



# EHU-Aztarna Ecological and social footprint of the University of the Basque Country: How to reduce our impact?

October 9th 2019 - Bilbao



## **INDEX**



- 1. INTRODUCTION
- 2. METHODOLOGY

**RESULTS AND DISCUSSION** 

- 3. ENVIRONMENTAL IMPACTS
- 4. TRANSPORT ANALYSIS
- **5. SOCIAL IMPACTS**
- 6. MAIN CONCLUSIONS



## INTRODUCTION



## EHU-Aztarna – our project

✓ Objective: to calculate the **Organizational Environmental** Footprint (OEF) of the academic activity of the University of the Basque Country (UPV/EHU) using the life-cycle thinking approach (LCA) and based on the methodology proposed by the **European Commission. Our** analysis will also include a Social Life-Cycle Assessment (S-LCA) based on the OEF of the UPV/FHU.





## INTRODUCTION



#### EHU-Aztarna – our team

**Multidisciplinary team:** > 20 participants of 4 Faculties and central sevices of the University of the Basque Country (UPV/EHU):

- Faculty of Engineering (Bilbao)
- Faculty of Engineering (Donostia)
- Faculty of Economics and Business (Sarriko, Gasteiz)
- School of Architecture (Donostia)

#### The team consists of:

- Professors and research staff (PDI)
- Administration and services staff (PAS)
- Students from our Degrees and Masters in our faculties.





## INTRODUCTION



#### **EHU-Aztarna – our University**





Gasteiz

CAMPUS DE ALAVA



Users in the UPV/EHU:

39 360 students 5 596 PDI 1 857 PAS

46 813 people in 2017







Our analysis takes into account Faculties and service buildings used by more than 95% of total users of the UPV/EHU in 2016.

**Excluded faculties and buildings:** 

- Nautical School -Portugalete
- Faculty of Economics-Elcano
- School of Engineering-Eibar
- Student residences, Bizkaia Aretoa, Univ. Institutes...





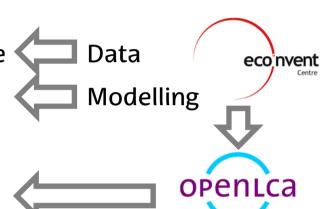


| 4.5.2013 | ES                | Diario Oficial de la Unión Europea                                                                                                  | L 124/ |
|----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|
|          |                   | п                                                                                                                                   |        |
|          |                   | (Actos no legislativos)                                                                                                             |        |
|          |                   | RECOMENDACIONES                                                                                                                     |        |
|          |                   | RECOMENDACIÓN DE LA COMISIÓN                                                                                                        |        |
|          |                   | de 9 de abril de 2013                                                                                                               |        |
|          | sobre el uso de m | étodos comunes para medir $y$ comunicar el comportamiento ambiental productos $y$ las organizaciones a lo largo de su ciclo de vida | de los |
|          |                   | (Texto pertinente a efectos del EEE)                                                                                                |        |
|          |                   | (2013/179/UE)                                                                                                                       |        |

| 4.5.2013 |       | ES Diario Oficial de la Unión Europea                                                  | L 124/107 |
|----------|-------|----------------------------------------------------------------------------------------|-----------|
|          |       | ANEXO III                                                                              |           |
|          |       | GUÍA DE LA HUELLA AMBIENTAL DE LAS ORGANIZACIONES                                      |           |
|          | RESU  | JMEN                                                                                   | 0         |
|          | Cont  | exto                                                                                   | 0         |
|          | Objet | tivos y destinatarios                                                                  | 0         |
|          | Proce | esos y resultados                                                                      | 1         |
|          | Relac | ción con la Guía de la huella ambiental de los productos                               | 1         |
|          | Term  | ninología: deberá, debería y puede                                                     | 1         |
|          | 1.    | CONSIDERACIONES GENERALES DE LOS ESTUDIOS DE LA HUELLA AMBIENTAL DE LAS ORGANIZACIONES | 2         |
|          | 1.1.  | Enfoque y aplicaciones                                                                 | 2         |
|          | 1.2.  | ¿Cómo utilizar esta Guía?                                                              | 3         |
|          | 1.3.  | Principios de los estudios de la huella ambiental de las organizaciones                | 4         |
|          | 1.4.  | Fases de un estudio de la huella ambiental de las organizaciones                       | 4         |
|          | 2.    | FUNCIÓN DE LAS REGLAS SECTORIALES DE HUELLA AMBIENTAL DE LAS ORGANIZACIONES (RSHAO) 11 | 5         |

Our work is based on recommendations and documentation provided by the European Commission and IHOBE.








#### MODELLING: openLCA and soca

#### 1.- Inventory:

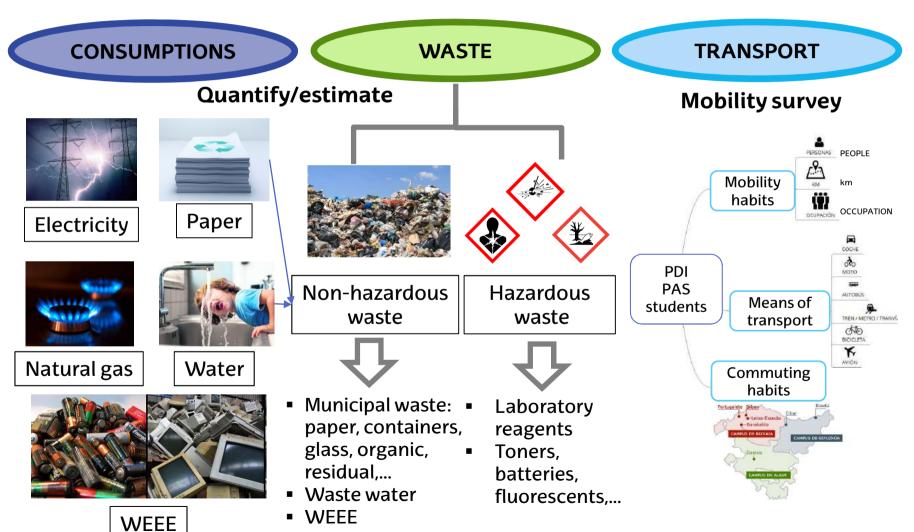
- Consumptions and waste
- √ Transport needs



#### 2.- Environmental impacts

- ✓ CML (Baseline): midpoint methodology (classification and characterization) → 11 categories (i.e. global warming)
- ✓ ReCiPe: endpoint methodology (normalization and weighting, Hierarchical perspective) → 3 categories (i.e. human health)

#### 3.- Social impacts




✓ Social Impact Weighting Method (Social and Environmental LCA, Life Cycle Costing), 1500 h/year → **37** categories (i.e. fatal accidents)





## The Inventory (for year 2016)







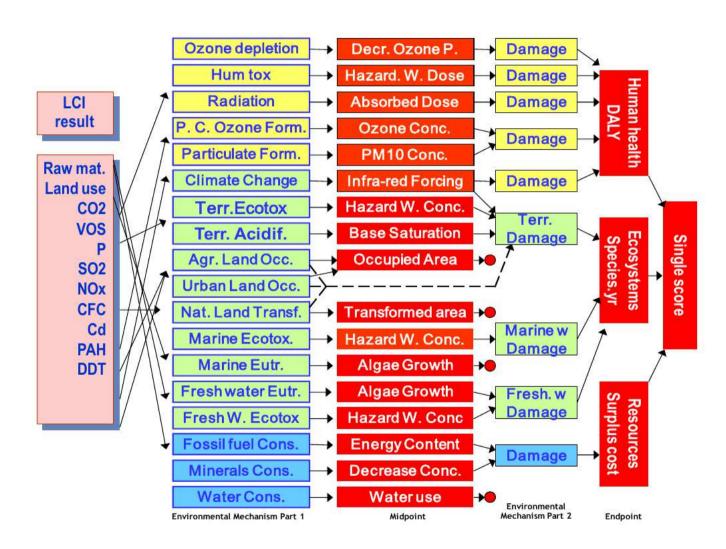
| Concept             | Unit                  | Leioa  | Donostia | Gasteiz | EIB-Bilbao | Sarriko |
|---------------------|-----------------------|--------|----------|---------|------------|---------|
| Electricity         | MWh                   | 16157  | 7400     | 10220   | 4204       | 1019    |
| Natural gas         | MWh                   | 13644  | 8834     | 15037   | 1985       | 2194    |
| Gas-oil             | L                     | 0      | 90       | 0       | 113694     | 0       |
| Water               | m³                    | 116963 | 27979    | 19045   | 23718      | 9925    |
| Paper               | kg                    | 55022  | 18939    | 13183   | 29702      | 8738    |
| Computers           | Units                 | 1131   | 976      | 545     | 630        | 234     |
| Batteries           | kg                    | 421,5  | 81       | 185     | 65,8       | 80      |
| Fluorescent lamps   | Units                 | 10623  | 500      | 200     | 2400       | 260     |
| Toners              | Units                 | 1083   | 661      | 803     | 277        | 214     |
| Hazardous waste     | kg                    | 23076  | 25576    | 9718    | 3756       | 0       |
| Containers waste    | kg                    | 21622  | 5060     | 2996    | 3856       | 3634    |
| Paper waste         | kg                    | 134200 | 48182    | 16754   | 9855       | 13909   |
| Glass waste         | kg                    | 2171   | 621      | 1647    | 300        | 300     |
| Organic waste       | kg                    | 0      | 20330    | 1488    | 0          | 0       |
| Residual waste      | kg                    | 222000 | 19534    | 80126   | 60613      | 50504   |
| WEEE                | kg                    | 10704  | 2352     | 2080    | 3500       | 1907    |
| Sanitary wastewater | m³                    | 116963 | 27979    | 19045   | 23718      | 9925    |
| Transport needs     | ×10 <sup>6</sup> p·km | 141,2  | 101,0    | 84,9    | 41,0       | 23,9    |





| Concept                      | Leioa | Donostia | Gasteiz | EIB-Bilbao | Sarriko |
|------------------------------|-------|----------|---------|------------|---------|
| Electricity                  |       |          |         |            |         |
| Natural gas                  |       |          |         |            |         |
| Gas-oil                      |       |          |         |            |         |
| Water                        |       |          |         |            |         |
| Paper                        |       |          |         |            |         |
| Computers (desktops&laptops) |       |          |         |            |         |
| Batteries                    |       |          |         |            |         |
| Fluorescent lamps            |       |          |         |            |         |
| Toner consumption            |       |          |         |            |         |
| Toners waste                 |       |          |         |            |         |
| Hazardous waste              |       |          |         |            |         |
| Containers waste             |       |          |         |            |         |
| Paper waste                  |       |          |         |            |         |
| Glass waste                  |       |          |         |            |         |
| Organic waste                |       |          |         |            |         |
| Residual waste               |       |          |         |            |         |
| WEEE                         |       |          |         |            |         |
| Fluorescent waste            |       |          |         |            |         |
| Sanitary wastewater          |       |          |         |            |         |
| Transport needs              |       |          |         |            |         |






#### **ENVIRONMENTAL IMPACTS**

| Method | Impact Category                                               | Unit                                 |
|--------|---------------------------------------------------------------|--------------------------------------|
|        | Terrestrial ecotoxicity                                       | kg 1,4-dichlorobenzene eq.           |
|        | Ozone layer depletion                                         | kg CFC-11 eq.                        |
|        | Climate change*                                               | kg CO <sub>2</sub> eq.               |
|        | Photochemical oxidation - high NO <sub>x</sub> *              | kg ethylene eq.                      |
|        | Acidification potential                                       | kg SO₂ eq.                           |
| CML    | Eutrophication                                                | kg PO <sub>4</sub> 3- eq.            |
| Civil  | Marine aquatic                                                | kg 1,4-dichlorobenzene eq.           |
|        | Depletion of abiotic resources - fossil fuels                 | MJ                                   |
|        | Human toxicity*                                               | kg 1,4-dichlorobenzene eq.           |
|        | Depletion of abiotic resources - elements, ultimate reserves* | kg antimony eq.                      |
|        | Freshwater aquatic ecotoxicity                                | kg 1,4-dichlorobenzene eq.           |
|        | Human Health*                                                 | DALY (Disability Adjusted Life Year) |
| ReCiPe | Resources*                                                    | \$                                   |
|        | Ecosystems*                                                   | species∙yr                           |







Midpoint and Endpoint environmental impact indicators. Source: ReCiPe 2008.





#### **SOCIAL IMPACTS**

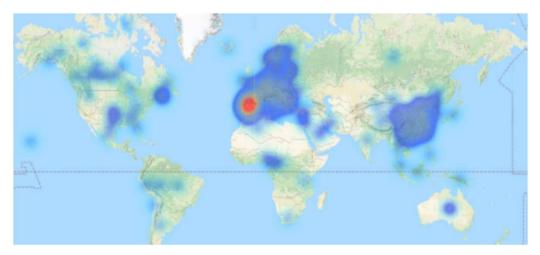
| Stake-<br>holders | Category                                                                       | Stake-<br>holders | Category                                                |
|-------------------|--------------------------------------------------------------------------------|-------------------|---------------------------------------------------------|
|                   | Biomass consumption                                                            |                   | Association and bargaining rights                       |
|                   | Certified environmental management system                                      |                   | Child Labour, female                                    |
|                   | Drinking water coverage                                                        |                   | Child Labour, male                                      |
|                   | Fossil fuel consumption                                                        |                   | Child Labour, total                                     |
|                   | Indigenous rights                                                              |                   | DALYs due to indoor and outdoor air and water pollution |
| Local             | Industrial water depletion                                                     |                   | Fair Salary                                             |
|                   | yInternational migrant stock International migrant workers (in the sector/     |                   | Fatal accidents                                         |
|                   |                                                                                |                   | Frequency of forced labour                              |
|                   | Minerals consumption                                                           | Workers           | Gender wage gap                                         |
|                   | Net migration                                                                  |                   | Goods produced by forced labour                         |
|                   | Pollution                                                                      |                   | Non-fatal accidents                                     |
|                   | Sanitation coverage                                                            |                   | Safety measures                                         |
|                   | Unemployment                                                                   |                   | Social security expenditures                            |
|                   | Education                                                                      |                   | Trade unionism                                          |
| Society           | Health expenditure                                                             |                   | Trafficking in persons                                  |
| Society           | Illiteracy                                                                     |                   | Violations of employment laws and regulations           |
|                   | Youth illiteracy                                                               |                   | Weekly hours of work per employee                       |
| Value<br>Chain    | Anti-competitive behaviour or violation of anti-trust and monopoly legislation |                   | Workers affected by natural disasters                   |
| Actors            | Corruption                                                                     |                   | Economic Costs                                          |





#### **DATA ANALYSIS. Contribution to impact categories by:**

#### **Subprocesses**


- ✓ Academic activity
- ✓ Transport
- ✓ Energy
- ✓ Materials
- ✓ Waste

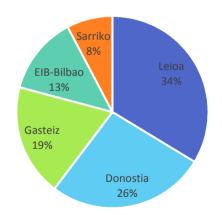
#### **Scenarios**

- ✓ Reference scenario
- ✓ Extending computer equipment lifetime 2 years
- ✓ Changing to a more sustainable mobility (1/2 private car users -> bus)
- ✓ Consuming all electricity from renewable sources

#### Location

- ✓ Basque Country
- ✓ Outside of Basque Country
- ✓ Not defined









#### **ENVIRONMENTAL IMPACTS – UPV/EHU**

|            |       | Terrestrial ecotoxicity | Ozone layer<br>depletion | Climate<br>change<br>GWP100 | Photochem. Oxidation high Nox | Acidification potential | Eutro-<br>phication | Marine<br>aquatic<br>ecotoxicity | Depletion<br>of abiotic<br>resources -<br>fossil fuels | Human<br>toxicity  | Depletion<br>of abiotic<br>resources -<br>elements | Freshwater aquatic ecotoxicity | Human<br>Health | Resources | Ecosystems |
|------------|-------|-------------------------|--------------------------|-----------------------------|-------------------------------|-------------------------|---------------------|----------------------------------|--------------------------------------------------------|--------------------|----------------------------------------------------|--------------------------------|-----------------|-----------|------------|
|            |       | kg<br>1,4-dichloro-     | kg                       | kt                          | ka                            |                         |                     | Mt<br>1,4-dichloro-              |                                                        | t<br>1,4-dichloro- | kg                                                 | t<br>1.4-dichloro-             |                 |           |            |
|            | Users | benzene eq.             | CFC-11 eq.               |                             | kg<br>ethylene eq.            | kg SO <sub>2</sub> eq.  |                     | benzene eq.                      | TJ                                                     | benzene eq.        | U                                                  | ,                              | DALY            | M\$       | species·yr |
| Leioa      | 15024 | 98470                   | 3,56                     | 22,6                        | 4757                          | 105869                  | 29326               | 72,1                             | 303                                                    | 13303              | 150                                                | 15771                          | 47,2            | 1,28      | 0,228      |
| Donostia   | 11879 | 64077                   | 2,19                     | 13,7                        | 3032                          | 61954                   | 17756               | 12,4                             | 187                                                    | 8122               | 121                                                | 4494                           | 29,0            | 0,80      | 0,138      |
| Gasteiz    | 8396  | 54709                   | 2,25                     | 14,3                        | 2771                          | 61318                   | 15996               | 11,4                             | 197                                                    | 6538               | 77                                                 | 3811                           | 29,0            | 0,82      | 0,141      |
| EIB-Bilbao | 5865  | 25775                   | 0,84                     | 5,3                         | 1195                          | 25809                   | 7868                | 14,9                             | 70                                                     | 3506               | 60                                                 | 3323                           | 11,6            | 0,30      | 0,059      |
| Sarriko    | 3441  | 12469                   | 0,42                     | 2,7                         | 556                           | 11147                   | 3451                | 9,7                              | 36                                                     | 1761               | 25                                                 | 2120                           | 5,6             | 0,16      | 0,028      |
| UPV/EHU    | 44605 | 255499                  | 9,25                     | 58,7                        | 12312                         | 266097                  | 74426               | 120                              | 794                                                    | 33232              | 433                                                | 29521                          | 122,3           | 3,36      | 0,593      |

Users

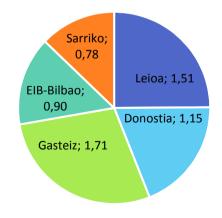


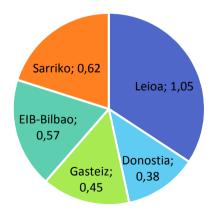
Climate change - GWP100



<sup>✓</sup> Carbon footprint seems to be higher in Leioa and Gasteiz than in Bilbao and Donostia.





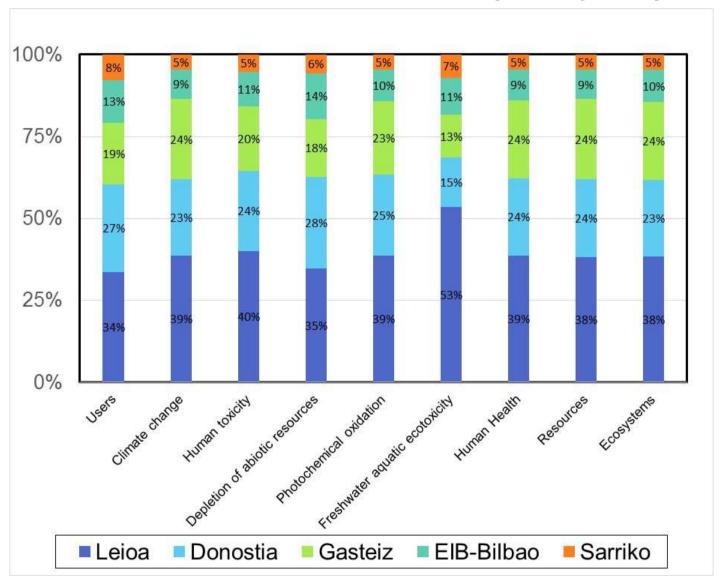


#### **ENVIRONMENTAL IMPACTS – UPV/EHU, annual impacts per user**

|            |       | Terrestrial ecotoxicity | Ozone layer depletion | Climate<br>change<br>GWP100 | Photochem. Oxidation high Nox | Acidification potential | Eutro-<br>phication    | Marine<br>aquatic<br>ecotoxicity | Depletion<br>of abiotic<br>resources -<br>fossil fuels | Human<br>toxicity  | Depletion<br>of abiotic<br>resources -<br>elements | Freshwater<br>aquatic<br>ecotoxicity | Human<br>Health | Resources | Ecosystems |
|------------|-------|-------------------------|-----------------------|-----------------------------|-------------------------------|-------------------------|------------------------|----------------------------------|--------------------------------------------------------|--------------------|----------------------------------------------------|--------------------------------------|-----------------|-----------|------------|
|            |       | g<br>1,4-dichloro-      | kg                    | +                           | kg                            |                         |                        | kt<br>1,4-dichloro-              |                                                        | t<br>1.4-dichloro- | g                                                  | t<br>1.4-dichloro-                   |                 |           |            |
|            | Users | benzene eq.             |                       | CO₂ eq.                     | ethylene eq.                  | kg SO₂ eq.              | kg PO <sub>4</sub> eq. | benzene eq.                      | GJ                                                     | ,                  | antimony eq.                                       | ,                                    | DALY            | M\$       | species·yr |
| Leioa      | 15024 | 6,55                    | 0,237                 | 1,53                        | 0,32                          | 7,05                    | 1,95                   | 4,80                             | 20,2                                                   | 0,89               | 9,99                                               | 1,05                                 | 0,00314         | 85,2      | 0,000015   |
| Donostia   | 11879 | 5,39                    | 0,184                 | 1,15                        | 0,26                          | 5,22                    | 1,50                   | 1,04                             | 15,8                                                   | 0,68               | 10,18                                              | 0,38                                 | 0,00244         | 67,4      | 0,000012   |
| Gasteiz    | 8396  | 6,52                    | 0,268                 | 1,71                        | 0,33                          | 7,30                    | 1,91                   | 1,36                             | 23,5                                                   | 0,78               | 9,17                                               | 0,45                                 | 0,00345         | 98,1      | 0,000017   |
| EIB-Bilbao | 5865  | 4,39                    | 0,143                 | 0,90                        | 0,20                          | 4,40                    | 1,34                   | 2,53                             | 11,9                                                   | 0,60               | 10,24                                              | 0,57                                 | 0,00197         | 51,5      | 0,000010   |
| Sarriko    | 3441  | 3,62                    | 0,123                 | 0,78                        | 0,16                          | 3,24                    | 1,00                   | 2,82                             | 10,5                                                   | 0,51               | 7,24                                               | 0,62                                 | 0,00162         | 45,3      | 0,000008   |
| UPV/EHU    | 44605 | 5,73                    | 0,207                 | 1,32                        | 0,28                          | 5,97                    | 1,67                   | 2,70                             | 17,8                                                   | 0,75               | 9,71                                               | 0,66                                 | 0,00274         | 75,4      | 0,000013   |

Climate change - GWP100 (t CO2 eq.)

Freshwater aquatic ecotoxicity (t 1,4- dichlor. eq.)

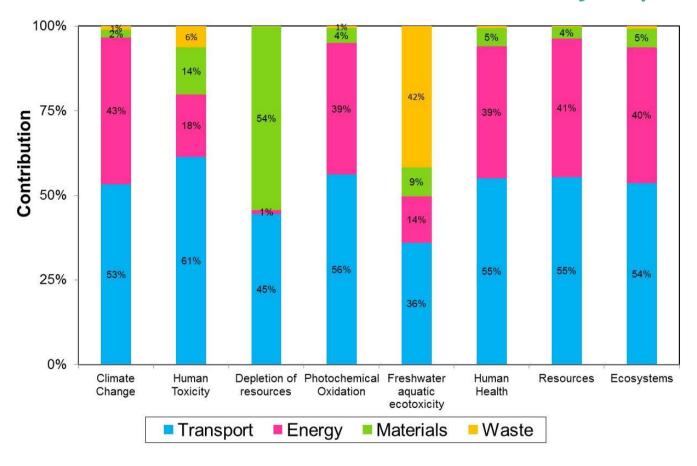





✓ High carbon footprint (Climate Change) in Gasteiz, and very high freshwater aquatic ecotoxicity in Leioa. What is happening?





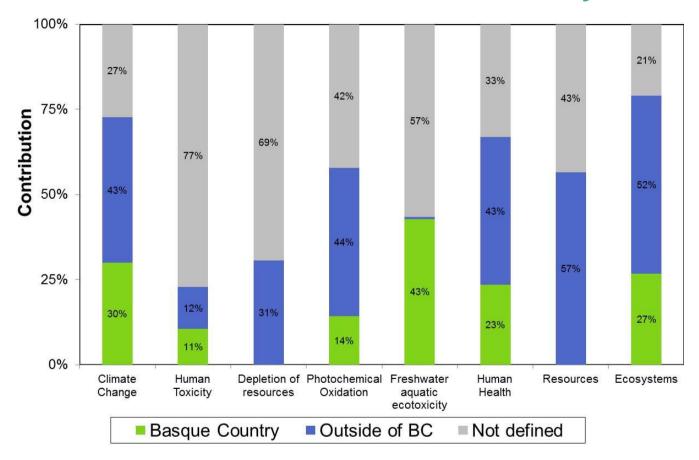

#### **ENVIRONMENTAL IMPACTS – UPV/EHU, % of impacts by Campus**







#### **ENVIRONMENTAL IMPACTS - UPV/EHU, Contribution by subprocesses**



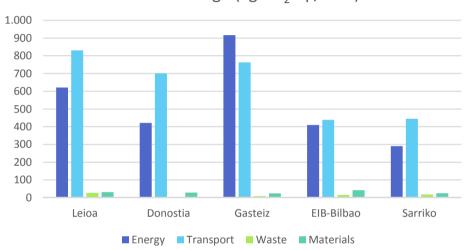

- ✓ Half of impacts related to Transport.
- ✓ High contribution of **Materials consumption** to *Depletion of abiotic resources —elements*.
- ✓ High contribution of **Waste treatment** to *Freshwater aquatic ecotoxicity*.





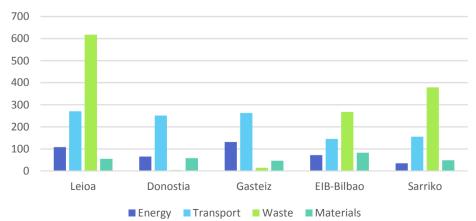
#### **ENVIRONMENTAL IMPACTS – UPV/EHU, Contribution by location**




- ✓ Unable to locate a big fraction of impacts (probably out of the Basque Country).
- ✓ Many impacts located outside the Basque Country.
- ✓ 43% of *Freshwater aquatic ecotoxicity* impact (waste) located in the Basque Country.





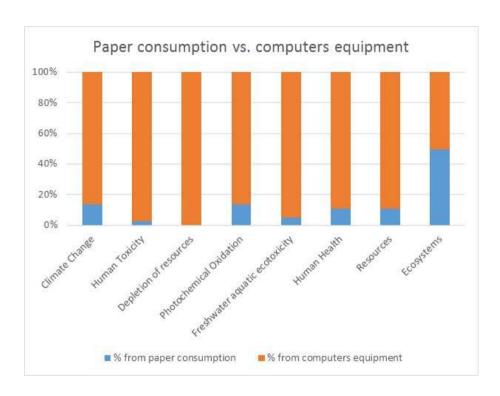

#### **ENVIRONMENTAL IMPACTS - Contribution by subprocesses**



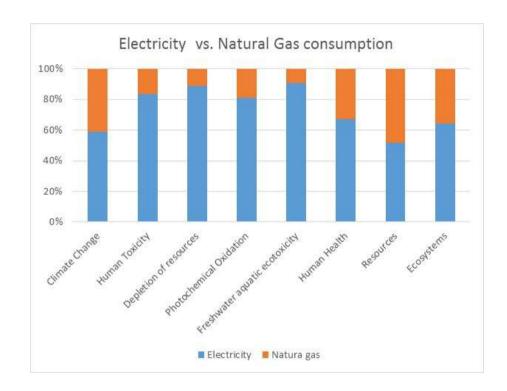


- ✓ Transport impacts higher in Leioa, Gasteiz and Donostia (more on this later).
- ✓ Energy consumption higher in Gasteiz (climatic effect?).

Freshwater aquatic ecotoxicity (kg 1,4-dichlorobenzene eq./user)




√ Freshwater aquatic ecotoxicity impact very high in Leioa because 100% of residual waste is incinerated (less in Bilbao, none in Donostia and Gasteiz).

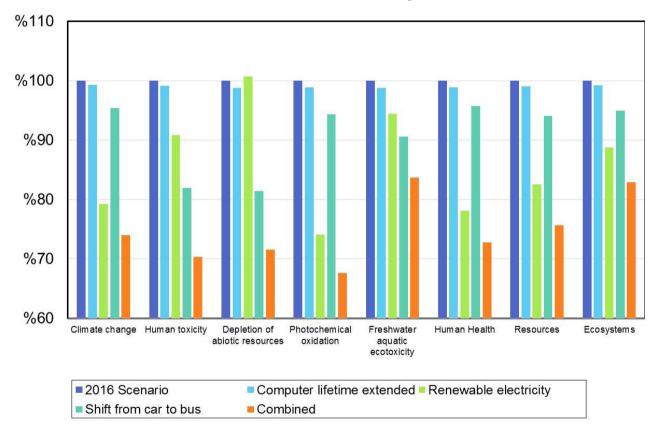





#### **ENVIRONMENTAL IMPACTS - Leioa**



✓ Impacts derived from computer manufacturing (desktops, laptops, screens) are much more important than those derived from paper production.




✓ Impacts derived from natural gas supply (extraction, transport) and consumption are smaller than those derived from electricity production, but also very significant.





#### **ENVIRONMENTAL IMPACTS – UPV/EHU, Comparison of scenarios**



**Computer lifetime extended**: +2 years (conputers, laptops 7->9 years; screens 14->16 years).

Renewable electricity: all consumed electricity comes from renewable resources (Spanish mix).

Shift from car to bus: half on transport by private car moves to public bus.

**Combined**: all previous measures considered.



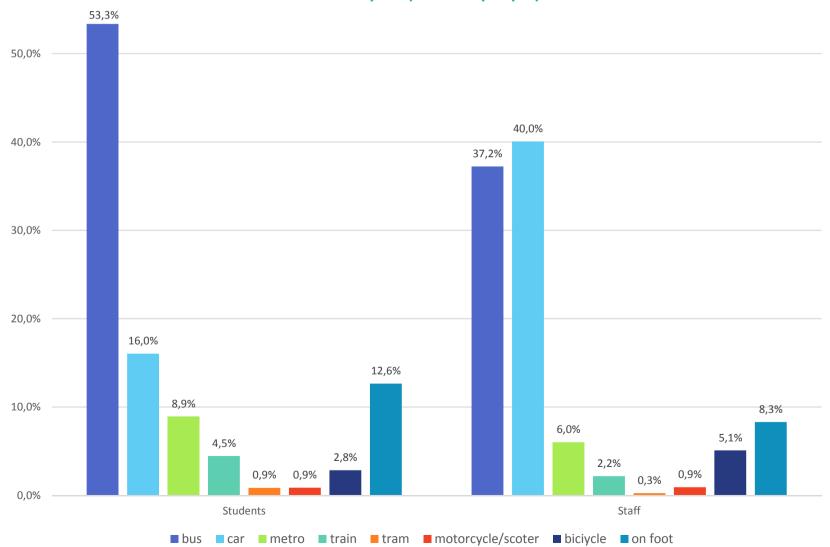


#### **TRANSPORT ANALYSIS- Survey results**

- ✓ Two users groups: Staff and Students
- ✓ Means of transport: airplane, train, intercity and urban bus, tram, metro, car, motorcycle, bicycle and by foot
- ✓ **Types of transport:** daily commuting, change of residence displacement and work displacements
- ✓ **Unit of transport measurement:** passenger·kilometer (for one academic year)



| Groups of<br>Users | Responses | Population<br>from<br>2016/17 | Margin of<br>error |
|--------------------|-----------|-------------------------------|--------------------|
| Students           | 2.966     | 39.018                        | 1.7%               |
| Staff              | 603       | 8.178                         | 3.8%               |


Answers gathered in the survey by groups, population and margin of error.

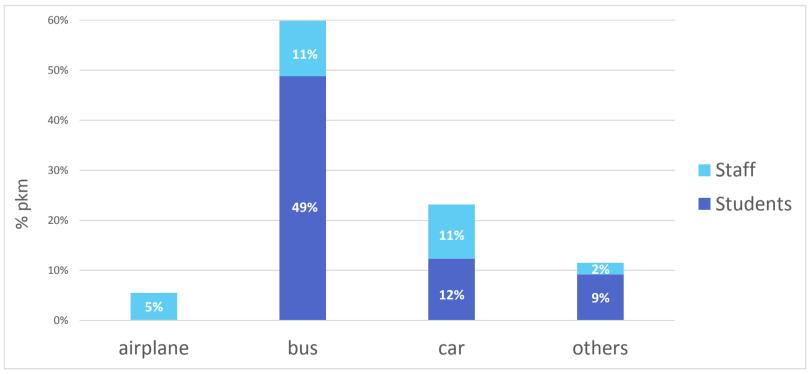




#### **TRANSPORT ANALYSIS- Survey results**

Means of transport (% of the people)








#### **TRANSPORT ANALYSIS- Survey results**

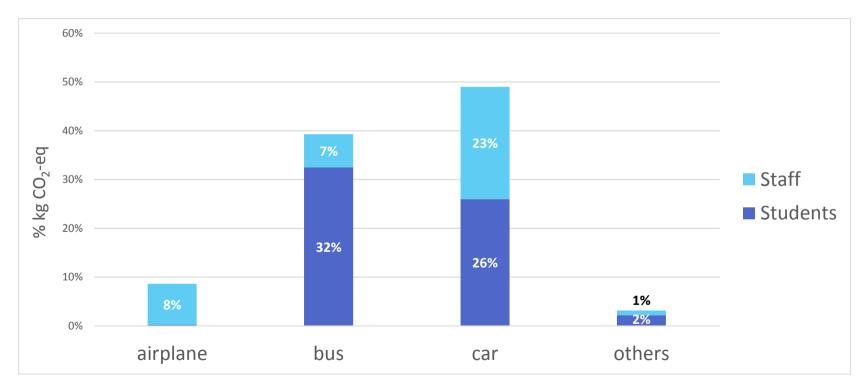
Distribution of total transport according to type of transport (% of pkm)

|          | Daily     | Change of | Work      |
|----------|-----------|-----------|-----------|
|          | Commuting | residence | transport |
| Students | 60%       | 10%       | 0%        |
| Staff    | 20%       | 1%        | 9%        |



Distribution of total transport according to passenger-kilometers (pkm)






#### **TRANSPORT ANALYSIS- Environmental impacts**

#### **CLIMATE CHANGE-GLOBAL WARMING**

| Groups of Users | Impact per person                  |
|-----------------|------------------------------------|
| Students        | 599 kg CO₂-eq/person               |
| Staff           | 2043 kg CO <sub>2</sub> -eq/person |









#### **TRANSPORT ANALYSIS- Environmental impacts**

#### **HUMAN TOXICITY**

| Groups of Users | Impact per person               |
|-----------------|---------------------------------|
| Students        | 359 kg 1,4-dichlorobenzene eq.  |
| Staff           | 1709 kg 1,4-dichlorobenzene eq. |



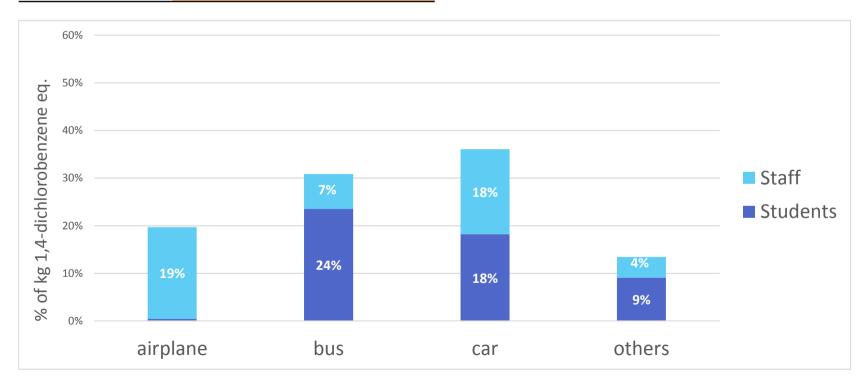
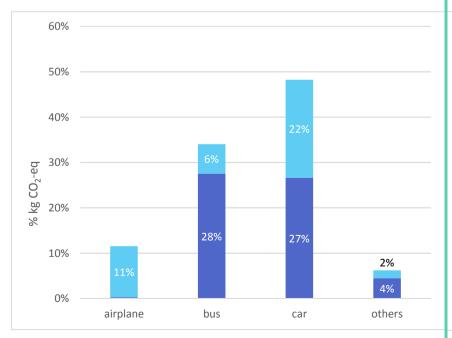


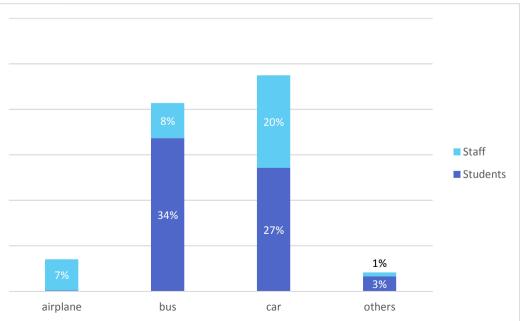

Figure X. Distribution of human toxicity impacts according to means of transport and user groups





#### **TRANSPORT ANALYSIS- Environmental impacts**


# CLIMATE CHANGE-GLOBAL WARMING IMPACTS FOR DIFFERENT CAMPUS


#### **BILBAO**

| Groups of Users | Impact per person                  |
|-----------------|------------------------------------|
| Students        | 371 kg CO <sub>2</sub> -eq/person  |
| Staff           | 1603 kg CO <sub>2</sub> -eq/person |

#### **GASTEIZ**

| Groups of Users | Impact per person                  |
|-----------------|------------------------------------|
| Students        | 689 kg CO <sub>2</sub> -eq/person  |
| Staff           | 2291 kg CO <sub>2</sub> -eq/person |









#### **TRANSPORT ANALYSIS- Proposal of scenarios**

#### What if PRIVATE transport goes to PUBLIC transport?

#### **Climate Change**

| Groups of Users | Impact per person<br>Today scenario | Impact per person PUBLIC TRANSPORT scenario | % Reduction |  |
|-----------------|-------------------------------------|---------------------------------------------|-------------|--|
| Students        | 599 kg CO₂-eq/person                | 465 kg CO₂-eq/person                        | 22%         |  |
| Staff           | 2043 kg CO <sub>2</sub> -eq/person  | 1424 kg CO <sub>2</sub> -eq/person          | erson 30%   |  |
| Total           | 2642 kg CO <sub>2</sub> -eq/person  | 1889 kg CO <sub>2</sub> -eq/person          | 29%         |  |

#### **Human Toxicity**

| Groups of<br>Users | Impact per person<br>Today scenario | Impact per person<br>PUBLIC TRANSPORT scenario | % Reduction |  |
|--------------------|-------------------------------------|------------------------------------------------|-------------|--|
| Students           | 359 kg 1,4-dichlorobenzene eq.      | 172 kg 1,4-dichlorobenzene eq.                 | 52%         |  |
| Staff              | 1709 kg 1,4-dichlorobenzene eq.     | 865 kg 1,4-dichlorobenzene eq.                 | 49%         |  |
| Total              | 2068 kg 1,4-dichlorobenzene eq.     | 1037 kg 1,4-dichlorobenzene eq.                | 50%         |  |





#### **TRANSPORT ANALYSIS- Proposal of scenarios**

#### **Changing the PLACE OF RESIDENCE to the WORK PLACE**

#### **Climate Change**

| Groups of<br>Users | Impact per person<br>Today scenario | Impact per person PUBLIC TRANSPORT scenario | % Reduction |  |
|--------------------|-------------------------------------|---------------------------------------------|-------------|--|
| Students           | 599 kg CO₂-eq/person                | 491 kg CO₂-eq/person                        | 18%         |  |
| Staff              | 2043 kg CO <sub>2</sub> -eq/person  | 1966 kg CO <sub>2</sub> -eq/person          | 4%          |  |
| Total              | 2642 kg CO <sub>2</sub> -eq/person  | 2457 kg CO <sub>2</sub> -eq/person          | 7%          |  |

#### **Human Toxicity**

| Groups of<br>Users | Impact per person<br>Today scenario | Impact per person PUBLIC TRANSPORT scenario | % Reduction     |  |
|--------------------|-------------------------------------|---------------------------------------------|-----------------|--|
| Students           | 359 kg 1,4-dichlorobenzene eq.      | 324 kg 1,4-dichlorobenzene eq.              | 10%             |  |
| Staff              | 1709 kg 1,4-dichlorobenzene eq.     | 1728 kg 1,4-dichlorobenzene eq.             | orobenzene eq1% |  |
| Total              | 2068 kg 1,4-dichlorobenzene eq.     | 2052 kg 1,4-dichlorobenzene eq.             | 1%              |  |





#### **TRANSPORT ANALYSIS- Proposal of scenarios**

#### **Changing to a 4-DAY WORKING WEEK**

#### **Climate Change**

| Groups of<br>Users | Impact per person<br>Today scenario | Impact per person PUBLIC TRANSPORT scenario | % Reduction |  |
|--------------------|-------------------------------------|---------------------------------------------|-------------|--|
| Students           | 599 kg CO₂-eq/person                | 501 kg CO₂-eq/person                        | 16%         |  |
| Staff              | 2043 kg CO <sub>2</sub> -eq/person  | 1800 kg CO <sub>2</sub> -eq/person          | 12%         |  |
| Total              | 2642 kg CO <sub>2</sub> -eq/person  | 2301 kg CO <sub>2</sub> -eq/person          | 7%          |  |

#### **Human Toxicity**

| Groups of<br>Users | Impact per person<br>Today scenario | Impact per person PUBLIC TRANSPORT scenario | % Reduction            |  |
|--------------------|-------------------------------------|---------------------------------------------|------------------------|--|
| Students           | 359 kg 1,4-dichlorobenzene eq.      | 302 kg 1,4-dichlorobenzene eq.              | 16%                    |  |
| Staff              | 1709 kg 1,4-dichlorobenzene eq.     | 1504 kg 1,4-dichlorobenzene eq.             | ichlorobenzene eq. 12% |  |
| Total              | 2068 kg 1,4-dichlorobenzene eq.     | 1806 kg 1,4-dichlorobenzene eq.             | 13%                    |  |





#### SOCIAL IMPACTS - Processing with openLCA & soca

An example: calculation of social impacts derived from the manufacturing of a computer



(processing for each social impact category)



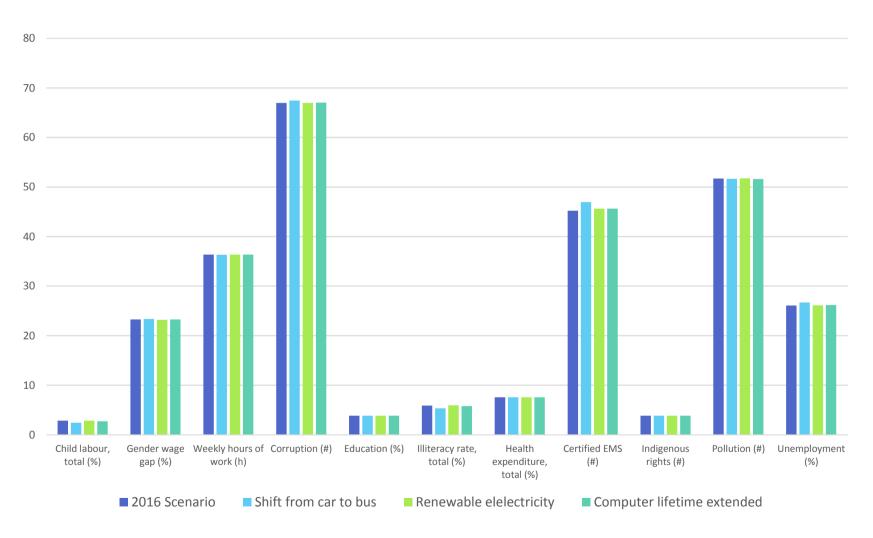


#### SOCIAL IMPACTS (13 selected from 37) – UPV/EHU

| Stakeholders       | Impact category                                 |          | Description                                                                           |
|--------------------|-------------------------------------------------|----------|---------------------------------------------------------------------------------------|
|                    | Certified<br>environmental<br>management system |          | Number of certified environmental management systems per sector                       |
| Local Community    | Indigenous rights                               |          | Qualitative indicator (describes and assess the legal situation of indigenous people) |
|                    | Pollution                                       |          | Numbeo index (average of subjective perception of pollution, 0-100)                   |
|                    | Unemployment                                    |          | Percentage of persons unemployed                                                      |
|                    | Education                                       | Indiract | Public expenditure on education as % of GDP                                           |
| Society            | Health expenditure                              | Indirect | Health expenditure as % GDP                                                           |
|                    | Illiteracy                                      |          | Average % of population > 15 years that cannot correctly read nor write               |
| Value Chain Actors | Corruption                                      |          | Corruption Perceptions index (perceived level of public sector corruption, $0-100$ )  |
|                    | Child Labour, total                             |          | Average % of children 7-14 years that perform at least 1h of work per week            |
|                    | Gender wage gap                                 |          | Percentage of the wage gap between men and women                                      |
| Workers            | Weekly hours of work per employee               |          | Mean weekly hours actually worked per employee                                        |
|                    | Fatal accidents                                 |          | Fatal accidents/year                                                                  |
|                    | Non-fatal accidents                             | Direct   | Non-fatal accidents/year                                                              |
|                    | Costs                                           |          | Cost/year                                                                             |





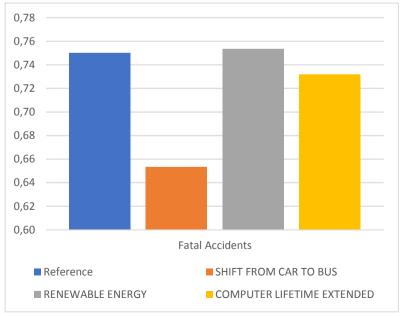

#### SOCIAL IMPACTS (13 selected from 37) – UPV/EHU

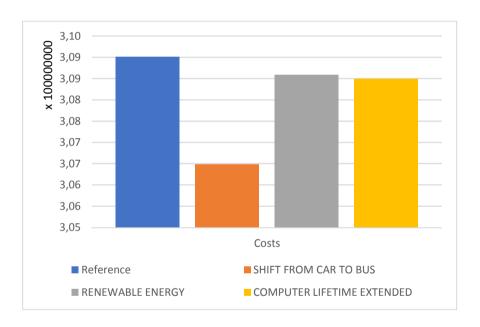
| Impact category                           |          | Raw value | Description                                                                                             |
|-------------------------------------------|----------|-----------|---------------------------------------------------------------------------------------------------------|
| Certified environmental management system |          | 45,2      | Number of certified environmental management systems per sector                                         |
| Indigenous rights                         |          | 3,83/4    | Qualitative indicator (describes and assess the legal situation of indigenous people) (Spain: 4/4)      |
| Pollution                                 |          | 51,69     | Numbeo index (average of subjective perception of pollution, 0-100) (Spain: 32/100)                     |
| Unemployment                              |          | 26%       | Percentage of persons unemployed (Euskadi: 13,4%)                                                       |
| Education                                 |          | 3,85%     | Public expenditure on education as % of GDP (Euskadi: 5%)                                               |
| Health expenditure                        | Indirect | 7,54%     | Health expenditure as % GDP (Euskadi: 8,7%)                                                             |
| Illiteracy                                |          | 5,88%     | Average % of population > 15 years that cannot correctly read nor write (Euskadi: 0,36%)                |
| Corruption                                |          | 66,95     | Corruption Perceptions index (perceived level of public sector corruption, $0-100$ ) (Spain: $65/100$ ) |
| Child Labour, total                       |          | 2,82%     | Average % of children 7-14 years that perform at least 1h of work per week (Spain: 0%)                  |
| Gender wage gap                           |          | 23,25%    | Percentage of the wage gap between men and women (Spain: 24,3%)                                         |
| Weekly hours of work per employee         |          | 36,35     | Mean weekly hours actually worked per employee (Spain: 36h)                                             |
| Fatal accidents                           | Direct   | 0,75      | Fatal accidents/year                                                                                    |
| Non-fatal accidents                       |          | 145       | Non-fatal accidents/year                                                                                |
| Costs                                     |          | 309 M€    | Cost/year                                                                                               |






#### **SOCIAL IMPACTS (11 indirect impacts) – UPV/EHU, Comparison of Scenarios**






#### **SOCIAL IMPACTS (3 direct impacts) – UPV/EHU, Comparison of Scenarios**





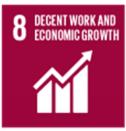





























GENDER EQUALITY















✓ The project is a valid tool for better aligning the academic activity of the UPV/EHU with the Sustainable Development Goals. Actually, almost all SDG are covered to some extent by indicators considered in EHU-Aztarna.





- A technology and a methodology for the assessment of the Environmental and Social Footprint of Organizations has been acquired.
- Collection of inventory data has been very problematic.
- ✓ Transport contribution to environmental impacts is very important (~50%).
- Contributions from subprocesses vary according to the impact category considered (waste treatment dominates freshwater ecotoxicity; materials consumption metals depletion; energy and transport climate change).
- ✓ A significant portion of impacts are located outside the Basque Country in most of the environmental impact categories considered (climate change, depletion of resources...).
- ✓ Impact derived from computers supply is much more important than from paper supply; natural gas consumption is also very important (not all energy consumption is electricity); direct incineration of residual waste should be avoided.





- Students use more sustainable means of transport: bus is the most used means of transport.
- Students' individual environmental impact is remarkably lower than staff's impact.
- ✓ Staff, which is only 15% of the total population, has the 40% of the total climate change impact.
- ✓ The use of alternative means of transport for daily commuting (car -> public transport) can potentially minimize environmental impacts.
- ✓ This tool is useful to propose different improving transport scenarios in the UPV/EHU.





- ✓ The estimation of social impacts in the framework of the life cycle analysis is methodologically innovative. This work contributes empirically to progress in this regard.
- ✓ The estimated impacts show remarkable social consequences derived from the academic activity, an issue generally invisible.
- ✓ Many of the social impacts are located outside de Basque Country.
- Social impacts related to different scenarios for UPV/EHU do not have as many variations with respect to the current situation as the environmental impacts have.
- ✓ The results can serve as a basis for further investigations.



## **ACKNOWLEDGMENTS**



- To Campus Bizia Lab programme, an initiative driven by the Sustainability Directorate and the Educational Advisory Service, both belonging to the Vice-Chancellor's Office for Innovation, Social Commitment and Social Action of the University of the Basque Country (UPV/EHU).
- To Copernicus Alliance for their financial support and to the Sustainability Directorate of the UPV/EHU for their support in organizing the event.
- To the Sustainability Directorate of the UPV/EHU for adapting the mobility survey to the needs of this study and for providing its results.
- This work has been presented at various Congresses both in Spain and abroad.