados en los que la solución obtenida en el primero sea imprescindible para la resolución siguiente, se puntuará ésta independientemente del resultado del primero.

Se valorará positivamente:

- El correcto planteamiento y justificación del desarrollo de problemas y
- · cuestiones.
- La identificación y uso adecuado de las leyes de la Física.
- La inclusión de pasos detallados, así como la utilización de dibujos y diagramas.
- La exposición y aplicación correcta de conceptos básicos.
- La utilización correcta de unidades.

Se penalizará:


- Los desarrollos y resoluciones puramente matemáticos, sin explicaciones o justificaciones desde el punto de vista de la Física.
- La ausencia o utilización incorrecta de unidades, así como los resultados equivocados incoherentes

SOLUCIONES

Opción A

P1. a)
$$\overrightarrow{F_m} = q \cdot \overrightarrow{v} x \overrightarrow{B} \Rightarrow 0.5 \cdot 10^{-9} \cdot 4 \cdot 10^6 \overrightarrow{j} x \ 0.5 \overrightarrow{i} = -10^{-3} \overrightarrow{k} \ N$$

En el dibujo adjunto podemos ver las características de cada uno de los vectores (se han indicado dos posibles diagramas):

b) La partícula describirá una trayectoria circular en la que el módulo de la velocidad es constante; por tanto: $\sum F = m \cdot a \Rightarrow F_m = m \cdot a_n \Rightarrow q \cdot v \cdot B = m \cdot \frac{v^2}{r}$

$$m = \frac{r \cdot q \cdot B}{v} = \frac{10^{-7} \cdot 0.5 \cdot 10^{-9} \cdot 0.5}{4 \cdot 10^{6}} = 6.25 \cdot 10^{-24} kg$$

c) la fuerza magnética que actúa sobre la partícula es siempre perpendicular al vector velocidad y al desplazamiento. Por tanto:

$$W = \vec{F} \cdot \vec{r} = F \cdot r \cdot cos\alpha = F \cdot r \cdot cos90 = \mathbf{0}$$

P2. a)
$$v = \frac{dy}{dt} = 4 \cdot 2\pi \cdot \frac{1}{2} \cdot cos\left(\pi \cdot t - \frac{\pi}{2} \cdot x\right)$$

Para x= 5 y t=3
$$\Rightarrow v = \frac{dy}{dt} = 4 \cdot 2\pi \cdot \frac{1}{2} \cdot cos\left(\pi \cdot 3 - \frac{\pi}{2} \cdot 5\right) = \mathbf{0} \, \mathbf{m/s}$$

b) El desfase es:

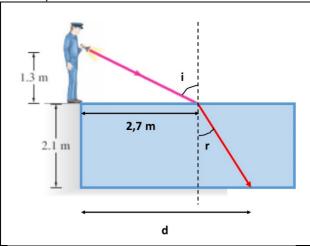
$$\Delta \varphi = \varphi_2 - \varphi_1 = \left(\pi \cdot t - \frac{\pi}{2} \cdot x_2\right) - \left(\pi \cdot t - \frac{\pi}{2} \cdot x_1\right) = \frac{\pi}{2} \cdot (x_1 - x_2) = \frac{\pi}{2} \cdot 2 = \pi \, rad$$

c) velocidad de propagación de la onda: $v_p = \frac{\lambda}{T} = \frac{4 m}{2 s} = 2 m/s$

Opción B

P1. a)
$$G \cdot \frac{M \cdot m}{r^2} = m \cdot \frac{v^2}{r} \Rightarrow v = \sqrt{\frac{G \cdot M}{r}} = \sqrt{\frac{6.67 \cdot 10^{-11} \cdot 5.97 \cdot 10^{24}}{(6370 + 60660) \cdot 10^3}} = 2437 \ m/s$$

$$v = \frac{2\pi \cdot (R_T + d)}{T} \Rightarrow 2437 = \frac{2\pi \cdot (6370 + 60660) \cdot 10^3}{T}$$


$$T = 172820 s = 48 h$$

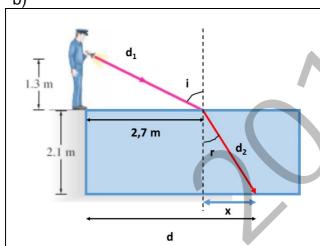
b)
$$a=rac{v^2}{r}=rac{2437^2}{(6370+60660)\cdot 10^3}=$$
 0,089 m/s^2

c) aplicando la tercera ley de Kepler:

$$\frac{T^2}{R^3} = constante \Rightarrow \frac{172820^2}{(6370 + 60660)^3} = \frac{T^2}{(3 \cdot R_T)^3} \Rightarrow T = 26308 \ s = 7 \ h \ 19 \ min$$

P2. a)

tan i =
$$2.7 / 1.3 = 2.08 \Rightarrow i = 64.32^{\circ}$$


Aplicando la Ley de Snell:

 n_1 -sen i = n_2 -sen r

 $1 \cdot \text{sen } 64,32 = 1,33 \cdot \text{sen } r$

sen
$$r = 0.68 \Rightarrow r = 42.84^{\circ}$$

b)

$$tan r = x / 2,1 \Rightarrow tan 42,84 = x / 2,1$$

$$x = 1,95$$

Por lo tanto, el valor de d es:

$$d = 2.7 + x = 2.7 + 1.95 = 4.65 \text{ m}$$

c)
$$t = t_1(aire) + t_2(agua)$$

$$t_1(aire) = d_1 / c \Rightarrow d_1 = \sqrt{(1,3^2 + 2,7^2)} = 3 m \Rightarrow t_1(aire) = 3 / 3.10^8 = 1.10^{-8} s$$

$$t_2(agua) = d_2 / v_{agua} \Rightarrow d_2 = \sqrt{(1.95^2 + 2.1^2)} = 2.87 m$$

$$n_{agua} = \frac{c}{v_{agua}} \Rightarrow 1.33 = \frac{3 \cdot 10^8}{v_{agua}} \Rightarrow v_{agua} = 2.26 \cdot 10^8 \, m/s$$

$$t_2(agua) = d_2 / v_{agua} = 2.87 / 2.26 \cdot 10^8 = 1.27 \cdot 10^{-8} s$$

$$t = t_1(aire) + t_2(agua) = 1.10^{-8} s + 1.27.10^{-8} s = 2.27.10^{-8} s$$