

## PhD Thesis

# CLIMATE CHANGE RISK MANAGEMENT FOR THE SUSTAINABLE DEVELOPMENT OF THE HISTORIC CITY: FROM THE MATERIAL TO THE TERRITORY

Author: Alessandra Gandini





PhD Thesis

## CLIMATE CHANGE RISK MANAGEMENT FOR THE SUSTAINABLE DEVELOPMENT OF THE HISTORIC CITY: FROM THE MATERIAL TO THE TERRITORY

### Author: Alessandra Gandini

Bilbao, June 2017

Advisors:

Dr. José Tomás San José Lombera Dr. Maria Cristina Giambruno





A Lorenzo,

per avermi insegnato ad amare, credere e lottare.

#### ABSTRACT

Cities are complex and interdependent systems, vulnerable to threats from natural hazards. Over recent years, sea-level rise, the increasing frequency of storms, and numerous other extreme precipitation events have all occurred, impacting on a large number of historic structures and increasing concern over risks due to weather patterns and global climate change.

Conservation of urban areas of historic value involves the management of change that, when properly addressed, is an opportunity to improve the quality of urban areas, ensuring the protection of social values as well as the authenticity and integrity of the physical material. Disaster risk reduction and adaptation to climate change should be seen as components of conservation, as they all share the objective of addressing the challenges of sustainable urban development.

The scope of this thesis is to analyse the impacts of flooding events caused by extreme precipitation and sealevel rise in urban areas with historic value, in order to prioritize interventions in the most sensitive areas.

A methodological approach for vulnerability and risk assessment has been developed, supported by an information strategy and a multi-scale urban model. The MIVES (Integrated Value Model for Sustainability Assessment) methodology was applied, in order to provide decision-making with objective and justified prioritization. The methodology delivers a balanced solution in terms of accurate results and data requirements, by using a categorization method for urban modelling. Information is organized and structured in hierarchical levels, permitting the comparison of building vulnerabilities and risks through the use of a unique index, thus facilitating the decision-making that is needed for the prioritization of efficient interventions.

#### ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisors, Prof. José Tomás San José and Prof. Maria Cristina Giambruno for their continuous support, patience, and motivation. Their knowledge and guidance helped me in all the phases of this research.

To Tecnalia, for the opportunity to involve myself as a researcher in such exciting projects and for the support during this last phase of the thesis. A special thanks to Maider Alzola, for believing in me and to Dr. Javier Urreta and Dr. Antonio Porro for giving me the possibility of working on this topic.

I gratefully acknowledge the funding provided by the Basque Government to the ADVICE project through the Emaitek programme and the funding through the research group IT781-13, shared between the University of the Basque Country (UPV/EHU) and Tecnalia.

My thanks also go to Dr. Takeyuki Okubo, Dr. Kim Dowon, Dr. Rohit Jigyasu for the opportunity to join their team and to access to their research facilities at the Ritsumeikan University and to Dr. Gabriele Pasqui at the Politecnico di Milano.

I thank my colleagues for the stimulating discussions, especially José Luis, Iñaki and Rosa, who shared their knowledge and enthusiasm in this project. I express my sincere gratitude to Leire, for her constant availability and for our interminable scientific dialogues even from afar. To my Phistghetto and R3I colleagues, who always encouraged me. *A tod@s un inmenso eskerrik asko.* 

To Sonia and Rossana, who always inspired me from a professional and personal point of view. Avere la possibilità di tornare a condividere momenti con voi mi ha riportato un fresco e giovane entusiasmo.

Last but not least, I would like to thank my family and friends, especially my mother and Marta, for supporting me spiritually and for their constant presence, always in the right place at the right time. *Non ci sono parole che possano esprimere la mia gratitudine e il mio amore.* To Ade, who spent sleepless nights with me, for his logistical support and for being my most enthusiastic cheerleader. *Je suis fière et extrêmement chanceuse de t'avoir à mes côtés.* To Sghero, for bringing joy and happiness to my daily life. Al mio Babbo, che veglia su di me ogni giorno.

#### TABLE OF CONTENTS

| 1. | RAT | TONALE                                                            | 1  |
|----|-----|-------------------------------------------------------------------|----|
|    | 1.1 | BACKGROUND                                                        | 4  |
|    | 1.2 | SCOPE OF THE RESEARCH                                             | 7  |
|    | 1.3 | RESEARCH METHODOLOGY                                              | 8  |
|    | 1.4 | SIGNIFICANCE AND MAIN CONTRIBUTIONS                               | 9  |
|    | 1.5 | STRUCTURE OF THE DOCUMENT                                         | 10 |
| 2. | CON | ICEPTUAL FRAMEWORK                                                | 13 |
|    | 2.1 | CLIMATE CHANGE, DISASTER RISK AND HISTORIC CITIES                 | 16 |
|    |     | 2.1.1 Climate change impacts on cultural heritage                 | 17 |
|    |     | 2.1.2 Flooding                                                    | 20 |
|    |     | 2.1.3 Conservation of historic cities as living and dynamic areas | 23 |
|    |     | 2.1.4 Methodologies and approaches                                | 25 |
|    | 2.2 | URBAN MODELLING AND INFORMATION MANAGEMENT                        | 28 |
|    |     | 2.2.1 A matter of scale                                           | 29 |
|    |     | 2.2.2 Methods                                                     | 31 |
|    |     | 2.2.3 Building stock modelling                                    | 33 |
|    |     | 2.2.4 Data and metrics                                            | 35 |
|    |     | 2.2.5 Stakeholders and model users                                | 36 |
|    |     | 2.2.6 Data representation and organization                        | 38 |
|    | 2.3 | MIVES - INTEGRATED VALUE MODEL FOR SUSTAINABLE ASSESSMENT         | 43 |
|    |     | 2.3.1 MIVES Methodology                                           | 44 |

|    |     | 2.3.2  | MIVES software application                                        | 59  |
|----|-----|--------|-------------------------------------------------------------------|-----|
|    | 2.4 | CONC   | LUSIONS                                                           | 59  |
| 3. | MET | HODO   | LOGICAL APPROACH                                                  | 61  |
|    | 3.1 | SCOPE  | E, REQUIREMENTS AND STRUCTURE OF THE METHODOLOGICAL APPROACH      | 64  |
|    | 3.2 | VULNI  | ERABILITY ASSESSMENT                                              | 70  |
|    |     | 3.2.1  | Building stock categorization                                     | 71  |
|    |     | 3.2.2  | The use of MIVES for calculating vulnerability                    | 76  |
|    |     | 3.2.3  | Fine-tuning of the vulnerability assessment                       | 119 |
|    | 3.3 | RISK   | ASSESSMENT                                                        | 120 |
|    |     | 3.3.1  | Assessment of alternatives                                        | 137 |
|    |     | 3.3.2  | Linking MIVES and the sample building methodology                 | 138 |
|    | 3.4 | 3D DA  | TA MODEL FOR INFORMATION MANAGEMENT                               | 142 |
|    | 3.5 | CONC   | LUSIONS                                                           | 143 |
| 4. | IMP | LEMEN  | TATION                                                            | 145 |
|    | 4.1 | THE C  | ASE STUDY OF DONOSTIA-SAN SEBASTIAN                               | 148 |
|    |     | 4.1.1  | Description of the area                                           | 148 |
|    |     | 4.1.2  | Modelling the area of San Sebastian                               | 156 |
|    |     | 4.1.3  | Calculation of sensitiveness, adaptive capacity and vulnerability | 185 |
|    |     | 4.1.4  | Validation of the vulnerability assessment methodology            | 188 |
|    |     | 4.1.5  | Risk assessment                                                   | 196 |
|    | 4.2 | CONC   | LUSIONS                                                           | 207 |
| 5. | CON | ICLUSI | ONS AND FUTURE PERSPECTIVES                                       | 209 |

|    | 5.1 CONCLUSIONS ON THE PROBLEM THAT IS IDENTIFIED                    | 211 |
|----|----------------------------------------------------------------------|-----|
|    | 5.2 CONCLUSIONS ON THE METHODOLOGICAL APPROACH                       | 212 |
|    | 5.3 CONCLUSIONS ON THE IMPLEMENTATION OF THE METHODOLOGICAL APPROACH | 214 |
|    | 5.4 FUTURE PERSPECTIVES                                              | 215 |
| 6. | AFTERTHOUGHTS                                                        | 217 |
| 7. | BIBLIOGRAPHY                                                         | 225 |
| A  | NNEX I                                                               | 243 |

#### LIST OF FIGURES

| Figure 1:  | Illustration of the core concepts of the WGII AR5                                                              | 6  |
|------------|----------------------------------------------------------------------------------------------------------------|----|
| Figure 2:  | Research domains                                                                                               | 7  |
| Figure 3:  | Impacts of climate change on cultural heritage                                                                 | 19 |
| Figure 4:  | Total economic damage due to flood events                                                                      | 20 |
| Figure 5:  | Cars swept into a pile by torrential rain in Genoa, Italy                                                      | 21 |
| Figure 6:  | Flood risk to World Heritage Cities                                                                            | 22 |
| Figure 7:  | Effects-Vulnerability-Adaption-Implementation (EVAI) model                                                     | 25 |
| Figure 8:  | Climate-change adaptation as an iterative risk-management process                                              | 26 |
| Figure 9:  | Top-down and bottom-up modelling techniques for estimating regional or national residential energy consumption | 32 |
| Figure 10: | The five levels of detail (LoD) defined by CityGML                                                             | 40 |
| Figure 11: | Different Levels of Detail in a scene                                                                          | 41 |
| Figure 12: | Buildings in LoD2 with photorealistic textures in Berlin, Germany                                              | 42 |
| Figure 13: | Street setting in Frankfurt with 5 textured buildings in LOD 3                                                 | 42 |
| Figure 14: | LoD2 CityGML of Helsinki, Finland                                                                              | 43 |
| Figure 15: | Decision-making axes                                                                                           | 45 |
| Figure 16: | Generic decision tree                                                                                          | 47 |
| Figure 17: | Graphical representation of the decision-making process                                                        | 48 |
| Figure 18: | Different shapes of the value functions                                                                        | 50 |
| Figure 19: | Evaluation of alternatives                                                                                     | 56 |
| Figure 20: | Risk-assessment approach                                                                                       | 67 |

| Figure 21: | Structure of the methodological approach                                                                    | 69  |
|------------|-------------------------------------------------------------------------------------------------------------|-----|
| Figure 22: | Generation of categories                                                                                    | 72  |
| Figure 23: | Work flow for risk assessment                                                                               | 74  |
| Figure 24: | Requirements and criteria of the decision tree                                                              | 78  |
| Figure 25: | Requirements, criteria and indicators of the vulnerability decision tree                                    | 79  |
| Figure 26: | Shape, tendency and maximum and minimum satisfaction values of the "state of conservation" indicator        | 81  |
| Figure 27: | Shape, tendency and maximum and minimum satisfaction values of the "ground floor typology" indicator        | 89  |
| Figure 28: | Shape, tendency and maximum and minimum satisfaction values of the "existence of basement" indicator        | 92  |
| Figure 29: | Shape, tendency and maximum and minimum satisfaction values of the "openings on the ground floor" indicator | 93  |
| Figure 30: | Shape, tendency and maximum and minimum satisfaction values of the "façade material" indicator              | 96  |
| Figure 31: | Shape, tendency and maximum and minimum satisfaction values of the "use" indicator                          | 99  |
| Figure 32: | Shape, tendency and maximum and minimum satisfaction values of the "structural material" indicator          | 100 |
| Figure 33: | Shape, tendency and maximum and minimum satisfaction values of the "drainage system condition" indicator    | 103 |
| Figure 34: | Shape, tendency and maximum and minimum satisfaction values of the "cultural value" indicator               | 109 |
| Figure 35: | Overall weighting of the vulnerability requirements tree                                                    | 118 |
| Figure 36: | Requirements, criteria and indicators of the risk decision tree                                             | 121 |

| Figure 37: | Shape, tendency and maximum and minimum satisfaction values of the "proximity to | 100 |
|------------|----------------------------------------------------------------------------------|-----|
|            | coast or river" indicator                                                        | 122 |
| Figure 38: | Buffer area of the coast-line and river of the case study area in San Sebastian  | 124 |
| Figure 39: | Shape, tendency and maximum and minimum satisfaction values of the "soil type"   |     |
|            | indicator                                                                        | 125 |
| Figure 40: | Soil type in the case study area of San Sebastian                                | 126 |
| Figure 41: | Shape, tendency and maximum and minimum satisfaction values of the "green areas" | 107 |
|            | indicator                                                                        | 127 |
| Figure 42: | Flooding in a 500 year scenario in the case study area of San Sebastian          | 130 |
| Figure 43: | Buildings at risk of storm surge in the case study area of San Sebastian         | 132 |
| Figure 44: | Overall weighting of the risk requirements tree                                  | 136 |
| Figure 45: | Alternative assessment                                                           | 137 |
| Figure 46: | 3D model of the implementation area                                              | 149 |
| Figure 47: | View of Gros district                                                            | 150 |
| Figure 48: | View of Egia district                                                            | 151 |
| Figure 49: | View of one of the old houses of Loiola district                                 | 152 |
| Figure 50: | View of "Parte vieja" district                                                   | 153 |
| Figure 51: | View of Centre district                                                          | 154 |
| Figure 52: | View of Amara district                                                           | 155 |
| Figure 53: | Geometric generation of 3D urban model                                           | 157 |
| Figure 54: | Geographical distribution of the lots by their level of protection               | 160 |
| Figure 55: | Geographical distribution of the lots by the existence of a basement             | 161 |
| Figure 56: | Geographical distribution of the lots by the socio-economic status               | 162 |

| Figure 57: | Geographical distribution of the lots according to the main use                        | 163 |
|------------|----------------------------------------------------------------------------------------|-----|
| Figure 58: | Geographical distribution of the lots by the number of dwellings                       | 164 |
| Figure 59: | Geographical distribution of the lots by the year of construction                      | 165 |
| Figure 60: | Geographical distribution of the categories                                            | 169 |
| Figure 61: | Graphical representation of the lots' vulnerability of the case study area             | 187 |
| Figure 62: | Graphical representation of the lots' vulnerability of the Gros, Egia, Parte Vieja and |     |
|            | Centre districts                                                                       | 188 |
| Figure 63: | 3D Model of the blocks for analysis in Gros and Parte Vieja                            | 189 |
| Figure 64: | 3D Model of the blocks for analysis in Loiola                                          | 189 |
| Figure 65: | Risk levels derived from extreme precipitation                                         | 198 |
| Figure 66: | Risk levels derived from storm surge and sea-level rise                                | 202 |
| Figure 67: | Area at highest risk from storm surge and sea-level rise                               | 203 |

#### LIST OF TABLES

| Table 1:  | Scale of relative importance                                                                                     | 53 |
|-----------|------------------------------------------------------------------------------------------------------------------|----|
| Table 2:  | Average random number index for each size of the matrix                                                          | 55 |
| Table 3:  | General requirements of the methodological approach                                                              | 68 |
| Table 4:  | Vulnerability assessment requirements, criteria and indicators for the sample building                           | 75 |
| Table 5:  | Values of the alternatives of the "state of conservation" indicator                                              | 81 |
| Table 6:  | Pair-wise comparison matrix evaluating the importance of the elements in relation to their state of conservation | 82 |
| Table 7:  | AHP weight factor of the importance of the elements in relation to their state of conservation                   | 82 |
| Table 8:  | AHP weight factor in relation to the element and the state of conservation                                       | 83 |
| Table 9:  | Ranges of the state of conservation in relation to the condition of each element                                 | 83 |
| Table 10: | Values of the alternatives of the "state of conservation" indicator (simplified method)                          | 84 |
| Table 11: | Pair-wise comparison matrix evaluating the importance of the elements in relation to water damage                | 85 |
| Table 12: | AHP weight factor of the importance of the elements in relation to water damage                                  | 86 |
| Table 13: | Pair-wise comparison matrix evaluating the importance of the type of water damage                                | 86 |
| Table 14: | AHP weight factor of the importance of the type of water damage                                                  | 87 |
| Table 15: | Overall value of water damage in relation to the element affected                                                | 87 |
| Table 16: | Values of the alternatives of the "existence of water damage" indicator (simplified method)                      | 88 |
| Table 17: | Values of the alternatives of the "ground floor typology" indicator                                              | 90 |
| Table 18: | Values of the alternatives of the "existence of a basement" indicator                                            | 91 |

| Table 19: | Values of the alternatives of the "existence of basement and access" indicator            | 92  |
|-----------|-------------------------------------------------------------------------------------------|-----|
| Table 20: | Values of the alternatives of the "openings ground floor" indicator                       | 94  |
| Table 21: | Values of the alternatives of the "roof type" indicator                                   | 95  |
| Table 22: | Values of the alternatives of the "façade material" indicator                             | 97  |
| Table 23: | Values of the alternatives of the "use" indicator                                         | 99  |
| Table 24: | Values of the alternatives of the "structural material" indicator                         | 101 |
| Table 25: | Values of the alternatives of the "existence of adaptive systems" indicator               | 102 |
| Table 26: | Values of the alternatives of the "drainage system condition" indicator                   | 104 |
| Table 27: | Values of the alternatives of the "previous interventions" indicator                      | 105 |
| Table 28: | Ranges of the status categories                                                           | 107 |
| Table 29: | Values of the alternatives of the "cultural value" indicator                              | 109 |
| Table 30: | Values attached to each alternative of the sensitiveness and adaptive capacity indicators | 110 |
| Table 31: | Pair-wise comparison of the indicators belonging to the "current situation" criterion     | 112 |
| Table 32: | Pair-wise comparison of the indicators belonging to the "constructive" criterion          | 112 |
| Table 33: | Pair-wise comparison of the indicators belonging to the "envelope" criterion              | 113 |
| Table 34: | Pair-wise comparison of the criteria belonging to the "sensitiveness" requirement         | 114 |
| Table 35: | Pair-wise comparison of the indicators belonging to the "interventions" criterion         | 115 |
| Table 36: | Pair-wise comparison of the indicators belonging to the "socio-economic" criterion        | 116 |
| Table 37: | Pair-wise comparison of the criteria belonging to the "adaptive capacity" requirement     | 117 |
| Table 38: | Pair-wise comparison of the requirements                                                  | 117 |
| Table 39: | Sensitiveness and adaptive capacity indexes                                               | 119 |
| Table 40: | Levels of vulnerability                                                                   | 120 |

| Table 41: | Values of the alternatives of the "proximity to coast or river" indicator                                     | 123 |
|-----------|---------------------------------------------------------------------------------------------------------------|-----|
| Table 42: | Values of the alternatives of the "soil type" indicator                                                       | 125 |
| Table 43: | Values of the alternatives of the "green areas" indicator                                                     | 128 |
| Table 44: | Values of the alternatives of the "flooding area" indicator                                                   | 129 |
| Table 45: | Values of the alternatives of the "buildings affected by storm surge and sea-level rise" indicator            | 131 |
| Table 46: | Values attached to each alternative of the exposure indicators                                                | 133 |
| Table 47: | Pair-wise comparison of the indicators belonging to the "exposure" criterion                                  | 134 |
| Table 48: | Pair-wise comparison of the risk assessment requirements                                                      | 135 |
| Table 49: | Exposure indexes                                                                                              | 138 |
| Table 50: | Levels of risk                                                                                                | 138 |
| Table 51: | Assessment of the indicators at criteria level expressed in percentage terms                                  | 139 |
| Table 52: | Assessment of the indicators at a global level expressed in percentage terms for the vulnerability assessment | 140 |
| Table 53: | Assessment of the indicators at global level expressed in percentage terms for the risk assessment            | 141 |
| Table 54: | Distribution of the lots by their level of protection                                                         | 160 |
| Table 55: | Distribution of the lots by the existence of a basement                                                       | 161 |
| Table 56: | Distribution of the lots by the socio-economic status                                                         | 162 |
| Table 57: | Distribution of the lots according to the main use                                                            | 163 |
| Table 58: | Distribution of the lots by the number of dwellings                                                           | 164 |
| Table 59: | Distribution of the lots by the year of construction                                                          | 165 |
| Table 60: | Generation of categories for the case study of San Sebastian                                                  | 167 |

| Table 61: | Selected categories for the case study of San Sebastian                                                                      | 168 |
|-----------|------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 62: | Sensitiveness indicator values and sensitiveness index calculation for each sample building                                  | 185 |
| Table 63: | Adaptive capacity indicator values and adaptive capacity index calculation for each sample building                          | 186 |
| Table 64: | Vulnerability value for each sample building                                                                                 | 186 |
| Table 65: | Categories and characteristics of the buildings inspected located in the smaller area of study                               | 190 |
| Table 66: | Comparison of the sensitiveness, adaptive capacity and vulnerability levels given by real data and the categorization method | 193 |
| Table 67: | Exposure indicator values and exposure index calculation for sample buildings                                                | 197 |
| Table 68: | Risk assessment for precipitation events of the detailed case study                                                          | 199 |
| Table 69: | Risk assessment for storm surge and sea-level rise of the detailed case study                                                | 203 |

"If a man will begin with certainties, he shall end in doubts; but if he will be content to begin with doubts, he shall end in certainties."

Francis Bacon

# RATIONALE

- **1.1 BACKGROUND**
- **1.2 SCOPE OF THE RESEARCH**
- **1.3 RESEARCH METHODOLOGY**
- **1.4 SIGNIFICANCE AND MAIN CONTRIBUTIONS**
- **1.5 STRUCTURE OF THE DOCUMENT**

Cities are complex and interdependent systems, vulnerable to threats from natural hazards. Over recent years, increasingly numerous and extreme precipitation events and subsequent flood events have occurred, impacting on a large number of historic structures. Furthermore, sea-level rise and the increasing frequency of storms, have posed new challenges to historic assets located in coastal areas, increasing concern over risks due to weather patterns and global climate change.

Disaster risk reduction and climate change adaptation should therefore be seen as components of conservation management, requiring a deep understanding of the vulnerability of historic buildings to flooding and associated extreme rainfall events and sea-level rise.

Historic cities, through adaptive processes, have always shown resilience, combining mixed uses on a human scale, density and vibrancy. They carry an identity forged over generations, encourage participation, communication and intimate relationships between public and private spaces. They are models from which the designers of new urban planning strategies may learn. While respecting their cultural values, specific methods for evidence-based decision-making have to be adapted and developed, in order to manage the evolution of historic cities and to guide them towards new comfort and climate-related parameters.

This situation calls for an efficient and holistic decision-making approach for sustainable urban planning, based on information management, that integrates disaster risk reduction, climate change adaptation and cultural heritage conservation.

3