Sustainable Technology Project

Mike Ashby
Didac Ferrer
Jordi Segalàs
Department of Engineering
University of Cambridge, Granta Design, Cambridge and Universitat Politècnica de Catalunya
Fuel efficient, but sustainable?
Safe, but sustainable?

SUSTAINABILITY?

- Energy
- Materials
- Environment
- Emissions
- Safety
- Legality
- Social acceptance
- Space
- Economics
Triple Bottom Line accounting

Corporate sustainability report:
- **Financial bottom line**
- **Social / ethical performance**
- **Environmental performance**
 - *Dow Jones Sustainability Index*
 - **But what can Engineer do?**
 - *Decouple – unpack meaning*
Macro-economic view: the Three Capitals

- Natural capital (Planet)
 - Atmosphere, land, fresh water, oceans, bio-sphere, material and energy resources

- Manufactured and financial capital (Prosperity)
 - Built environment, Industrial capacity, Financial health, (GDP)

- Human and Social capital (People)
 - Education, health, skills, knowledge, happiness

Comprehensive capital

- Sustainable development = Growth in Comprehensive capital
- How link to projects claiming Sustainable Development?
Articulations of sustainable development

Many single actions ("articulations") claim to support sustainable development

<table>
<thead>
<tr>
<th>Motivation (Prime objective)</th>
<th>Articulation</th>
<th>Unintended consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce dependence on oil</td>
<td>Bio-fuels, Bio-polymers</td>
<td>Competition with food production (People)</td>
</tr>
<tr>
<td>Stimulate low-carbon economy</td>
<td>Carbon taxes</td>
<td>Increase energy price (Prosperity)</td>
</tr>
<tr>
<td>Stimulate circular materials economy</td>
<td>Mandatory recycling</td>
<td>Inhibits use of advanced materials (Planet)</td>
</tr>
</tbody>
</table>

Each articulation has a **Prime Objective** with a physical scale, time scale.
The Stakeholders

Stakeholders

- Who are they?
- What are their concerns?
- What power do they have?

- Government
- The public
- Local communities
- Owners
- Manufacturers
- Suppliers
- Trade Unions
- Customers
- Lobbyists
- Investors
- National press
- Managers, colleagues, team

Stakeholder diagram
Map of Articulations

- Articulations conflict

What do we learn?

Group under

- Materials
- Environment
- Design
- Regulation
- Society
- Economics
Analysing an “articulation”

- Design and Manufacture
- Material Supply Chain
- Environment and Energy
- Regulation, Legislation
- Society, Social Equity
- Economics
Analysing an “articulation”

1. Objective
2. Stakeholders
3. Fact-finding
4. Debate impact
5. Reflect

Reflect

Impact on capitals involves judgment

Factual questions – research systematically

Define the articulation

Step 5

Sustainable development?

Natural capital

Manufactured capital

Human capital

Design and Manufacture

Materials, Supply chain

Environment and energy

Regulation, Legislation

Economics

Society, Social Equity

Prime Objective
- Motivation?
- Scale?
- Timing?

Stakeholders
- Who?
- What concerns?
- What power?
The electric car – Step 1: Prime objective

Background

Global car production: 60 million units per year
15% of global fossil fuel CO₂ release comes from cars

Governments offer incentives: 20% electric by 2020

Prime objective and scale

- Decarbonize road transport
- 16 million cars/year by 2020
Step 2: Stakeholders and concerns

- National and local government
 - carbon targets

- Car makers and distributors
 - sales

- Labor Unions
 - employment, rights

- Drivers, Automobile Associations
 - range anxiety, cost

- Environmental campaigners
 - carbon footprint
Step 3: Fact-finding

Students (in groups) research facts

- Material Supply Chain
- Design
- Environment
- Regulation, Legislation
- Society, Social equity
- Economics
Fact-finding: Materials

<table>
<thead>
<tr>
<th>Bill of materials</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel</td>
<td>790</td>
</tr>
<tr>
<td>Cast iron</td>
<td>151</td>
</tr>
<tr>
<td>Wrought aluminum (10% recycle)</td>
<td>30</td>
</tr>
<tr>
<td>Cast aluminum (35% recycle)</td>
<td>64</td>
</tr>
<tr>
<td>Copper / Brass</td>
<td>26</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.3</td>
</tr>
<tr>
<td>Glass</td>
<td>39</td>
</tr>
<tr>
<td>Thermoplastic polymers</td>
<td>94</td>
</tr>
<tr>
<td>Thermosetting polymers</td>
<td>55</td>
</tr>
<tr>
<td>Rubber</td>
<td>33</td>
</tr>
<tr>
<td>Platinum, exhaust catalyst</td>
<td>0.007</td>
</tr>
<tr>
<td>Electronics, emission control</td>
<td>0.27</td>
</tr>
<tr>
<td>Neodymium</td>
<td>1.5</td>
</tr>
<tr>
<td>Lithium</td>
<td>4.8</td>
</tr>
</tbody>
</table>

16 million cars per year, 4.8 kg Lithium per car = 76,000 tonnes per year

Lithium

<table>
<thead>
<tr>
<th>Producing Nation</th>
<th>Tonnes/year 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>12,600</td>
</tr>
<tr>
<td>Australia</td>
<td>11,300</td>
</tr>
<tr>
<td>China</td>
<td>5,200</td>
</tr>
<tr>
<td>Bolivia</td>
<td>5,000</td>
</tr>
<tr>
<td>Argentina</td>
<td>3,200</td>
</tr>
<tr>
<td>World</td>
<td>34,000</td>
</tr>
</tbody>
</table>

Li demand = 230% present world production
Fact-finding: Design

Alternative batteries?
Seek high energy density (MJ/kg)

Best battery
Lithium-ion
0.6 MJ/kg

Factor 75

Gasoline
Fact-finding: Regulation

• US CAFÉ Standard – *Fleet mileage standard*

• EU Automotive Fuel Efficiency Standard – *Fleet mileage standard*

• EU End-of-Life Vehicles Directive – *85% recycled by 2015*

• EU Battery Directive – *No batteries to landfill*
Environment: Can Prime Objective be met?

Decarbonize road transport?

Charge vehicle from the National Grid, gas / coal fired.

- CO₂ footprint, gas fired power ≈ 140 g CO₂/ MJ
- Delivered energy to propel small car ≈ 0.6 MJ / km
- Efficiency of battery – electric motor set ≈ 85%

Carbon footprint of electric car ≈ 140 x 0.6 / 0.85
≈ 100 g CO₂ / km
Step 3: Fact-finding

Students (in groups) research facts

- Material Supply Chain
 - Neodymium
 - Lithium
- Design
 - Magnets
 - Batteries
- Environment
 - CO2 footprint
 - Recycling
- Regulation, Legislation
 - Battery Directive
- Society, Social equity
 - Range anxiety
- Economics
 - Price
Step 4 Integration – impact on the 3 capital

<table>
<thead>
<tr>
<th></th>
<th>NATURAL CAPITAL</th>
<th>HUMAN CAPITAL</th>
<th>MANUFACTURED CAPITAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL</td>
<td>• Drain on scarce resources (rare earths)</td>
<td></td>
<td>• Supply chain for lithium, neodymium inadequate</td>
</tr>
<tr>
<td></td>
<td>• Potential for recycling high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td>• 100 g CO₂/km = Objective not achieved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gain possible if grid decarbonised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGULATION</td>
<td>Mandatory recycling</td>
<td></td>
<td>• Lack of recycling infrastructure for lithium, neodymium</td>
</tr>
<tr>
<td>SOCIETY</td>
<td></td>
<td>• Range anxiety not met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Creates jobs</td>
<td></td>
<td>• High cost of car an obstacle</td>
</tr>
<tr>
<td>DESIGN</td>
<td></td>
<td></td>
<td>Technically proven</td>
</tr>
</tbody>
</table>
Step 5 – Reflection

- Establish infrastructure
 - Long term – 25 years
 - Establish infrastructure
 - Low carbon grid,
 - Material supply chain
 - Li and Nd recycling facilities

- Re-think (re-define?) car use

- Short term – 7 years
 - Not in envisaged scale and time
Running the project

Instructor introduces project
- Students in groups
 - Discuss as class
- Students in groups
 - In-class debate
 - Open question to class

Steps 1 and 2
- Review Stakeholders

Steps 3 and 4
- Fact-finding
- Debate Integration