

Proceedings PRO 91

CONMOD 2014

Proceedings of the RILEM International Symposium on Concrete Modelling

> Edited by Kefei Li, Peiyu Yan and Rongwei Yang

> > RILEM Publications S.A.R.L.

Content

	Preface	XIX
A.	KEYNOTE LECTURES	
1.	Microstructural Modelling State of the Art and Perspectives	3
	Karen L. Scrivener	
2.	Quantitative Evaluation Structure of Cement Paste	4
	Hamlin M. Jennings	
3.	Numerical Simulation of Chloride Migration in Concrete Structures under Harsh Environmental Conditions	5
	Tetsuya Ishida, Yuya Takahashi and Rungrawee Wattanapornprom	
B.	Hydration & Microstructure	
4.	A Combined Kinetic and Thermodynamic Approach for Modelling the Pore Solution of PC-fly Ash Cements	9
	N. Eroukhmanoff and A. Al-Tabbaa	
5.	A Generalized Scale Factor Model for Portland Cement Hydration	18
	Xueyu Pang	
6.	Hydration Kinetics Model of Supersulfated Cement	27
	Wang Lu, Liu Shuhua, Gao Yuxin and Yu Baoying	
7.	Computer Simulation of the Packing of Digitized Reactive Magnesia Particles	36
	Mingzhi Wang and A. Al-Tabbaa	
8.	Simulation of Nano Flow between Calcium Silicate Hydrate Nano Partcles based on Navier-Stokers Equation	44
	Zhen He, Gengxin Cao and Qiao Zheng	
9.	Influence of Microstructural Parameters of Effective Diffusivity of Hydrating Cement Paste	53
	Neven Ukrainczyk and Eduardus A.B. Koenders	
10.	Study on the Effect Particle Size Distribution and Blaine Fineness on the Hydration of Cement	61
	Shiju Joseph and Shashank Bishnoi	

11.	Influence of the Particle Size Distribution on Hydration Kinetics: a Mechanistic Analytical Approach	69
	Tulio Honorio, Benoit Bary and Farid Benboudjema	
12.	Modeling of Hydration of Ultra High Performance Concrete	78
	Xiao-Yong Wang	
13.	Hydration Simulation of Ternary Blended Cement	87
	Zhijun Tan, Geert De Schutter, Guang Ye, Yun Gao and Lieven Machiels	
14.	Molecular Dynamics Simulation of Elastic Properties of Tobermorite Family Shahin Hajilar and Behrouz Shafei	94
15.	A Two-Dimensional Wave Propagation Method for Tortuosity Analysis of Pore Structure	102
	Deqing Xie, Peng Zhao, Lin Yang and Yunsheng Zhang	
16.	The Influence of Digital Resolution of the Cement Paste Percolation based on CEMHYD3D Model	110
	Cheng Liu and Yunsheng Zhang	
17.	Numerical Construction of Interfacial Transition Zone around Platonic Particles	118
	Zhigang Zhu and Huisu Chen	
C.	Shrinkage & Creep	
18.	Modelling Shrinkage and Thermal Deformations in High Performance of Concrete at Early age	127
	Mateusz Wyrzykowski, Dariusz Gawin and Pietro Lura	
19.	A Coupled Transport-Reaction Model for Simulating Autogenous Self-healing in Cementitious Materials –Part I: Theory	135
	Haoliang Huang, Guang Ye and Denis Damidot	
20.	A Coupled Transport-Reaction Model for Simulating Autogenous Self-healing in Cementitious Materials -Part II: Validation	144
	Haoliang Huang, Guang Ye and Denis Damidot	
21.	Drying and Shrinkage Behaviour of Portland Cement Mortar at Intermediate but Constant Hydration Degree	152
	G. Pham, A. Bauland, A. Delaplace, Q-H. Vu and R. Barbarulo	
22.	Compressive Strength, Shrinkage and Mass Loss During Simultaneous Hydration and Drying of Concrete: Experimental and Modeling Results	160
	B. Huet, A. Delaplace, G. Pham and R. Barbarulo	
23.	Early Age Creep and Relaxation Modelling of Concrete under Tension and Compression	168

B. Delsaute and S. Staquet

24.	Homogenization of Solidifying Random Porous Media: Application to Ageing Creep of Cementitious Materials	176
	J. Sanahuja	
25.	Constitutive Law for the Viscoelastic Behavior of Early Age Concrete in Massive Structures	183
	Wibke Hermerschmidt and Harald Budelmann	
26.	Drying Shrinkage Effect on Cracking and Structural Strength of Reinforced Concrete Structures	190
27.	A. Michou, A. Hilaire, C. Desodt, F. Benboudjema, G. Nahas, P.Wyniecki and Y. Berthaud Role of Creep on the Microstructural Damage Induced by Alkali-Silica Reaction	197
	Alain B. Giorla, Cyrille F. Dunant and Karen L. Scrivener	
28.	Shrinkage Stress Development in Cementitious Materials	204
	Will Hansen, Eduard A.B. Koenders, Zhichao Liu, Bo Meng and Ya Wei	
D.	Properties	
29.	Micromechanics of ITZ-Aggregate Interaction in Concrete : Crack Initiation	215
	Markus Königsberger, Bernhard Pichler and Christian Hellmich	
30.	Numerical Modelling of theWater Isotherms of Cement Paste: Bridging the Gap between the Capillary and C-S-H Gel Pores	222
	M. Zalzale, P.J. McDonald and K.L. Scrivener	
31.	Nanoindentation Mapping of Mechanical Properties of Cement Paste Blended with Slag	227
	X. Gao and Y. Wei	
32.	Estimation of Elastic Properties of Cement based Materials at Early Age based on a Combined Numerical and Analytical Multiscale Micromechanics Approach	236
	Tulio Honorio, Benoit Bary and Farid Benboudjema	
33.	Simulation on Mechanical Behavior of Concrete with Hexagon Recycled Coarse Aggregate in Random Distribution	244
	Xiao Jianzhuang, Lin Zhuangbin, Zhang Kaijian and Sun Chang	
34.	First-Principles Study of Water Adsorption and Dissociation on β -C ₂ S (100) Surface	252
	Qianqian Wang, Yanhua Guo, Hegoi Manzano, Iñigo Lopez-Arbeloa, Xiaodong Shen and Feng Li	
35.	Effect of Microstructural Parameters on Simulation of Mechanical Properties	259
	Shashank Bishnoi, Quang-Huy Do and Karen L. Scrivener	

36.	Prediction of Water Vapour Sorption Isotherms and Microstructure of Hardened Portland Cement Pastes	265
	James M. de Burgh, Stephen J. Foster and Hamid R. Valipour	
37.	Simulation of the Development of PH in the Pore Solution of Slag Cement Paste at Early Age	273
	Peng Gao, Guang Ye, Jiangxiong Wei and Qijun Yu	
38.	Methods for Green Concrete Design	281
	David García, Jorge S. Dolado and José-Tomás San-José	
39.	Aggregate Shape Effects on the Mechanical Property of Concrete under Tensile Loading: (1) Simulation of One Particle System	290
	Lin Liu, Huisu Chen, Zhigang Zhu and Zhiwei Qian	
40.	Prediction of Strength of Mortars Containing Fly Ash	297
	Amarpreet Kaur, Shiju Joseph and Shashank Bishnoi	
E.	Transport	
41.	3D Simulation of Cement Paste Aging Due to Reactive Transport	305
	Neven Ukrainczyk and Eduardus A.B. Koenders	
42.	Inflence of Cracks and Saturation on Mass Transport into Concrete by Mesoscale Computational Method	314
	Wang L.C. and Bao J.W.	
43.	Capillary Absorption for Cementitious Material considering Water Evaporation and Tortuosity of Capillary Pores	328
	Jinbo Yang, Yue Li, Peng Zhang and Wanguo Dong	
44.	Modelling of Temperature Impacts on Cement Paste in Clayey Environment Constrained by Field Experiments	335
	Philippines Lalan, Laurent De Windt, Alexandre Dauzères and Valéry Detilleux	
45.	Modellings of Chloride Ion Transport in Mortars Considering Electrokinetic Behaviors at Pore Walls	343
	Yuya Takahashi , Yogarajah Elakneswaran and Tetsuya Ishida	
46.	Measuring and Modelling of Water Penetration into Unsaturated Concrete Peng Zhang, Tiejun Zhao, Jinbo Yang and Congtao Sun	351
47.	Application of a Pore-scale Reactive Transport Model to Study the Influence of Pore Network Characteristics on Calcium Leaching in Cementitious Systems	359
	Ravi A. Patel, Janez Perko, Diederik Jacques, Geert De Schutter, Guang Ye and Klaas Van Breugel	
48.	Multi-scale Modeling of the Evolution of the Transport Properties of Cement Pastes Subject to Leaching and Carbonation	367
	N. Seigneur, A. Dubus, P.E. Labeau, V. Detilleux, O. Destin and A. Dauz ères	

40	\mathbf{M}^{\prime}	074
49.	Micromechanics Modeling the Solute Diffusion in Unsaturated Hardened Cement Paste	374
	Rongwei Yang, Eric Lemarchand, Teddy Fen-Chong and Kefei Li	
50.	Statistical Study of Existing Chloride Ingress Models in Immersed Concretes	386
	Sylvain Pradelle, Mickaël Thiéry and Véronique Baroghel-Bouny	
F.	Durability	
51.	Modeling Kinetics of C-S-H Dissolution during Carbonation of Cement Paste. Beyond the Solid Solution Approach	401
	Patrick Dangla, Antoine Morandeau and Mickael Thiéry	
52.	Accelerated Carbonation Modelling of Fly Ash Blended Cement Paste	408
	A. Morandeau, M. Thiéry, P. Dangla and C.E. White	
53.	Modeling Sulfate Attack in Concrete using Mixture Theory	417
	Chethan Gouder and U. Saravanan	
54.	Modelling of H2S Attack of Concrete in Sewer Pipes	425
55.	Haifeng Yuan, Patrick Dangla, Huisu Chen, Patrice Chatellier and Thierry Chaussadent Multiscale Modeling of Alkali Silica Reaction Degradation of Concrete	432
	Gianluca Cusatis, Mohammed Alnaggar and Roozbeh Rezakhani	-
56.	Predicting Depth of Carbonation of Concrete - a Performance-based Approach	440
	Rakesh Gopinath, Mark Alexander and Hans Beushausen	-
57.	Research of the Failure Process of Concrete under the Effect of Freezing- Cycle by Thawing Using X-Ray Industrial CT Technique	448
	J. Yuan, Y. Liu, B.K. Zhang and H.X. Li	
58.	Thermo-Hydro-Ionic Transport through an Immerged Tube Tunnel for a Service Life of 120 years	453
	Xiaoyun Pang, Kefei Li and Patrick Dangla	
59.	A New Model for the Calculation of Structures Affected by DEF Application to a Viaduct Case	461
	O. Omikrine-Metalssi, B. Kchakech, S. Lavaud, B. Godart and F. Beauvallet	
60.	Corrosion-Induced Bond Deterioration in Reinforced Concrete Structures	471
	Shangtong Yang and Chun-Qing Li	
61.	Mesoscale Simulation of Damage for Mortar and Concrete during Freeze-Thaw cycles	479
	Fuyuan Gong, Yi Wang, Tamon Ueda and Dawei Zhang	

62.	Concrete Sorptivity as a Performance-based Criterion for Salt Frost Scaling Resistance	487
	Zhichao Liu, Will Hansen and Ya Wei	
63.	MC Simulation of Reliability Sensitivity Analysis for Marine Concrete Structures Based on FVM	497
	Xingang Zhou, Erju Li and Kefei Li	
64.	Mechanical Modeling of Chemo-Mechanical Coupling Behavior of Leached Concrete	505
	Bei Huang, Chunxiang Qian and Shao Jianfu	

METHODS FOR GREEN CONCRETE DESIGN

David Garc \acute{n} (1), Jorge S. Dolado (1) and Jos \acute{e} Tom $\acute{a}s$ San-Jos $\acute{e}(2)$

- (1) TECNALIA Research & Innovation, Spain
- (2) University of the Basque Country. Engineering Materials Dep., Spain

Abstract

Concrete is the most widely used construction material in the world and causes a substantial environmental impact, mainly during cement manufacture. Portland cement contributes greenhouse gases both directly through the production of carbon dioxide when calcium carbonate is thermally decomposed, producing lime and carbon dioxide, and also through the use of energy, particularly from the combustion of fossil fuels. The use of superplasticizers and blended cements as well as optimization of particle-size distribution and reduction in water content allows a significant reduction in Portland cement clinker in the concrete.

As the demand for eco-friendly construction spreads over developed countries, it is necessary to increase and quantify the contribution of concrete to the environmental sustainability.

Accordingly, several methods for environmental sustainable assessment are presented and discussed in this paper. A lack of consensus about the most adequate impact criteria to be considered is observed. Simplified indexes combined with public life-cycle inventories require a minimum effort and can be useful as a first evaluation of concrete formulations or OCP replacement by supplementary cementitious materials. However accurate comparisons and new low-energy embodied cements evaluations can only be performed through a detailed review of all the materials and processes involved in the life cycle of the concrete.

1. INTRODUCTION

About 25 billion tons of concrete are produced each year in the world, making concrete the most widely used construction material [1]. Concrete demand and production is expected to increase 2.5 times between 2005 and 2050 [2]. The largest share of this growth will take place in China, India and other developing countries on the Asian continent [3]. Concrete causes a substantial environmental impact, mainly during cement manufacture, because of such huge quantities [4].

Concrete is manufactured from hydraulic cement, aggregates and water. It usually contains a small amount of some chemical admixture and it often contains a mineral admixture replacing some part of the cement. Most of these constituents are themselves manufactured products, byproducts or materials extracted by mining. In order to assess the The definition of a performance indicator (e.g. compressive strength) allows comparing the efficiency of concretes with different performances which in turn collaborates in the search for an optimum mix design.

Simplified indexes as cement or binder intensity combined with updated life-cycle inventories require a minimum effort and can be useful as a first evaluation of concrete formulations or OCP replacement by supplementary cementitious materials. Nevertheless accurate comparisons and new low-energy embodied cements evaluations can only be performed through a detailed review of all the materials and processes involved in the life cycle of the concrete.

ACKNOWLEDGEMENTS

This research work is possible thanks to financing support of Green Concrete Research group (TECNALIA) and the Basque Regional Government research group IT781-13.

REFERENCES

- T. Proske, S. Hainer, M. Rezvani, C.A. Graubner. Eco-friendly concretes with reduced water and cement contents — Mix design principles and laboratory tests. *Cement and Concrete Research* 51 (2013) 38–46
- [2] Müller N, Harnisch J. A blueprint for a climate friendly cement industry. Gland: *WWF Lafarge conservation partnership*; 2008. p. 94 (WWF Lafarge conservation partnership report).
- [3] The cement sustainability initiative (CSI). The cement sustainability initiative; 2007. p. 8 (*CSI report*). <u>http://www.wbcsdcement.org</u>
- [4] J.M. Crow. The concrete conundrum. Chemistry World. March 2008 62-66
- [5] Lasserre P. The global cement industry, global strategic management mini cases series. *Globalisation Cement Industry* 2007.
- [6] Brundtland Commission (1987). Report of the World Commission on Environment and Development. *United Nations*.
- [7] Scerri, Andy; James, Paul (2010). "Accounting for sustainability: Combining qualitative and quantitative research in developing 'indicators' of sustainability". *International Journal of Social Research Methodology* 13 (1): 41–53. doi:10.1080/13645570902864145.
- [8] San-Jose Lombera JT, Garrucho I, Losada R, Cuadrado J. A proposal for environmental indicators towards industrial building sustainable assessment. *International Journal of Sustainable Development and World Ecology* 2007;14(2):160-173.
- [9] United Nations Environment Programme. 2013 Annual Report. ISBN: 978-92-807-3380-8
- [10] Goñi S. et al.; Quantitative study of hydration of C₃S and C₂S by thermal analysis: Evolution and composition of C-S-H gels formed. *Journal of Thermal Analysis and Calorimetry* 102 (3): 965-973
- [11] Hern ández M. S. et al. Synergy of T1-C 3S and β -C₂S Hydration Reactions. *Journal of the American Ceramic Society* 94 (4) : 1265-1271
- [12] Goñi S. et al. 2011; Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C 3S, β -C 2S and their blends. *Materiales de Construccion* 61 (302): 169-183
- [13] J. S. Dolado. Computationally driven design of cement-based materials. Nanotechnology and Sustainability in Construction. *Proceedings of the FraMCoS-8/30GEF Workshop*, Coordinated by S. P. Shah ; S. P. Shah, G. Ruiz, R. C. Yu, X.X. Zhua & C. Andrade (Eds).
- [14] Palomo A, Grutzeck MW, Blanco MT. (1999). Alkali-activated fly ashes A cement for the future. Cement & Concrete Research 29(8), 1323-1329. <u>http://dx.doi.org/10.1016/S0008-8846(98)00243-9</u>