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Abstract— Wave excitations cause structural vibrations on 
the Oscillating Water Columns (OWC) lowering the power 
generated and reducing the life expectancy. The problem of 
generator deterioration has been considered for the Mutriku 
MOWC plant and a machine learning-based approach for 
prognosis and fault characterization has been proposed. In 
particular, the use of k-Nearest Neighbors (kNN) models for 
predicting the time to failure of OWC generators has been 
proposed. The analysis is based on data collected from sensors 
that measure various operational parameters of the turbines. 
The results demonstrate that the proposed kNN model is an 
excellent choice for reducing maintenance costs by enabling 
maintenance scheduling months in advance. The model's high 
accuracy in predicting generator failures allows for timely and 
cost-effective maintenance, preventing costly breakdowns and 
improving turbine efficiency. These results highlight the 
potential of machine learning-based approaches for addressing 
maintenance challenges in the energy sector and underscore the 
importance of proactive maintenance strategies in reducing 
operational costs and maximizing energy production. 

Keywords— Machine learning, oscillating water column, 
wave energy. 

I. INTRODUCTION 
 Based on data from global energy forecast, it is projected 
that the demand for energy will witness a significant surge of 
4.6% in 2030, primarily due to climate change and the growth 
of emerging and developing economies [1]. Consequently, the 
global energy market is shifting its focus towards sustainable 
energy sources to cater for the basic energy requirements. 
Despite the availability of multiple renewable energy options, 
ocean energies, and wave in particular, have observed a 
substantial increase in their adoption in the last decade, as 
depicted in Figure 2. In line with these environmentally 
conscious policies, several studies have been conducted on 
ocean energy resources, such as [2-3]. 

As per the energy roadmap, Europe is under the obligation to 
establish a marine energy infrastructure capable of meeting 
roughly 10% of its energy consumption through wave and tidal 
energy by 2050 [4]. In the course of this development, Wave 
Energy Converters (WEC) have acquired significant importance 
[5].  In particular, by 2050, it is expected that 337 GW will be 
harnessed from the oceans throughout the world, and the 
technology needed will be developed by then [6]. It will be 
possible to generate 16 PWh of wave energy per year. Thus, 
approximately 50% of the expected energy by 2040 could be 
achieved by means of wave energy.  

In the case of Basque Country, the Mutriku Wave Power 
Plant uses the Oscillating Water Column (OWC) principle to 

generate electricity from waves. 
This working principle is quite 
simple. It works as a result of 
oscillation of the internal water 
column within a chamber, 
which has an opening below the 
water level. The incoming and 
outgoing waves make the 
internal water column oscillate, 
and consequently the air within 
the chamber (see Figure 1) is 
compressed and decompressed. 
Therefore, there are pressure 
gradients across the turbine. The 
turbines deployed are 
unidirectional, and in this 
particular case Well´s turbines. 
For this reason, the generated 
bidirectional air flow passes 
through the unidirectional 
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Figure 1: Capture chamber for 
an OWCs in Mutriku MOWC 
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turbine, thus generating electricity (Garrido et al., 2022). Only 
onshore devices, such as the multiple OWC Mutriku Wave 
Power plant in the Basque Country, have shown consistent power 
generation and can be classified as TRL 8 [7]. 

Effective monitoring and maintenance strategies are essential 
for achieving high availability, capacity factor, and Annual 
Energy Production (AEP) in power plants. Good maintenance 
practices can help maintain steady operations, which has a strong 
influence on reducing downtime and increasing availability, 
power production, capacity factor, and AEP. Therefore, reducing 
Operational and Maintenance (O&M) costs is a critical approach 
to controlling the Levelized Cost of Energy (LCoE) [8]. 

To achieve optimal maintenance, scheduling adequate 
frequency and implementing the best strategy is crucial. Frequent 
maintenance can be costly, but neglect can lead to higher failure 
rates and longer downtime. An optimal maintenance system can 
reduce O&M costs by 11% to 18% [9]. Predictive maintenance 
is critical for identifying potential failures before they occur, and 
analyzing data plays a vital role in this regard. Collecting and 
analyzing data on turbo generator performance can enable the 
development of predictive models for scheduling maintenance 
proactively, reducing downtime, minimizing repair costs, and 
improving operational efficiency. In ocean industries that heavily 
rely on equipment, such as manufacturing and transportation over 
a narrow time-window, predictive maintenance is particularly 
important. By analyzing data, valuable insights into equipment 
performance can be obtained, enabling proactive measures to 
ensure optimal offshore device operation and minimize the risk 
of unexpected failures. 

Maintenance strategies are classified into reactive, proactive, 
and opportunistic categories based on the timing of the tasks. 
Reactive maintenance strategy, also known as corrective 
maintenance, is a failure-based maintenance method that involves 
performing maintenance only after a failure has occurred. This 
strategy is efficient for small farms with high reliability, where 
downtime-related maintenance operations are negligible and can 
achieve high availability [10]. On the other hand, proactive 
maintenance strategy is an approach that involves scheduling 
inspections and replacements before the occurrence of failures to 
avoid small faults from developing into major failures. 
Preventive, condition-based and predictive maintenance are 
examples of proactive maintenance strategies [11].  Opportunistic 
maintenance strategy is the grouping of different planned 
preventive and corrective maintenance actions with unplanned 

preventive tasks that were meant for some worn-out components 
in the future [12-15]. 

To develop and implement an adequate maintenance 
strategy in onshore and offshore power plants, time-based and 
sensor-based information is gathered. However, processing 
this data is complicated due to the enormous amount of data 
gathered and the number of variables measured. Feature 
extraction is used to reduce redundant information and 
dimensionality in many fields [16-17] including maintenance. 
Principal Component Analysis (PCA) is the most common 
feature extraction algorithm, which extracts important 
information from data and represents it as a set of new 
orthogonal variables called principal components [18]. 
Another well-known feature extraction method is Linear 
Discriminant Analysis (LDA), which involves finding the 
projection hyperplane that minimizes the interclass variance 
and maximizes the distance between the projected means of 
the classes [19]. 

In Section II a comprehensive overview of the 
manipulation and analysis of data from the Mutriku MOWC 
turbo generators will be presented. Initially, data is collected 
by the PLCs using the data acquisition system, which must be 
imported, formatted, and stored in appropriate files. 
Subsequently, the data from each turbine is analyzed using 
various group statistics, and different data sets may be merged. 
The modified data can then be utilized in Section III to train a 
kNN classification model that predicts the health status of the 
turbo generator. The performance of the model will be 
evaluated in Section IV and any necessary improvements and 
future work will be presented in the Conclusions section that 
ends the article.  

II. IMPORT PLC DATA 
In order to incorporate data from the output file of a 

Programmable Logic Controller (PLC) into the programming 
language of preference, a suitable method must be established. 
This may be accomplished by defining distinct sets of tables 
for each turbine, associated with specific time frames, thereby 
facilitating the import of data from the PLC into tables. Each 
column of the table represents a variable, allowing for a 
straightforward analysis and interpretation of the data. 

In order to comprehensively explore the data 
characterization of various diagnostics, an analysis will be 
conducted using data obtained from three distinct turbines. 
Each turbine has been identified to exhibit a specific issue, 

                          

Figure 2: Renewable electricity installation and generation growth by technology by 2050. World Energy Outlook IEA 
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namely bearing, resonance, and unbalance. Consequently, the 
output data will be closely associated with the corresponding 
turbine issue, allowing for a comprehensive examination of 
the data characteristics. 

A. Bearing Analysis 
 In this section, a systematic approach is delineated to 

cluster and preprocess data from a turbine, with the aim of 
rendering it amenable for classification as exhibiting bearing 
deterioration. To accomplish this, the data tables are 
methodically refined through the elimination of any row that 
contains an undefined or missing value, as well as those rows 
or columns deemed extraneous for the purpose of the analysis.  

The statistical analysis of each turbine on a specific day 
can be determined by calculating the mean of the grouped 
values to the first power for each generated pressure. 
Subsequently, the resulting tables for different days can be 
combined by joining only those pressure values that appear on 
all tables. This process ensures that the analysis is consistent 
and accurate across all the observed days. 

As observed in Figures 3 and 4, there exists an optimal 
operating point at approximately 6.5kW, which is 
characterized by high output power and low levels of 
vibration. The existence of this is optimal operating point is 
further underlined when the vibrations are plotted against the 
pressure, grouped by power output, as illustrated in Figure 5. 

B. Resonance Analysis 

Analogous to Section A, we present a systematic approach 
for clustering and preprocessing data obtained from a turbine 

with the goal of facilitating its classification as experiencing 
resonance. The data tables are subjected to a methodical 
refinement process involving the elimination of any row 
containing undefined or missing values, as well as those rows 

or columns deemed extraneous to the analysis. For each 
turbine and day, the relevant statistics are computed in a 
similar manner to the previous case. Additionally, the tables 
obtained from different days are combined and subjected to a 
joint analysis.  

 
The study of the data presented in Figure 6 reveals that the 

turbine subject to vibrations resulting from resonance is 

 
Figure 3: Relationship between the power output (kW) and the 

amplitude of the vibration (mmps) 
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Figure 4: Relationship between the power output (kW) and the 

pressure across the turbine (dPa) 
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Figure 6: Relationship between the power output (kW) and the 
amplitude of the vibration (mmps) 
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Figure 5: Relationship between the vibration amplitude (mmps) and 
the pressure across the turbine (dPa) grouped by power output (kW) 
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comparatively less severely impacted when contrasted with 
the turbine affected by bearing wear off. This finding is further 
validated by the information presented in Figure 8, which 
indicates that the turbine experiencing resonance generates a 
higher production rate at the same pressure values as the other 
turbines. These observations provide valuable insight into the 
differential effects of distinct types of turbine vibration, and 
underscore the importance of implementing targeted 
maintenance and repair strategies that are tailored to the 
specific nature and severity of the observed vibration 
phenomena. 

Additionally, it is evident from Figures 6 and 7 that there 
exists an optimal operating point at approximately 15 kW. 
This point is distinguished by its ability to produce high output 
power while simultaneously minimizing levels of vibration. 
This optimal operating point is further emphasized when the 
vibrations are graphed against the pressure, categorized by 
power output, as illustrated in Figure 8.  

C. Unbalance Analysis 

Finally, we propose a comprehensive methodology for 
clustering and preprocessing data collected from a turbine, 
aimed at facilitating its classification as experiencing turbine 
unbalance. To achieve this objective, the collected data 
undergo a meticulous refinement process that entails the 
elimination of any row containing undefined or missing 
values, as well as the exclusion of those rows or columns 
deemed irrelevant to the analysis. Subsequently, for each 

turbine and day, pertinent statistics are computed in a manner 
similar to the previous cases. Furthermore, the tables obtained 

from different days are combined and subjected to a joint 
analysis. The proposed approach presents a systematic and 
rigorous methodology for preprocessing and clustering 
turbine data, with the ultimate goal of improving the accuracy 
and reliability of turbine unbalance classification. 

 The analysis of the data presented in Figure 9 reveals that 
the turbine vibrations caused by unbalance exhibit a more 
pronounced linear relationship with the generated power when 
compared to those vibrations resulting from resonance or 
bearing wear off. This assertion is supported by the findings 
presented in Figure 10, which show that the unbalance turbine 
generates a superior production rate at the same pressure 
values as the other turbines.  

In the context of this specific failure, a definitive optimal 
operating point for the turbo generator module is difficult to 
ascertain from the information presented in Figures 9 and 10. 
Moreover, a more evident linear relationship between the 
vibrations and the pressure, grouped by power output, can be 
discerned from the data plotted in Figure 11. This 
visualization highlights the complexity of the underlying 
factors contributing to the failure, and underscores the 
importance of employing comprehensive and multifaceted 
analyses to diagnose and address such issues in a rigorous and 
effective manner. 

Figure 9: Relationship between the power output (kW) and the 
amplitude of the vibration (mmps) 
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Figure 8: Relationship between the vibration amplitude (mmps) and 
the pressure across the turbine (dPa) grouped by power output (kW) 
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Figure 10: Relationship between the power output (kW) and the 

pressure across the turbine (dPa) 
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Figure 11: Relationship between the vibration amplitude (mmps) and 

pressure across the turbine  (dPa) grouped by power output (kW) 
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The aforementioned observations serve as compelling 
evidence for the potentially significant impact of turbine 
unbalance on the efficiency and productivity of the overall 
system. These findings underscore the critical importance of 
implementing timely and effective maintenance interventions 
to mitigate this issue and minimize any adverse effects on the 
system's performance. Such interventions may include the 
implementation of regular monitoring and inspection 
procedures, the incorporation of predictive maintenance 
strategies, and the utilization of advanced diagnostic tools and 
techniques to facilitate the early detection and remediation of 
turbine unbalance issues. 

III. TRAIN A MODEL. SUPERVISED LEARNING 

The findings of the preceding section provide a 
compelling rationale for proposing a classification model 
dedicated to prognosis. The objective of the model is to 
effectively classify the data output obtained from the 
Programmable Logic Controller (PLC) that governs the 
aforementioned turbines, each exhibiting distinct issues:   
bearing, resonance, and unbalance. Notably, the PLC 
generates individual data sets for each turbine, with a unique 
label assigned to delineate these specific data sets. This 
proposed classification model seeks to efficiently analyze and 
categorize the data output, thereby facilitating accurate 
prognosis of turbine conditions based on their identified 
issues. Then,  a partition object using a holdout method is 
created, where the data is divided into training and testing sets. 
The testing set comprises 30% of the total data, while the 
training set contains the remaining 70%. Subsequently, a k-
Nearest Neighbors (kNN) algorithm will be employed to 
construct a model capable of classifying the operational state 
of the turbine based on an instant of PCL data. The 
classification model shall be trained using the training set and 
then leveraged to make predictions for the testing set. 

The k-Nearest Neighbors (kNN) is a supervised machine 
learning technique that was initially introduced by Evelyn Fix 
and Joseph Hodges in 1951 [20] and later expanded by 
Thomas Cover [21]. The kNN algorithm does not explicitly 
learn or optimize model parameters during training. It simply 
retains the training data to establish a database of labeled 
examples and then leverages the stored data to make 
predictions based on the principle of similarity. In kNN 
classification, the input data consists of the k closest training 
examples in a dataset. The output is a class membership 
assigned to the object being classified. The algorithm works 
by taking a plurality vote of its neighbors, with the object 
being assigned to the class that is most common among its k 
nearest neighbors. Since kNN relies on distance for 
classification, it is important to normalize the training data if 
the features come in vastly different scales. This normalization 
can significantly improve the accuracy of the algorithm. 

Initially, the data undergoes the customary procedures of 
cleansing and scaling as a primary step. Within this specific 
physical system, absolute values will be adopted to consider 
the pressure, as both pressure differentials induce a 
unidirectional rotation. Moreover, it is assumed that a given 
pressure differential will yield similar power generation by the 
turbine. 

The distance metric that measures the similarity between 
two data points in the feature space, is chosen to be the 
Euclidean distance because it presents an excellent 
performance in this case. Therefore, the model calculates the 
distance between the new turbine data output and the data in 
the training set using the Euclidean distance formula as 
follows: 

𝑑𝑑 = �(𝑝𝑝𝑛𝑛 − 𝑝𝑝𝑖𝑖)2 + (𝑤𝑤𝑛𝑛 − 𝑤𝑤𝑖𝑖)2 + (𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑖𝑖)2        (1) 

where 𝑝𝑝𝑛𝑛, 𝑤𝑤𝑛𝑛and 𝑣𝑣𝑛𝑛are the pressure, power and vibrations of 
the new turbine, and 𝑝𝑝𝑖𝑖 , 𝑤𝑤𝑖𝑖  and 𝑣𝑣𝑖𝑖 are the pressure, power and 
vibrations of the ith turbine in the training set.  

Given a new turbine data, the kNN method has the 
capability of classifying a new turbine data by associating it 
with the most commonly occurring label type among its k 
nearest neighbors. This technique is rooted in the principle of 
similarity, whereby the classification of a data point is based 
on the identities of its closest neighbors as defined by equation 
(1) in a high-dimensional space. Through this approach, the 
kNN algorithm seeks to classify the new turbine data as 
belonging to the same type as the turbines that have the highest 
frequency of occurrence among its nearest k neighbors. 

IV. SIMULATION, VALIDATION AND DISCUSSION 

Using the kNN method, we can calculate the distances to 
each turbine in the training set and select the type of those 
turbines with the shortest distance. Choosing the optimal value 
of the hyperparameter k, the number of nearest neighbors to 
be considered, is a critical aspect in the algorithm. Large 
values tend to smooth out the decision boundary or prediction 
surface, while small values ender the system more sensitive to 
noise and overfitting. This value has been tuned to k=5 in 
order achieve optimal performance on the validation set. 

The Hold-out validation method has been used to estimate 
the performance of the model, randomly partitioning the 
available dataset into two subsets: a training set with 70% of 
the data and a validation set with 30%. This technique has 
been used because the available dataset has 21710464 entries, 
so that it is large enough to support a random partition into 
training and validation sets. Thus, the kNN model offers a 
convenient approach for estimating performance through a 
single training phase and subsequent evaluation on a 
validation set. This method eliminates the need for iterative 
training processes commonly seen in other machine learning 
models. Once the k-NN model is trained using a labeled 
training dataset, it can be applied directly to a validation set to 
assess its performance. By calculating the accuracy or other 
relevant metrics on the validation set, we can quickly estimate 
how well the trained k-NN model is likely to perform on 
unseen data. This efficient evaluation process allows for a 
rapid assessment of the model's effectiveness without the need 
for further iterations of training and validation.  

 The evaluation of the accuracy for thr kNN classifier 
involves determining the number of correct predictions made 
and dividing that by the total number of observations within 
the test set as follows 

𝑎𝑎 = 1
𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡

∑�𝑦𝑦𝑝𝑝 == 𝑦𝑦𝑡𝑡�              (2) 
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where 𝑦𝑦𝑝𝑝  is a vector of predicted labels generated by the 
classifier for the test set, 𝑦𝑦𝑡𝑡  is a vector of true labels for the 
test set, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑡𝑡  represents the total number of labels 
within the test set. Upon performing this evaluation, the 
resulting accuracy score of the kNN classifier (2) was found 
to be 0.9129. This score, which is indicative of the model's 
effectiveness, can be deemed as excellent. 

A. Validation of the Results 

 The validation has been carried out once the kNN model 
has been designed and trained. To evaluate the model's 
performance, a confusion chart is employed, which provides 
a comprehensive analysis of a classification model's accuracy. 
The confusion chart displays the counts of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives 
(FN) for each classification task (bearing, resonance, and 
unbalance). 

In the confusion chart displayed in Figure 12, the rows 
correspond to the true class labels, and the columns 
correspond to the predicted class labels. Each cell in the table 
represents the number of predictions that were classified as a 
certain class. The diagonal cells represent the number of 
instances that were correctly classified, while the off-diagonal 
cells represent the number of instances that were 
misclassified.  

In this example, it may be read in Figure 12 that the model 
correctly predicted 10539388 instances for the bearing 
problem, while misclassifying 583275 instances as resonance 
and 179615 as unbalance. It also predicted correctly 8088515 
instances for the resonance problem, while misclassifying 
868993 instances as bearing and 103003 as unbalance. 
Finally, it predicted correctly 1192596 instances for the 
unbalance problem, while misclassifying 104716 instances as 
bearing and 50363 as resonance. 

B. Discussion of the Results 

 
Our findings suggest that the kNN classification model 

achieved an accuracy of approximately 90%, indicating that it 
correctly classifies the failure type for the majority of the 
turbine output data. This level of accuracy suggests that the 
model is reliable and has the potential to be useful to correctly 
classify bearing, resonance, and unbalance, turbine issues 

using the PLC output data. It suggests that this kNN 
classification model has wide-ranging implications for 
maintenance planning, cost optimization, asset management, 
safety, and overall turbine performance. It empowers 
operators to make informed decisions, implement targeted 
repairs, and improve the reliability, efficiency, and 
profitability of turbine operations.  

There are certain limitations that need to be considered in 
relation to these findings. One important limitation is the 
quality and representativeness of the dataset used for training 
and testing the kNN model. Although the chosen datasets were 
sufficiently large to provide robust results, it is essential to 
ensure that the data accurately captures the variability and 
complexity of the turbine systems. Moreover, adequate 
coverage of all possible scenarios is crucial for achieving 
optimal model performance. This requires a thorough 
understanding of the physical system and its faults, as any bias 
or inadequate coverage in the data can negatively impact the 
accuracy of the model and reliability. 

In terms of sample size availability, it is important to note 
that this study did not encounter any issues, as the dataset size 
was considered adequate. However, it is worth acknowledging 
that sample size can be a limitation in certain cases, 
particularly when dealing with smaller datasets. 
Generalizability is not a concern in this study, as the training 
set only requires data from the new turbines under study, 
without the need for parameterization or iterative processes. 
The model can be applied to similar turbines without extensive 
modifications. 

Nevertheless, it is essential to recognize that the 
performance of the model heavily relies on the availability of 
comprehensive and unbiased data. If certain fault scenarios are 
not adequately represented in the dataset, the predictive 
capabilities of the model may be compromised. Therefore, 
prior knowledge of the physical system and its faults is crucial 
for ensuring that the data collection process encompasses a 
wide range of scenarios. 

In summary, while the chosen datasets and the approach 
used in this study offer advantages such as robustness and 
generalizability, it is important to be aware of the limitations 
associated with data quality, representativeness, and coverage 
of fault scenarios. Future research should focus on expanding 
the dataset to include a broader range of scenarios, ensuring 
that the data collection process is comprehensive and unbiased 
to further enhance the model's performance. 

    

V. CONCLUSIONS  

In this article, the authors have presented a study on the 
development and evaluation of machine learning models for 
prognosis and fault characterization of oscillating water 
columns (OWCs) using Mutriku data. The data collection 
involved the use of sensors to measure the mechanical and 
aerodynamic properties of the entire OWC system. A k-
Nearest Neighbors (kNN) model has been proposed for the 
replication of the OWC system behavior and structural 
performance. The model has been trained with appropriate 
parameters while adhering to a low Mean Squared Error 
(MSE) target function. The efficacy of the model has been 
successfully tested on a validation set to ascertain its 
computational efficiency, validity, and accuracy. The 

 
Figure 12: Confusion Chart illustrating turbine classification 

performance with respect to bearing, resonance and unbalance issue 
using the kNN model. 
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presented work has potential implications for improving the 
prognosis and fault characterization of OWCs through 
machine learning-based approaches. 

The results of the evaluation indicate that the proposed 
kNN model outperformed existing methods in accurately 
predicting turbine failures, further underscoring its potential 
for enhancing the prognosis and fault characterization of 
OWCs. The findings presented in this study contribute to the 
existing body of research on turbine maintenance and fault 
diagnosis. While previous studies have explored classification 
models for identifying and classifying turbine failures, the 
novelty of this research lies in several key aspects. 

Firstly, the high percentage of agreement observed among 
different failure types is a noteworthy finding. This indicates 
that the classification model, specifically the kNN approach 
employed in this study, exhibits a significant level of accuracy 
and consistency across various failure scenarios. This level of 
agreement sets this research apart from prior studies, as it 
demonstrates the robustness of the model in handling diverse 
turbine failures. 

Secondly, the consideration of data bias is another 
important aspect of this study. By acknowledging the potential 
variations in turbine conditions due to their distinct locations 
within the breakwater, this research offers a nuanced 
understanding of the impact of data bias on classification 
performance. The successful application of the kNN model in 
the presence of data bias provides a novel perspective on how 
such biases can be effectively addressed. 

Finally, the examination of the dataset pertaining to 
turbine unbalance, which contained a smaller number of 
instances compared to the other failure types, introduces a 
unique element to this study. This analysis highlights the 
ability of the kNN model to handle imbalanced datasets and 
still achieve satisfactory classification results. This aspect of 
the research contributes to the existing knowledge by 
showcasing the robustness and adaptability of the kNN 
approach, even in scenarios with data availability of different 
orders. 

Overall, the novelty of this research lies in its 
comprehensive consideration of agreement among failure 
types, the exploration of data bias, and the investigation of 
imbalanced datasets. These findings advance the 
understanding of classification models in turbine maintenance 
and fault diagnosis, providing valuable insights for future 
research and practical applications. 
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