INTED 2015

9TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE

CONFERENCE PROCEEDINGS
INTED2015 COMMITTEE AND ADVISORY BOARD

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron Doerin</td>
<td>UNITED STATES</td>
<td>Javier Martí</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Aderemi Atayero</td>
<td>NIGERIA</td>
<td>Jill Clark</td>
<td>NEW ZEALAND</td>
</tr>
<tr>
<td>Agustín López</td>
<td>SPAIN</td>
<td>Joanna Lees</td>
<td>FRANCE</td>
</tr>
<tr>
<td>Alfredo Soeiro</td>
<td>PORTUGAL</td>
<td>John Egan</td>
<td>NEW ZEALAND</td>
</tr>
<tr>
<td>Allen Grant</td>
<td>UNITED STATES</td>
<td>Jose F. Cabeza</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Amparo Girós</td>
<td>SPAIN</td>
<td>Jose Luis Bernat</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Ana Tomás</td>
<td>SPAIN</td>
<td>Ju Youn Song</td>
<td>LUXEMBOURG</td>
</tr>
<tr>
<td>Angela Addison</td>
<td>UNITED KINGDOM</td>
<td>Judith Szerda helyi</td>
<td>UNITED STATES</td>
</tr>
<tr>
<td>Annalene van Staden</td>
<td>SOUTH AFRICA</td>
<td>Julie Ann Smith</td>
<td>UNITED STATES</td>
</tr>
<tr>
<td>Antonio García</td>
<td>SPAIN</td>
<td>Katharina Karges</td>
<td>SWITZERLAND</td>
</tr>
<tr>
<td>Anzori Barkalaja</td>
<td>ESTONIA</td>
<td>Lorena López</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Barbara Bocchi</td>
<td>ITALY</td>
<td>Luis Gómez Chova</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Barbara Doersam</td>
<td>GERMANY</td>
<td>Mª Jesús Suesta</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Bezya Yilmaz</td>
<td>TURKEY</td>
<td>Manuela Varela</td>
<td>PORTUGAL</td>
</tr>
<tr>
<td>Chelo González</td>
<td>SPAIN</td>
<td>Maria de Lurdes Correia Martín</td>
<td>PORTUGAL</td>
</tr>
<tr>
<td>Ciaran Dawson</td>
<td>IRELAND</td>
<td>Maria Porcel</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Cristina Lozano</td>
<td>SPAIN</td>
<td>Marielle Patronis</td>
<td>UNITED ARAB EMIRATES</td>
</tr>
<tr>
<td>Daniel Friday Owoichoche Onah</td>
<td>UNITED KINGDOM</td>
<td>Michael Laric</td>
<td>UNITED STATES</td>
</tr>
<tr>
<td>David Martí</td>
<td>SPAIN</td>
<td>Michel van Ast</td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>Davor Orlic</td>
<td>UNITED KINGDOM</td>
<td>Miika Kuusisto</td>
<td>FINLAND</td>
</tr>
<tr>
<td>Dee O'Connor</td>
<td>AUSTRALIA</td>
<td>Mónica Fernández</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Delyan Genkov</td>
<td>BULGARIA</td>
<td>Natalie Wilmot</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dhira Bhartu</td>
<td>FIJI</td>
<td>Norma Barrachina</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Dhiya Al-Jumeily</td>
<td>UNITED KINGDOM</td>
<td>Olaf Herden</td>
<td>GERMANY</td>
</tr>
<tr>
<td>Diana Dikke</td>
<td>GERMANY</td>
<td>Olga Teruel</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Diane Rushton</td>
<td>UNITED KINGDOM</td>
<td>Peter Haber</td>
<td>AUSTRIA</td>
</tr>
<tr>
<td>Dušan Barać</td>
<td>SERBIA</td>
<td>Pieter Du Toit</td>
<td>SOUTH AFRICA</td>
</tr>
<tr>
<td>Eladio Duque</td>
<td>SPAIN</td>
<td>Robert Pucher</td>
<td>AUSTRIA</td>
</tr>
<tr>
<td>Elena Ors</td>
<td>SPAIN</td>
<td>Rosa Njoo</td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>Ellen Whitford</td>
<td>UNITED STATES</td>
<td>Rosellen Rosich</td>
<td>UNITED STATES</td>
</tr>
<tr>
<td>Erik Arntsen</td>
<td>NORWAY</td>
<td>Rosslyn Albon</td>
<td>UNITED ARAB EMIRATES</td>
</tr>
<tr>
<td>Fatima EL Hamyani</td>
<td>BAHRAIN</td>
<td>Sam Kerr</td>
<td>SOUTH AFRICA</td>
</tr>
<tr>
<td>Filomena Soares</td>
<td>PORTUGAL</td>
<td>Samaneh Tarighat</td>
<td>IRAN</td>
</tr>
<tr>
<td>Francesca Magreñi</td>
<td>ITALY</td>
<td>Seppo Sirkemaa</td>
<td>FINLAND</td>
</tr>
<tr>
<td>Fusun Akdag</td>
<td>TURKEY</td>
<td>Sergio Pérez</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Georgios Dafoulas</td>
<td>UNITED KINGDOM</td>
<td>Shakila Yacob</td>
<td>MALAYSIA</td>
</tr>
<tr>
<td>Gilles Sagodira</td>
<td>REUNION</td>
<td>Simon Hayhoe</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Gulnihal Ozbay</td>
<td>UNITED STATES</td>
<td>Slavi Stoyanov</td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>Hussein Assalahi</td>
<td>UNITED KINGDOM</td>
<td>Smadar Bar-Tal</td>
<td>ISRAEL</td>
</tr>
<tr>
<td>Ignacio Ballester</td>
<td>SPAIN</td>
<td>Talat Allahyari</td>
<td>IRAN</td>
</tr>
<tr>
<td>Ignacio Candel</td>
<td>SPAIN</td>
<td>Victor Fester</td>
<td>NEW ZEALAND</td>
</tr>
<tr>
<td>Ismael Serrano</td>
<td>SPAIN</td>
<td>Wen-Chu Hu</td>
<td>TAIWAN</td>
</tr>
<tr>
<td>Iván Martínez</td>
<td>SPAIN</td>
<td>Xavier Lefran</td>
<td>FRANCE</td>
</tr>
<tr>
<td>Javier Domenech</td>
<td>SPAIN</td>
<td>Yurgos Politis</td>
<td>IRELAND</td>
</tr>
</tbody>
</table>
CONFERENCE SESSIONS

ORAL SESSIONS, 2nd March 2015.

- Blended Learning
- Augmented Reality & Virtual Laboratories
- m-Learning (1)
- Entrepreneurship Education
- Meet the Keynote
- Student Support in Education
- New Technologies in Primary & Secondary Education
- Learning Experiences in Arts and Music Education

 Technology Enhanced Learning (1)
 Intelligent Learning Environments
 e-Assessment (1)
 International Education & Research Projects
 Generic & Transferable Skills
 Pre-service Teacher Experiences (1)
 Experiences in Primary & Early Childhood Education
 Experiences in Maths & Statistics Education

 Technology Enhanced Learning (2)
 Augmented Reality & Technology-Enhanced Learning
 e-Assessment (2)
 Work Employability
 Links between Education and Research
 Pre-service Teacher Experiences (2)
 Experiences in Primary & Secondary Education
 Experiences in Business Administration Education

 Technology Enhanced Learning (3)
 e-Learning
 Learning Management Systems (LMS)
 Workplace Learning
 New experiences in STEM Education
 In-service Teachers
 Experiences in Life & Health Sciences
 Experiences in Finance & Economics

POSTER SESSIONS, 2nd March 2015.

- Experiences in Education
- Challenges in Education and Research
ORAL SESSIONS, 3rd March 2015.

- University-Industry Collaboration
- Virtual Universities & MOOCs
- Apps for Learning
- Students & Teachers Attitudes towards ICT
- Pedagogical & Didactical Innovations
- Inclusive Learning
- Curriculum Design in Primary & Secondary Education
- Technology-Enhanced Language Learning (1)

- Computer Supported Collaborative Learning
- Next Generation Classroom
- Game-based Learning
- e-Portfolios & Assessment
- Enhancing Learning and the Undergraduate Experience
- Special Education
- Curriculum Design in Engineering Education
- Technology-Enhanced Language Learning (2)

- Collaborative Virtual Environments
- Flipped Learning
- Gamification
- Accreditation & Assessment
- New Educational Projects and Innovations
- Adult Learning and ICT
- New Experiences for Curriculum Design
- Experiences in Foreign Languages Education (1)

- Collaborative & Problem Based Learning (1)
- Flipped & Blended Learning
- m-Learning (2)
- Quality Assurance in Education
- Technology in Life & Health Sciences (1)
- Lifelong & Continuous Learning
- Experiences in Architecture Education
- Foreign Languages in Primary & Secondary Education

- Collaborative & Problem Based Learning (2)
- Social Media and Social Networking in Education
- Organizational and Management issues in Education
- Diversity and Multicultural Education
- Technology in Life & Health Sciences (2)
- Impact of Education on Development
- Technology in Engineering Education
- Experiences in Foreign Languages Education (2)

POSTER SESSIONS, 3rd March 2015.

- New Trends in Education

- Emerging Technologies in Teaching and Learning
VIRTUAL SESSIONS

Apps for education
Barriers to Learning
Blended Learning
Competence Evaluation
Computer Supported Collaborative Work
Curriculum Design and Innovation
E-content Management and Development
e-Learning
Education and Globalization
Education in a multicultural society
Educational Research Experiences
Educational Software and Serious Games
Enhancing learning and the undergraduate experience
Evaluation and Assessment of Student Learning
ICT skills and competencies among teachers
Impact of Education on Development
Inclusive Learning
International Projects
Language Learning Innovations
Learning and Teaching Methodologies
Learning Experiences in Primary and Secondary School
Lifelong Learning
Links between Education and Research
Mobile learning
New projects and innovations
New Trends in the Higher Education Area
Pedagogical & Didactical Innovations
Quality assurance in Education
Research in Education
Research on Technology in Education
Student Support in Education
Technological Issues in Education
Technology-Enhanced Learning
University-Industry Collaboration
Virtual Universities
Vocational Training
ASSESSING STUDENTS’ CREATIVITY COMPETENCIES FOR INNOVATIVE INDUSTRIAL ENGINEERING DESIGNS

R. Sancibrian¹, J.T. San-Jose², J.M. Blanco², E.G. Sarabia¹, J. Cuadrado²

¹ University of Cantabria (SPAIN)
² University of the Basque Country (SPAIN)

Abstract

In the new degrees of the Bologna framework, creativity competencies have been included among the skills needed by graduate students in engineering. Indeed, creativity is an important feature that allows engineers to provide new innovative designs. Therefore, engineers with creativity capabilities are able to produce more competitive products, open new opportunities and make our industries more profitable. However, the problem that engineering faculties have to face now is how to teach a student to be more creative. Teaching creativity has been studied from the pedagogical point of view since the middle of the twentieth century. Nevertheless, the implementation throughout the different courses of engineering degrees is not clear. The engineering student's perception is that, in the best cases, creativity is relegated to the final degree project. They think that their assessment is focused on their technical knowledge and their skills in using well-known engineering techniques, but new creative ideas to solve open-ended problems are not considered in their curricula. In this paper, a case study is presented encouraging and assessing creativity in engineering students with application to industrial design. A survey of the students’ perception of the process was also performed.

Keywords: Creativity, industrial engineering, teaching, assessing competencies.

1 INTRODUCTION

Before the bologna framework was introduced, education based on contents established engineering degrees as academic disciplines requiring multidisciplinary knowledge of mathematics, science and technology. The sum of these disciplines provided engineers with a profound theoretical knowledge about their professional field. However, when they had to make their way into the employment market they had to learn to be engineers in many aspects. In other words, they had to practice and needed training for a long period before they had enough professional experience to become a valuable employee for their company. Normally, this training process was taken on by the companies when they could afford it. Obviously, this training period undermines the competitiveness of the companies because they have to invest time and money in the formation of their employees. Therefore, a reduction in this process could make engineers valuable for business in a shorter period of time. One of the main goals of education based on competencies is to provide engineers with professional capabilities to be able to compete in the job market [1,2]. Their competences allow employers to know the skills they have and when the training process can be reduced. The consequence is a reduction in cost and the enhancement of competitiveness [3].

Creativity in engineering design is a competence that makes engineers more valuable for their companies [4,5]. Creativity in engineering can be defined as a preference for thinking in a novel way, from different and unusual points of view and the capability and skill to provide novel and useful solutions [6]. The importance of creativity as a competence in engineering education is also clear because it has a great repercussion in making engineers good professionals in the design of new and innovative products [7].

The engineering design process begins with the identification of a need which is not satisfied by the market and ends with the development of a new product or system satisfying this need. To solve the design problem demands original thinking and here is where creativity plays an important role [8]. In fact, engineering design can be considered as the systematic and creative application of scientific and mathematical principles to create something new in order to satisfy human needs (see Fig. 1). However, engineering faculties dedicate a lot of time to teaching mathematical and scientific principles and often forget the creativity term of the definition [9]. Indeed, creativity is neglected in the resolution of academic problems [10] and the marks obtained by our students are often based on how much the result approaches the expected solution. When we expect only one solution for one engineering problem we are limiting the capability of creativity and innovation in students. We have to realise that
creativity so that ideas can flow freely. The paper provides an objective method to evaluate creativity capabilities, which is detailed in the case study. Creativity is seen as a process where the skills of the students are improved with advice from the instructors. It is not necessary that the solution provided by the students is an original idea but the important thing is that the creativity skills of the students are improved during the process.

REFERENCES

