Cmn2015

Congresso de Métodos Numéricos em Engenharia

Congreso de Métodos Numéricos en Ingeniería

LIVRO DE RESUMOS

29 de junho a 2 de julho de 2015

Instituto Superior Técnico • Universidade de Lisboa LISBOA • PORTUGAL

EDITORES

José Miranda Guedes, Nuno Silvestre, Miguel Tavares da Silva, Jesús María Blanco, Irene Arias, Manuel Tur Valiente Title: Livro de Resumos Congresso de Métodos Numéricos em Engenharia, CMN2015

Edited: José Miranda Guedes, Nuno Silvestre, Miguel Tavares da Silva, Jesús María Blanco, Irene Arias, Manuel Tur Valiente

ISBN: 978-989-99410-0-7

First edition, June 2015

Copyright © 2015

APMTAC - Associação Portuguesa de Mecânica Teórica, Aplicada e Computacional Laboratório Nacional de Engenharia Civil Av. do Brasil, 101 1700-066 LISBOA

Graphic Design: Barros Design

Supported by:

RESUMO Nº 219	SIMULAÇÃO NUMÉRICA DO PROCESSO DE GASEIFICAÇÃO APLICADA A FONTES DE BIOMASSA DA REGIÃO NORDESTE DO BRASIL.	143
	Jorge R. Henriquez, Jarmison De Araújo Silva, Renata A. Figueiredo, Flávio A. B. Figueiredo, Jacek Michalewicz and Rômulo Menezes	
RESUMO Nº 232	EFFECTIVE THERMAL AND ELECTRIC CONDUCTIVITIES OF SN-PB WELDING FOR FINITE ELEMENT ANALYSIS OF THERMOELECTRICS	144
	Said Abouali, Jose Luis Perez Aparicio and Roberto Palma	
RESUMO Nº 252	APPLICATION OF KALMAN FILTER TO SUPPORT DECISION-MAKING IN THE MAINTENANCE OF HEAT EXCHANGERS IN SLURRY POLYMERIZATION PROCESSES	145
	Leandro Lopes, Cristiano Fontes and Karen Pontes	
RESUMO Nº 258	HYDRATION OF BEAN (PHASEOLUS VULGARIS) VAR. "PINTO" BY ULTRASOUND	146
	Leopoldo Rafael Lõpez-López, José Armando Ulloa, Pedro Ulises Bautista-Rosales, Petra Rosas-Ulloa, José Carmen Ramírez-Ramírez and Yessica Silva-Carrillo	
RESUMO Nº 268	SIMULAÇÃO CFD DA LIMPEZA DE TROCADORES DE CALOR COM USO DE GRANALHA DE AÇO	147
	Pedro Henrique Almeida Brayner, José Claudino Lira Júnior, José A.P. Da Costa and Jorge Henriquez	
RESUMO Nº 296	OPTIMAL FINITE DIFFERENCES SCHEME FOR THE PREDICTION OF THE TIME LAG IN GAS MEMBRANE PERMEATION	148
	Haoyu Wu, Neveen Al-Qasas, Boguslaw Kruczek and Jules Thibault	
RESUMO Nº 392	COMPORTAMENTO DE ETICS QUANDO SUJEITOS À TRANSFERÊNCIA DE CALOR EM REGIME DINÂMICO	149
	Inês Simões, Nuna Simões and António Tadeu	
RESUMO № 407	CHARACTERIZATION OF HEAT TRANSFER COEFFICIENTS UNDER CLOSED LOOP CONTROLLED CONSTANT CONTACT PRESSURES AT DIFFERENT DIE TEMPERATURES	150
	Eneko Saenz De Argandoña, Lander Galdos and Joseba Mendiguren	
844.0-	NUMERICAL METHODS FOR BUILDING.	151
	EMERGY SINTULATION	
RESUMO Nº 64	CHARACTERIZATION OF WOOD SAMPLES THROUGH NUMERICAL SIMULATION BASED ON A TEST VALIDATION BENCH PROCEDURE	153
	Belinda Pelaz, Jesús Cuadrado, Jesús M. Blanco and Eduardo Roji	
RESUMO Nº 65	NUMERICAL MODEL DEVELOPMENT FOR THE OPTIMIZATION OF WOOD COATING ENCLOSURES	154
	Belinda Pelaz, Jesús Cuadrado, Jesús M. Blanco and Eduardo Roji	

Congress on Numerical Methods in Engineering 2015 Lisbon, 29-30 June 1-2 July, 2015 © APMTAC, Portugal, 2015

NUMERICAL MODEL DEVELOPMENT FOR THE OPTIMIZATION OF WOOD COATING ENCLOSURES

Belinda Pelaz[†], Jesús Cuadrado[†] Jesús M. Blanco^{††,*} and Eduardo Rojí[†]

[†] Department of Mechanical Engineering, School of Engineering, UPV/EHU, Alameda de Urquijo s/n (48013) Bilbao. Bizkaia. Spain. Email: {bpelaz001, jesus.cuadrado, eduardo.roji}@ehu.es, Web page: http://www.ehu.es

^{††} Department of Nuclear Engineering and Fluid Mechanics, School of Engineering, UPV/EHU, Alameda de Urquijo s/n (48013) Bilbao. Bizkaia. Spain. Email: jesusmaria.blanco@ehu.es, Web page: http://www.ehu.es

Keywords: Wood, energy optimization, building enclosures, numerical model

Abstract: Current tendencies around sustainability linked to building façades encouraged us to develop a new system which, apart from presenting a low environmental impact with relation to both production and waste of material, also allows a continuous savings of energy during the whole building life cycle. In this regard, wood is characterized for being a renewable and ecological resource whose production helps to mitigate the CO released to the atmosphere, cutting down the carbon footprint.

In this project, different façade solutions will be carefully analyzed, in terms of energy savings, whose exterior layer is made up of a group of identical joined wood strips. Different shapes and configurations will be addressed, taking into account also the global aesthetics of the solution finally adopted. For this purpose, a case study will be carried out by simulating different cross-sectional areas through the THERM v 7.3 \odot software, to obtain the thermal behavior of the material through the estimation of its thermal resistance as a whole.

From these results, a numerical model based in the geometry and thermal properties of timber walls according to the current Spanish regulation will be built. The relationships of the different parameters involved such as, geometries, endurance treatments, etc. will allow us to establish a complete methodology for estimating the thermal resistance of different solutions, in order to obtain a fully optimized wooden enclosure. The wood selected is the so called "Pinus Radiata", valued for rapid growth and desirable lumber and pulp qualities is a common specimen in the Basque Country.

* Corresponding author.

function is wrongly considered to be only the climate protection. On the other hand, the shorter the wood strips, the higher the thermal resistance offered.

The simplified numerical model is close to the real scenario as has been shown here, being the error values lower than 4 %. This method allows a relatively easy estimation of the thermal resistance of particular solutions without the higher requirements of finite elements software. Besides, it makes easier the comparison between different configurations, as the calculations are simplified, so both material optimization and energy efficiency are possible. In fact, they are nowadays some of the most relevant issues in terms of sustainability which is the main objective of this research, trying to reduce the carbon footprint generated by other traditional fossil fuels consumption and preserve our environment.

ACKNOWLEDGEMENTS

The authors of the paper gratefully acknowledge the funding provided by the Basque Regional Government through IT781-13 and UPV/EHU under program UFI 11/29.

The authors also acknowledge the grant received from the Department of Economy and Competitiveness of the Basque Regional Government (EJ-GV) to the project: "Fomento uso madera pino radiata en fachadas edificios".

NOMENCLATURE

Ac:	Square Area [m ²]
At:	Triangle Area [m ²]
As:	Curved Area [m ²]
C:	Correction factor related to the compactness ($= P1/P2$)
CLT:	Cross Laminated Timber
e:	Thickness [m]
e. e1	Total thickness [m]
e2:	Constant thickness [m]
er:	Equivalent thickness [m]
EEN:	Energy Error Norm [%]
EPS:	Expanded Polystyrene
ETICS:	
	1 5
h:	Length [m]
h1:	Constant length 1 [m]
h2:	Discontinuous length 2 [m]
h3:	Discontinuous length 3 [m]
hc	Convective coefficient [W/m ² K]
OSB:	Oriented Strand Board
PE:	Polyethylene
P1:	Relative perimeter [m]
P2:	Global perimeter [m]
R:	Total thermal resistance $[m^2 \cdot K/W]$
R1:	Global resistance (= $e1/\lambda$) [m ² K/W]
	11
	11