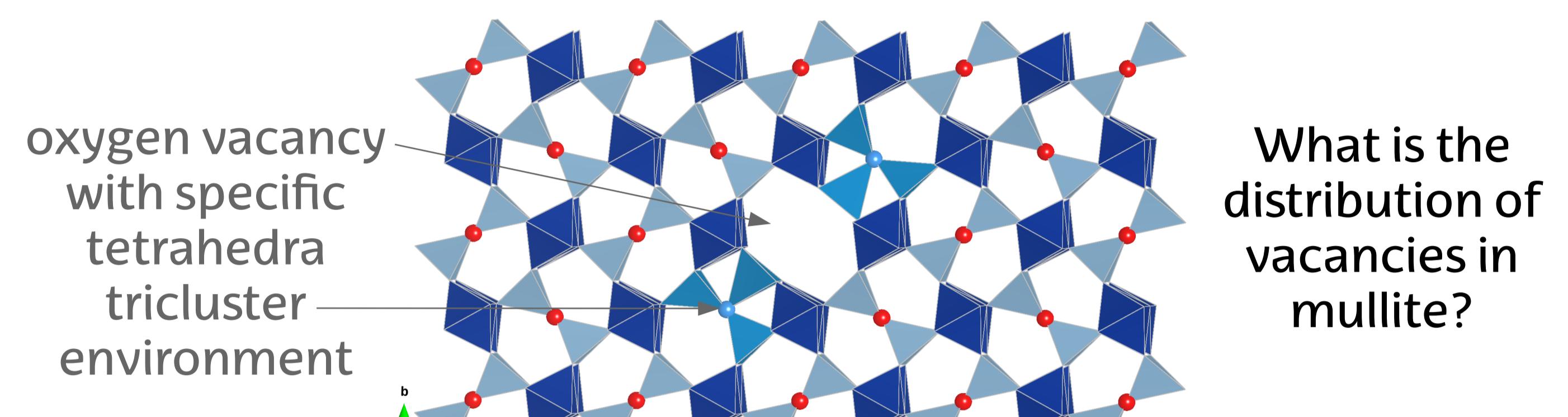


Vacancy Ordering in Mullite: A Superspace Model

Paul B. Klar,¹ Tomasz Breczewski,² Noelia de la Pinta,¹F. Javier Zúñiga,¹ Luis Sánchez-Muñoz³ and Gotzon Madariaga¹¹ Departamento de Física de la Materia Condensada & ² Departamento de Física Aplicada II, Universidad del País Vasco UPV/EHU, Bilbao, Spain³ Instituto de Cerámica y Vidrio (CSIC), c/ Kelsen 5, Cantoblanco, Madrid, Spain @corresponding author: paulbenjamin.klar@ehu.eus

1. Abstract

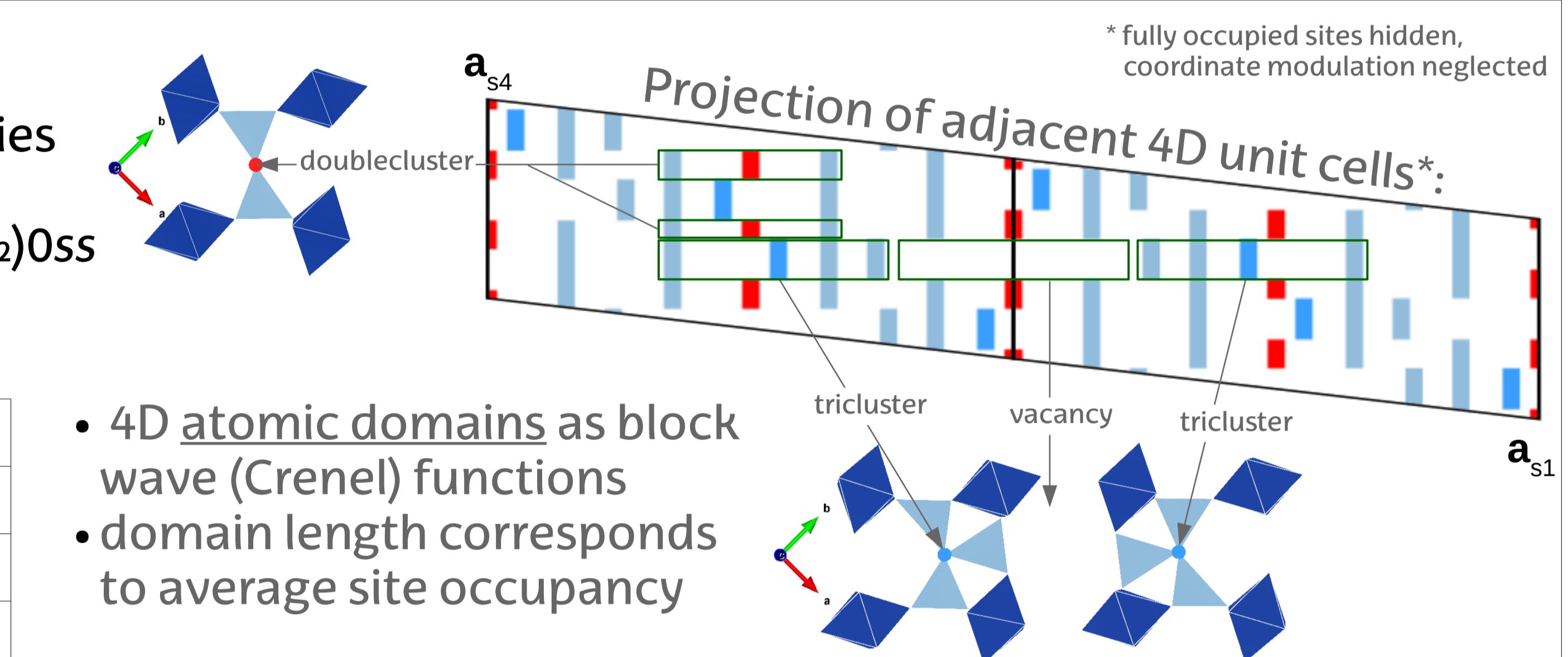

Mullite ($\text{Al}_2[\text{Al}_{2+2x}\text{Si}_{2-2x}]\text{O}_{10-x}[\text{vacancy}]_x$) is a well known material with numerous applications in traditional to high-tech ceramics. From a fundamental point of view its crystal structure is not completely understood, especially concerning the ordering of oxygen vacancies, which was commonly investigated either as **short-range ordered (SRO)** [1, 2] or **long-range ordered (LRO)** [3, 4, 5] property.

Indications for SRO	Indications for LRO
Complex diffuse scattering in reciprocal sections $\perp \mathbf{c}^*$ [1, 2]	Satellite reflections up to 7th order visible (ED) [4]
Satellite reflections usually not detected in powder XRD [3]	Modulation wave vector \mathbf{q} depends on composition [4, 6]

We here present a model that simultaneously accounts for **SRO** and **LRO**, where the modulated **LRO** phase is refined in superspace.

2. Objective

→ Investigate vacancy ordering in mullite applying modern tools of aperiodic crystallography (superspace formalism)

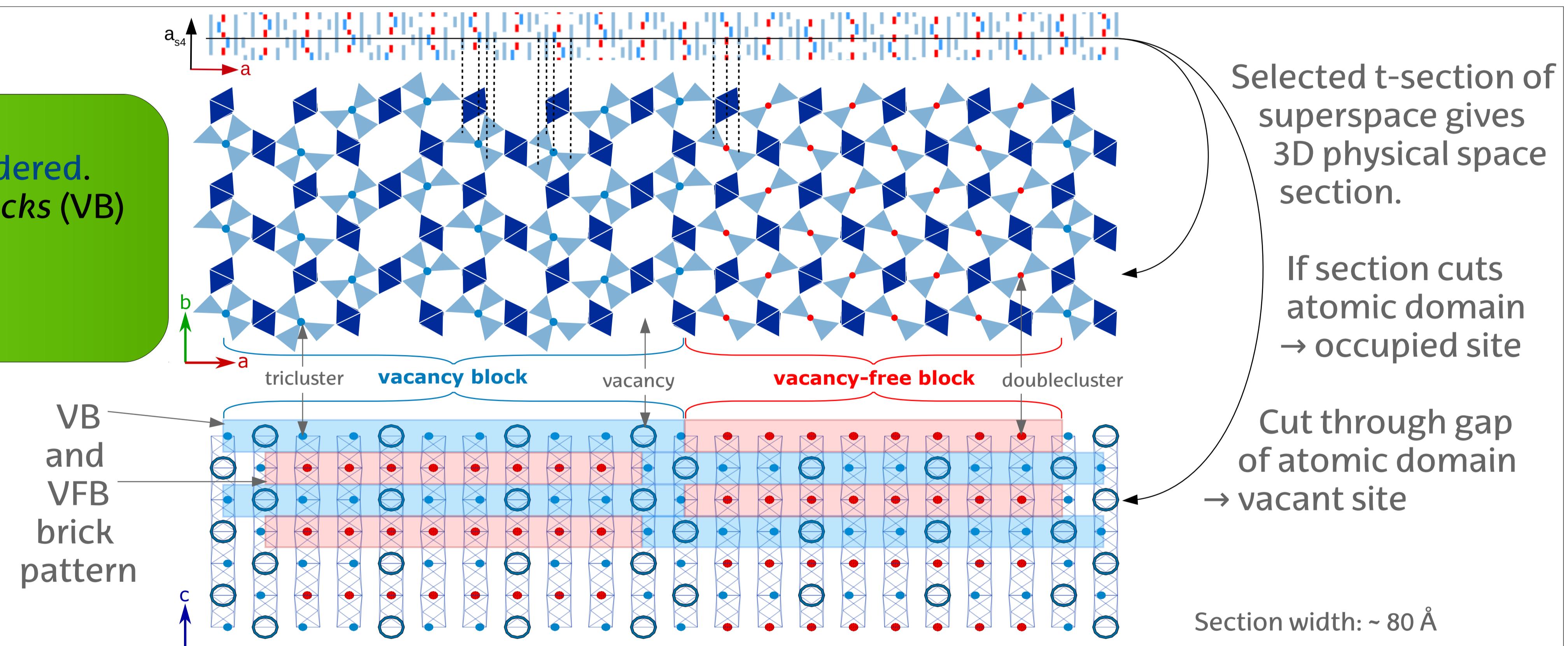

3. Methodology

- Sample: one small grain of commercial sample (Sigma-Aldrich)
- Single crystal X-ray diffraction, 2 measurements ($\text{Mo K}\alpha$, $\text{Cu K}\alpha$)
- STOE Stadivari, microfocus sources, Dectris Pilatus 100K detector
- Refinement in (3+1)d superspace using Jana2006 [7]

4. Structure model refinement

- **Disordered phase** ≡ basic structure with statistical distribution of vacancies
→ refinement based on main reflections → space group Pbam
- **Ordered phase** ≡ modulated structure with superspace group $\text{Pbam}(\alpha 0 1/2)0ss$
→ only ordered fraction of the sample generates satellite reflections
→ **different scale factors** for satellite and main reflections required

$\text{Al}_{4.822}\text{Si}_{1.178}\text{O}_{9.589(4)} \cong 2.05 \text{Al}_2\text{O}_3 \cdot \text{SiO}_2$	$a = 7.5805(7) \text{ \AA}$
68 (Cu) and 33 (Mo) observed, independent satellite reflections	$b = 7.6843(7) \text{ \AA}$
wR (observed, satellites): 8.69 (Cu), 13.66 (Mo)	$c = 2.8881(3) \text{ \AA}$
wR (all, main+satellites): 7.22 (Cu+Mo combined)	$\mathbf{q} = [0.2988(13), 0, 1/2]$


5. Results

Ordered Mullite:

- Vacancies are completely **long-range ordered**.
- Vacancies group together in **vacancy blocks (VB)**.
- **Vacancy-free blocks (VFB)** separate VB.
- Length of VB and VFB varies slightly
→ depends on composition and \mathbf{q}

Volume fraction of
ordered phase:
 $9 \pm 1 \%$
(calculated from scale factors)

Al/Si ordering is not included in the model.

6. Conclusion & Outlook

- Mullite crystals are built out of **ordered** and **disordered** domains.
- **Disordered** domains (~90 vol%) dominate, though the ratio is probably variable. (Diffuse scattering → more **disordered** domains, high order satellite reflections → more highly **ordered** domains)
- In **ordered** domains vacancies are long-range ordered and group together in **vacancy blocks** of variable length.
- Similar block models were suggested before for different compositions, but a refinement was not carried out [3, 4, 5].
- Superspace formalism is appropriate approach to describe vacancy ordering in modulated crystal structures.

The model will be tested with other samples from different synthesis routes and of different compositions.

7. References

- [1] Freimann, S. & Rahman, S. (2001). *J. Eur. Ceram. Soc.*, 21, 2453-2461.
- [2] Birkenstock, J. et al. (2015). *Acta Cryst.*, B71(3), 358-368
- [3] Saalfeld, H. (1979). *Neues Jb. Miner. Abh.*, 134, 305-316
- [4] Ylä-Yääski, J. & Nissen, H. (1983). *Phys. Chem. Miner.*, 10, 47-54.
- [5] Kahn-Harari, A. et al. (1991). *J. Solid State Chem.*, 90(2), 234-248
- [6] Cameron, W. (1977). *Am. Mineral.*, 62, 747-755.
- [7] Petříček, V., Dušek, M. & Palatinus, L. (2014). *Z. Kristallogr.*, 229, 345-352

Acknowledgment

G. M. would like to thank Prof. José M. Amigó for suggesting the topic. Experimental support by Gabriel A. López (UPV/EHU) is highly appreciated. P. B. K. expresses his gratitude to the Basque Government for a PhD grant. This project is financially supported by the Basque Government (IT-779-13).