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Abstract—This manuscript introduces a new classification-
based power take-off diagnosis for wave energy converter farms. 
The suggested strategy has been tested on the Mutriku Multiple 
Oscillating Water Column-based wave power plant in order to 
reduce the Levelised Cost of Energy (LCoE) by implementing 
predictive maintenance strategies. This has been achieved by 
employing Linear Discriminant Analysis (LDA) to determine the 
furthermost relevant features from the measured data. Then the 
Support Vector Machine (SVM) has been implemented as a 
classification technique to classify the state of the OWC system.  
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I. INTRODUCTION 

Levelized Cost of Energy (LCoE) within a wave farm may 
be reduced by increasing the power harnessing capability of 
Wave Energy Converter (WEC) technology. Enhancing 
availability, capacity factor, and Annual Energy Production 
(AEP) are further ways to reduce LCoE. To maintain ideal 
operational conditions while implementing these enhancements, 
effective monitoring and maintenance procedures are required. 
Indeed, maintenance has a substantial influence on the amount 
of downtime throughout the course of a plant's life, which helps 
to raise availability, power output, capacity factor, and AEP. 
Therefore, decreasing Operational and Maintenance expenses 
efficiently achieves LCoE mitigation [1].  

Maintenance strategies are commonly categorized as 
reactive, proactive, and opportunistic based on task timing. The 
reactive approach, also known as corrective maintenance, 
involves addressing failures after they've transpired. This 
method proves effective when downtime-associated 

maintenance is minimal, making it suitable for highly reliable 
small farms [2]. Conversely, proactive maintenance entails pre-
scheduled inspections and replacements to prevent minor issues 
from escalating into major failures. Various strategies, including 
preventive, condition-based, and predictive maintenance, fall 
within the proactive category [3]. Lastly, the opportunistic 
strategy amalgamates scheduled preventive and corrective 
maintenance tasks with unscheduled preventive operations 
aimed at addressing future component wear [4]. 

Given that both onshore and offshore power plants benefit 
from a proactive maintenance approach, data from both time-
based and sensor-based sources are collected to create the best 
possible maintenance plan. Data processing is made more 
difficult by the sizeable volume of data that has been gathered 
and the large number of variables that have been measured. As 
a result, feature extraction is used to lessen dimensionality and 
eliminate redundancy—a widespread method across several 
areas [5,6,7]. Numerous feature extraction algorithms are 
available, with Linear Discriminant Analysis (LDA) ranking 
among the most widely utilized. LDA involves identifying a 
projection hyperplane that minimizes interclass variance while 
maximizing the separation between projected class means [8]. 
This objective is accomplished by addressing the eigenvalue 
problem, which yields the relevant eigenvector defining the 
pivotal hyperplane [9]. 

To employ the extracted data for plant health monitoring and 
failure detection, recognizing patterns of failure within the data 
is imperative. As a result, various studies have delved into the 
development of recognition or classification models [10,11,12]. 
These encompass the nonparametric kth-Nearest Neighbor 
(kNN) method, which employs "feature similarity" to predict the 
values of new data points based on their proximity to training set 
points [13]. Logistic models are also considered, elucidating the 
data and elucidating the correlation between a dependent binary 



variable and other nominal independent variables [14]. The 
decision tree (C4.5) is another technique that utilizes a recursive 
splitting method to divide a set of instances into disjoint subsets 
[15]. Additionally, Multivariate Discriminant Analysis (MDA) 
is a classification approach that constructs a discriminant 
function by maximizing the ratio of "between groups" variance 
to "within groups" variance [16]. 

The Support Vector Machine (SVM) is a well-established 
machine learning technique employed to address classification 
challenges within vast datasets [17]. Its applications are 
especially valuable in multi-domain scenarios within the context 
of big data [17]. However, it's important to note that SVM, 
despite its effectiveness, entails mathematical complexity and 
substantial computational requirements [18]. Yet, SVM shines 
in terms of its strong generalization capabilities, making it a 
reliable choice for achieving great classification precision, 
particularly in machine condition monitoring and fault 
diagnostics [19, 20]. 

The Basque Energy Agency (Ente Vasco de la Energa - 
EVE), which is located in north of Spain, formally inaugurated 
the Mutriku wave power plant in July 2011. This establishment, 
illustrated in Figure 1, is an onshore facility seamlessly built into 
the harbor breakwater of Mutriku. It holds 16 Oscillating Water 
Columns consisting of a Wells turbine coupled with a DFIG 
generator [21], [22], [23] and [24]. 

 
Fig. 1. Wave Power Plant of Mutriku in Spain. 

II. MATERIALS AND METHODS 

Following ten years of operation, the Mutriku Wave Power 
Plant (WPP) has documented various instances of degradation 
and failures. These specific occurrences are elaborated upon in 
the subsequent table. 

All the potential damages that may affect any OWC system 
primarily correspond to three categories of malfunctions: 
bearing issues, resonance occurrences, and imbalance situations. 
As a result, these issues will directly result in elevated 
vibrations, as depicted in Figures 2, 3, and 4. 

On the date 15/09/2021, the 24-hour vibration profiles of 
turbines T03, T06, and T07 in the Mutriku WPP are displayed 
in Figures 2, 3, and 4. 

 

 

TABLE I.  DAMAGES OCCURRED ON OWCS IN MUTRIKU WPP. 

Component Cause Damages 

Wells 
turbine 

 

 

Generator 

 

 

Bearing 
cover 

 

 

 

Cooling 
system  

 
 

 

 
Fig. 2. Turbine T03’s 24 hours measured vibrations with bearing problem. 

 
Fig. 3. Turbine T06’s 24 hours measured vibrations with resonance problem. 
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Fig. 4. Turbine T07’s 24 hours measured vibrations with unbalance problem. 

As depicted in the preceding figures, vibrations have the 
potential to surpass 20 mm/s. If these undesirable vibrations are 
not addressed, they have the capacity to undermine the OWC's 
efficiency and potentially exacerbate its condition through 
degradation and potential component failure. 

Enhancing the preventive maintenance of OWCs 
necessitates effective handling of the gathered data. By 
scrutinizing and analyzing the recorded vibrations across 
varying operational months, potential problems and faults can 
be identified and diagnosed. Fig. 5 presents the schematic 
representation of the proposed approach to identify the type of 
failures in OWC units, which, in turn, aids in planning upcoming 
maintenance activities to curtail OpEx expenses. 

 
Fig. 5. ML-based power take-off diagnosis for Oscillating water columns. 

Enhancing the proactive maintenance of the OWCs 
necessitates effective management of the collected data. The 
examination and assessment of recorded vibrations over various 
operational months are instrumental in recognizing and 
pinpointing potential problems and malfunctions [25], [26]. Fig. 
5 outlines the schematic representation of the utilized approach 
to categorize the nature of failures within the OWC unit, which 
subsequently aids in planning forthcoming maintenance 
activities aimed at minimizing OpEx. 

A. LDA-based Feature Extraction 

A technique for preprocessing and reducing the 
computational complexity of a dataset is feature extraction. A 
classifier's training and classification stages might both 
experience significant computational and memory overheads as 
a result of increased feature dimensionality. A classification 
approach is used because finding patterns in high-dimensional 
data can be difficult. 

The most often used classical linear technique to reduce 
dimensionality is Linear Discriminant Analysis (LDA). Within 
the feature-based projection space, LDA looks for a 
transformation matrix W that will optimally increase the ratio of 
the between-class disperse and decrease the within-class 
disperse matrix.  

LDA search for a transformation matrix W, which will 
maximize the ratio of the between-class disperse and will 
minimize the within-class disperse matrix within the feature-

based projection space [8]. LDA is an approach to obtain the 
linear sets of characteristics that best distinguishes between 
multiple classes of events or objects.  

The within-class distribution matrix SW is defined by [27,28]: 

 



here c represents the classes’ number while Ci represents the 
set of data in the ith class, and mi represents the mean of the ith 
class. It’s to be noted that the matrix of within-class distribution 
is a representation of the level of scattering inside classes as the 
sum of the covariance matrices of every class.  

Another relevant parameter is the between-class scatter 
matrix, which maybe defined as [27,28]: 

 

 

A criterion function is then defined using SW matrix of the 
within-class scatter and SB matrix of the between-class scatter to 
obtain the transformation matrix W described by [27,28]: 

 



The transformation matrix W is the one will maximize the 
criterion function J(W). The generalized eigenvectors wi in the 
columns of the optimum transformation matrix W correspond to 
the biggest eigenvalues in: 

 
 

LDA seeks to identify a combination of features by 
effectively differentiating between various object classes. If SW 
is full-rank, W may be calculated via the eigenvectors of SW

-1 SB. 

The LDA technique relies on linear adjustments to increase 
variation within a smaller dimension. LDA looks for linear 
discriminants to increase variation within different categories 
while at the same time lowering variance within each class. 

B. SVM-based Power Take-Off Diagnosis 

The goal is to develop and train a classifier utilizing the pre-
processed data to distinguish between distinct OWC health 
statuses. The Support Vector Machine (SVM) approach is the 
classification methodology used in this investigation. 

The classification-based OWC diagnosis technique 
described here aims to increase the effectiveness of maintenance 
scheduling by using predictive maintenance rather than relying 
solely on preventative maintenance. 

Formally defined by a separating hyperplane, an SVM is a 
discriminative classifier. Classification and pattern recognition 
have seen much development and use of SVM [29,30]. SVM 
refers to a group of similar supervised learning techniques. A 
hyperplane classifier is essentially what SVM is. Finding a 
hyperplane that distinguishes the positive training samples from 
the negative training samples associated to the greatest margin 
serves as the decision surface for training an SVM classifier 
[31]. SVM's ability to handle nonlinearly separable data is one 
of the key factors contributing to its widespread use. For training 



samples pairs , with  represents the vector of the 
weighted feature while   is the label.  

For data that can be separated linearly, we may identify a 
hyperplane  that does the following:  
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here w represents a n-dimensional vector and b as a constant. 
Both parameters w and b determine the position of the separating 
hyperplane. For every i either: 

 


The separating hyperplane is the hyperplane that produces 
the largest margin. By resolving the following issue with the 
consideration of the noise with slack variables ξi and error 
penalty C, the ideal hyperplane may be discovered: 

 


here ξi represents the gap from the margin to the sample xi, which 
is positioned outside of it 

 


By transforming the Kuhn-Tucker conditional problem into 
an analogous Lagrange dual problem, the computations can be 
made easier: 

 


subject to 

 


A kernel function is a function that returns a dot product of 
feature space mappings of the original data points, K(xi. yi). The 
quantity of training data equals the number of variables in the 
dual problem. The Karush-Kuhn-Tucker theorem states that the 
associated α must not be 0 in order for the equality criterion to 
apply to the training input-output pair (xi. yi). Support vector 
(SV) is used as the training example xi in this instance. SVM is 
extremely computationally efficient since the number of SVs is 
much smaller than the number of training samples. For the 
classification problem, SVM is a useful classifier. 

III. RESULTS AND DISCUSSION 

To extract characteristics that indicate the information on 
plant health, the acquired data is processed. The traits that are 
most pertinent to our investigation are revealed by running an 
LDA on the OWC data. In contrast to the blue bars in Fig. 6, 
which reflect the proportion of variation described by each 
individual component (in%), the scree plot of Fig. 6 displays the 
cumulative variance explained by the additional Discriminant 
Component (DC). 

According to Fig. 6, the first discriminant component 
accounts for 40.88% of the variance, whereas the second and 
third components each account for 26.43% and 24.78%. 
Therefore, it requires 3 components to explain 92.09% of the 
total variation. The top three DCs correspond to the vibration 
velocity, angular velocity and pressure features. 

 
Fig. 6. Explained variance obtained from LDA 

The scatter plots of the two most significant features are 
shown in Fig. 7 using data from a healthy Wells turbine and 
three distinct defective turbines, including imbalanced, bearing, 
and resonance issues, that were recorded at the Mutriku WWP 
facility on September 15, 2021. 

 
Fig. 7. Average vibrations speed vs. angular velocity in four turbines in 

Mutriku’s OWCs. 

As seen in Fig. 7, the average vibration changes depending 
on the rotor's angular frequency. In actuality, it is evident that 
each turbine registers two maxima at roughly and 

. An ideal turbine may vibrate up to  , while ill 
turbines can vibrate up to   at for imbalance 
issues,   at  for bearing issues, and 
at                                                         for resonance issues.     

The scatter plot depicting the three most relevant features is 
presented in Fig. 8, derived out of the collected data on 
15/09/2021 concerning the Wells turbine bearing issue. This 3D 
scatter plot distinctly reveals that the fluctuation in vibration is 
influenced not solely by the rotor’s angular velocity but also by 
the OWC’s pressure. 

 
Fig. 8. Scatter plot of vibration vs angular velocity & pressure in turbine T03. 
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In Fig. 9, it's evident that there is minimal confusion between 
the classes. Precise predictions between classes stand at 89%, 
while inaccurate predictions are merely 11%. 

 
Fig. 9. Confusion plot of the trained SVM model. 

The ROC depicted in Fig. 10 reveals that the SVM model 
exhibits an excellent performance, boasting an AUC of 0.81. 

 
Fig. 10. Receiver Operating Characteristic of trained SVM model. 

Fig. 11 illustrates simulations conducted to assess the 
precision of the trained SVM classifier concerning the count of 
features, utilizing the LDA components. A substantial 
enhancement is observed as additional features are incorporated, 
reaching a notable improvement up to three DCs. However, the 
accuracy gains become more marginal beyond four DCs. 

 
Fig. 11. Trained SVM’s classification accuracy vs. features. 

IV. CONCLUSIONS 

This paper introduces a classification-oriented approach for 
diagnosing Power Take-Off systems in WECs to facilitate the 
implementation of predictive maintenance strategies. The 
proposed methodology utilizes actual plant data for training 
classifier models, enabling the prediction of the health status of 
individual WEC units. The applicability of this approach is 
assessed using the Mutriku wave power plant as a case study. 
Given the challenging environmental conditions at Mutriku, the 
PTO units of the Oscillating Water Column experience 
vibrations that can result in failures and breakages. These 
incidents contribute to significant downtime, consequently 
impacting the Levelized Cost of Energy (LCoE). In the context 
of this case study, the primary objective is to diagnose the 
underlying issues, mitigate vibration-related failures, and 
ultimately optimize the LCoE through the implementation of a 
robust predictive maintenance strategy.  

The study utilized the feature extraction technique of Linear 
Discriminant Analysis (LDA) to identify the most pertinent 
features for OWC diagnosis. Through LDA, it was determined 
that three components are required to achieve a cumulative 
explained variance of 92.09%. Consequently, the initial three 
common components, encompassing vibration, rotational speed, 
and pressure features, were selected for the design and training 
of the classification model. 

The classification technique employed in this study is the 
Support Vector Machine (SVM). The outcomes indicate that the 
SVM model, once trained, effectively attains a remarkable 
accuracy level of 89%. 

Upcoming research endeavors will encompass the 
exploration and application of the classification-based PTO 
diagnosis for the integration of a predictive maintenance 
strategy. As indicated by existing research, this strategy holds 
the potential to yield an OpEx reduction of 18% and decrease 
plant downtime by 20%, thereby elevating plant availability to 
81% and consequently reducing LCoE by as much as 23%. 

ACKNOWLEDGMENT 

The authors would like to thank the help and collaboration 
of the Basque Energy Agency (Ente Vasco de la Energía-EVE) 
and Biscay Marine Energy Platform-BiMEP for providing the 
real measured experimental data of the Mutriku wave power 
plant and the economic data.  

REFERENCES 

 



[11] J. Liu, J. Sun, S. Wang. “Pattern recognition: An overview,” IJCSNS 
International Journal of Computer Science and Network Security, vol. 6, 
no. 6, pp. 57-61, 2006. 

[12] G. K. Verma, U. S. Tiwary. “Multimodal fusion framework: A 
multiresolution approach for emotion classification and recognition from 
physiological signals,” NeuroImage, vol. 102, pp. 162-172, 2014. 

[13] M. A. Wong, T. Lane. “A kth nearest neighbour clustering procedure,” 
Journal of the Royal Statistical Society: Series B (Methodological), vol. 
45, no. 3, pp. 362-368, 1983. 

[14] D. R. Cox. “Analysis of binary data,” Routledge, 2018 Feb 19. 

[15] J. R. Quinlan. “C4.5: programs for machine learning,” Elsevier; 2014 Jun 
28. 

[16] R.A. Fisher. “The use of multiple measurements in taxonomic problems,” 
Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936. 

[17] S. Suthaharan, S. Suthaharan. “Support vector machine,” In Machine 
learning models and algorithms for big data classification: thinking with 
examples for effective learning. Springer, Boston, MA, pp. 207-235, 
2016. 

[18] D.A. Pisner, D. M. Schnyer. “Support vector machine,” In Machine 
learning. Academic Press, pp. 101-121, 2020. 

[19] A. Widodo, B.S. Yang. “Support vector machine in machine condition 
monitoring and fault diagnosis,” Mechanical systems and signal 
processing, vol. 21, no. 6, pp. 2560-2574, 2007. 

[20] S. Lee. “Monte Carlo simulation using support vector machine and kernel 
density for failure probability estimation,” Reliability Engineering & 
System Safety, vol. 209, p. 107481, 2021. 

[21] F. M’zoughi, S. Bouallègue, M. Ayadi, A.J. Garrido, I. Garrido. 
“Modelling and airflow control of an oscillating water column for wave 
power generation,” In Proc. 4th International Conference on Control, 
Decision and Information Technologies (CoDIT), Barcelona, Spain, April 
2017, pp. 938-943. 

[22] F. M’zoughi, I. Garrido, A.J. Garrido, M. De La Sen. “Fuzzy gain 
scheduled-sliding mode rotational speed control of an oscillating water 
column,” IEEE Access, vol. 8, pp. 45853-45873, 2020. 

[23] F. M’zoughi, I. Garrido, A.J. Garrido, M. De La Sen. “Rotational speed 
control using ANN-based MPPT for OWC based on surface elevation 
measurements,” Applied Sciences, vol. 10, no. 24, p. 8975, 2020. 

[24] J. Lekube, A.J. Garrido, I. Garrido, E. Otaola, J. Maseda. “Flow control 
in wells turbines for harnessing maximum wave power,” Sensors , vol. 
18, no. 2, p. 535, 2018. 

[25] P. Aboutalebi, F. M’zoughi, I. Martija, I. Garrido, A.J. Garrido. 
“Switching control strategy for oscillating water columns based on 
response amplitude operators for floating offshore wind turbines 
stabilization,” Applied Sciences, vol. 11, no. 11, p. 5249, 2021. 

[26] I. Ahmad, F. M'zoughi, P. Aboutalebi, I. Garrido, A.J. Garrido. “Fuzzy 
logic control of an artificial neural network-based floating offshore wind 
turbine model integrated with four oscillating water columns,” Ocean 
Engineering, vol. 269, p. 113578, 2023. 

 

 

 


