PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS

PRUEBA ESPECÍFICA PRUEBA 2020

MATEMÁTICAS

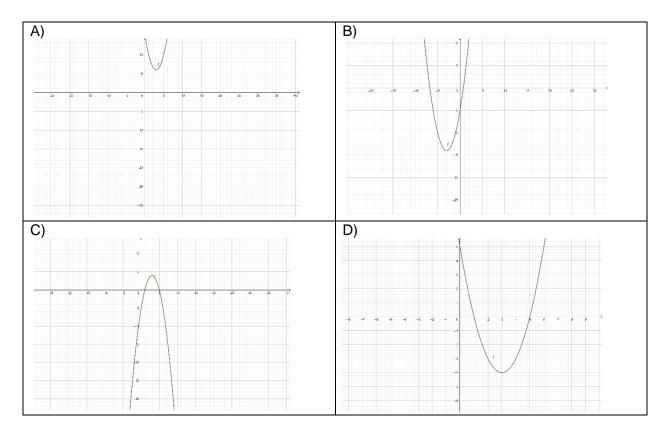
PRUEBA

SOLUCIONARIO

2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020


MATEMATIKA

MATEMÁTICAS

Aclaraciones previas: Tiempo de duración de la prueba: 1 hora Contesta a cinco de los seis ejercicios propuestos (Cada ejercicio vale 2 puntos).

- 1. Una clínica ha comprado 200 ropas de cama entre almohadas, mantas y edredones, por un monto total de 7500 €. Una almohada vale 16 €, una manta 50 € y un edredón 80 €. Sabemos también que el número de almohadas compradas es igual al número de mantas más el de edredones. ¿Cuántas almohadas, mantas y edredones han comprado?
- 2. Cuál de las siguientes imágenes representa la función:

$$y = x^2 - 6x + 5$$

Señala las razones de tu elección

2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

MATEMATIKA

MATEMÁTICAS

3. Hallar el área de recinto que delimitan las siguientes funciones:

$$f(x) = -x^2 + 2$$
 y $g(x) = x^2$

4. Describe estos aspectos de la siguiente función: dominio, intervalos de crecimiento y decrecimiento, máximos, mínimos...

$$y = x^3 - 3x$$

5. El número de suspensos de los alumnos de una clase son los siguientes:

Recoge los datos en una tabla de frecuencias absolutas, relativas, porcentajes, y calcula la media, moda y mediana.

6. Resuelve las siguientes ecuaciones:

a.
$$2^{x+1} + 5 \cdot 2^x = 28$$

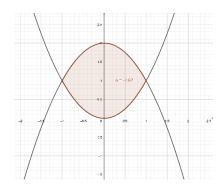
b.
$$x^4 - 5x^2 + 6 = 0$$

2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS 2020

MATEMÁTICAS

MATEMATIKA


SOLUCIONARIO MATEMÁTICAS (2020)

7.
$$\begin{cases} x + y + z = 200 \\ 16x + 50y + 80z = 7500 \\ x - y - z = 0 \end{cases}$$

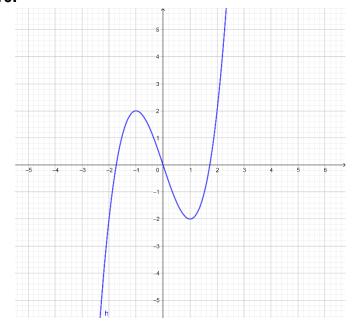
$$x = 100, y = 70, z = 30$$

8. D)

9.

$$\int_{-1}^{1} (-x^2 + 2 - x^2) dx$$

$$= \int_{-1}^{1} (-2x^2 + 2) dx$$


$$= \left[\frac{-2x^3}{3} + 2x \right]_{-1}^{1}$$

$$= \frac{-2}{3} + 2 - \left(\frac{2}{3} - 2 \right) = \frac{8}{3}$$

$$= 2,67 u^2$$

Solución: 2,67 u^2

10.

Dominio $R = (-\infty, \infty)$

Creciente $(-\infty, -1) \cup (-1, \infty)$

Decreciente (-1,1)

Máximo(-1,2)

Mínimo (1,-2)

2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

MATEMATIKA

MATEMÁTICAS

11.

x_i	f_i	F_{i}	h_i	H_i	p_i	P_{i}	
0	3	3	$\frac{3}{25}$	$\frac{3}{25}$	12%	12%	
1	8	11	$\frac{8}{25}$	$\frac{11}{25}$	32%	44%	
2	7	18	$\frac{7}{25}$	$\frac{18}{25}$	28%	72%	
3	2	20	$\frac{2}{25}$	$\frac{20}{25}$	8%	80%	
4	1	21	$\frac{1}{25}$	$\frac{21}{25}$	4%	84%	
5	2	23	$\frac{2}{25}$	$\frac{23}{25}$	8%	92%	
6	1	24	$\frac{1}{25}$	$\frac{24}{25}$	4%	96%	
7	1	25	$\frac{1}{25}$	$\frac{25}{25}$	4%	100%	
	N=25						

$$\bar{x} = \frac{0.3+1.8+2.7+3.2+4.1+5.2+6.1+7.1}{25} = \frac{55}{25} = 2,2$$

Moda (Max f_{i}) = 1

$$F_i \ge \frac{N}{2}$$
=12,5 Mediana = 2

12.

c.
$$x = 2$$

d.
$$x = +\sqrt{3}$$
; $= -\sqrt{3}$; $= +\sqrt{2}$; $= +\sqrt{2}$

2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

MATEMATIKA

MATEMÁTICAS

CRITERIOS GENERALES DE EVALUACIÓN

- 1. El examen se valorará con una puntuación entre 0 y 10 puntos.
- 2. Todos los problemas tienen el mismo valor: hasta 2 puntos.
- 3. Se valora el planteamiento correcto, tanto global como de cada una de las partes, si las hubiere.
- 4. No se tomarán en consideración errores numéricos, de cálculo, etc., siempre que no sean de tipo conceptual.
- 5. Las ideas, gráficos, presentaciones, esquemas, etc., que ayuden a visualizar mejor el problema y su solución se valorarán positivamente.
- 6. Se valora la buena presentación del examen.

Criterios particulares para cada uno de los problemas

- 1. Para puntuar el problema se tendrán en cuenta:
 - Planteamiento adecuado del problema. (1 punto)
 - Resolución del problema: cálculos asociados. (1 punto)
- 2. Para puntuar el problema se tendrán en cuenta:
 - Planteamiento de la condición de máximo y mínimo (1 punto)
 - Imponer la condición de mínimo y calcular su valor por medio de la derivada (1 punto)
- 3. Para puntuar el problema se tendrán en cuenta:
 - Dibujo del recinto (1 puntos)
 - Aplicación del Teorema de Barrow (0,25 puntos)
 - Exactitud de los cálculos realizados (0.75 punto)
- 4. Para puntuar el problema se tendrán en cuenta:
 - Dominio (0,5 puntos)
 - Cálculo de la derivada, de los intervalos de crecimiento y decrecimiento (0,75 punto)
 - Cálculo de los máximos y mínimos (0,75 punto)
- 5. Para puntuar el problema se tendrán en cuenta:
 - Cálculo de los intervalos modal y donde se encuentra la mediana (0,75 puntos).
 - Cálculo de la media y desviación típica (1,25 puntos)
- 6. Para puntuar el problema se tendrán en cuenta:
 - Planteamiento de la resolución (1 punto)
 - Resolución por desarrollo del planteamiento (1punto)

2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

MATEMATIKA

MATEMÁTICAS

CORRESPONDENCIA ENTRE LAS PREGUNTAS DE LA PRUEBA Y LOS INDICADORES DE CONOCIMIENTO

Pregunta	Indicador de conocimiento			
1	1.5 , 1.6, 1.7 y 1.9			
2	2.4			
3	2.9, 2.10, y 2.11			
4	2.9, 2.10 y 2.11			
5	4.1 y 4.2			
6	1.2 y 1.3			