

Sustainable Technology Project

Mike Ashby Didac Ferrer Jordi Segalàs

Department of Engineering University of Cambridge, Granta Design, Cambridge and Universitat Politècnica de Catalunya

Fuel efficient, but sustainable?

Safe, but sustainable?

Triple Bottom Line accounting

Corporate sustainability report:

- Financial bottom line
- Social / ethical performance
- Environmental performance
- Dow Jones Sustainability Index
- But what can Engineer do?
- Decouple unpack meaning

Macro-economic view: the Three Capitals

Atmosphere, land, fresh water, oceans, bio-sphere, material and energy resources

Comprehensive capital

- Sustainable development = Growth in Comprehensive capital
- How link to projects claiming Sustainable Development?

Built environment, Industrial capacity, Financial health, (GDP)

Education, health, skills, knowledge, happiness

Articulations of sustainable development

Many single actions ("articulations") claim to support sustainable development

Each articulation has a Prime Objective with a time scale

The Stakeholders

Stakeholders

- Who are they?
- What are their concerns?
- What power do they have?

- Government
- The public
- Local communities
- Owners

- Manufacturers
- Suppliers
- Trade Unions
- Customers
- Lobbyists
- Investors
- National press
- Managers, colleagues, team

Stakeholder diagram

Map of Articulations

What do we learn? Group under

- Materials
- Environment
- Design
- Regulation
- Society
- Economics

Analysing an "articulation"

Analysing an "articulation"

The electric car – Step 1: Prime objective

Background

Global car production : 60 million units per year 15 % of global fossil fuel CO₂ release comes from cars

Governments offer Incentives: 20% electric by 2020

Prime objective and scale

- Decarbonize road transport
- 16 million cars/year by 2020

Step 2: Stakeholders and concerns

- National and local government
- carbon targets
- Car makers and distributors
- sales
- Labor Unions
- employment, rights
- Drivers, Automobile Associations
- range anxiety, cost
- Environmental campaigners
- carbon footprint

Stakeholder diagram

Step 3: Fact-finding

Fact-finding: Materials

Neodymium-boron magnet motors

Bill of materials	kg
Carbon steel	790
Cast iron	151
Wrought aluminum (10% recycle)	30
Cast aluminum (35% recycle)	64
Copper / Brass	26
Magnesium	0.3
Glass	39
Thermoplastic polymers	94
Thermosetting polymers	55
Rubber	33
Platinum, exhaust catalyst	0.007
Electronics, emission control	0.27
Neodymium	1.5 kg
Lithium	4.8 kg

16 million cars per year, 4.8 kg Lithium per car

= 76,000 tonnes per year

Lithium

Producing Nation	Tonnes/year 2011	
Chile	12,600	
Australia	11,300	
China	5,200	
Bolivia	5,000	
Argentina	3,200	
World	34,000	

Li demand = **230%** present world production

Fact-finding: Design

Lead-acid

Alternative batteries?

Seek high energy density (MJ/kg)

Fact-finding: Regulation

- US CAFÉ Standard Fleet mileage standard
- EU Automotive Fuel Efficiency Standard Fleet mileage standard
- EU End-of-Life Vehicles Directive 85% recycled by 2015
- EU Battery Directive No batteries to landfill

Environment: Can Prime Objective be met?

Decarbonize road transport?

Charge vehicle from the National Grid, gas / coal fired.

- CO₂ footprint, gas fired power ≈ 140 g CO2/ MJ
- Delivered energy to propel small car ≈ 0.6 MJ / km
- Efficiency of battery electric motor set ≈ 85%

Carbon footprint of electric car $\approx 140 \times 0.6 / 0.85$

 \approx 100 g CO2 / km

Step 3: Fact-finding

Step 4 Integration – impact on the 3 capital

	NATURAL CAPITAL	HUMAN CAPITAL	MANUFACTURED CAPITAL
MATERIAL	 Drain on scarce resources (rare earths) Potential for recycling high 		Supply chain for lithium, neodymium inadequate
ENVIRONMENT	 100 g CO2/km = Objective not achieved Gain possible if grid decarbonised 		
REGULATION	Mandatory recycling		 Lack of recycling infrastructure for lithium, neodymium
SOCIETY		Range anxiety not metCreates jobs	High cost of car an obstacle
DESIGN			Technically proven

Step 5 – Reflection

Short term – 7 years

Not in envisaged scale and time

Long term – 25 years

Establish infrastructure

Low carbon grid,

Material supply chain

Li and Nd recycling facilities

Re-think (re-define?) car use

Running the project

