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Abstract
The essence of regeneration and plasticity lies in the capacities of certain cell populations to give rise to progenies with specific functional and morphological traits. 
An array of molecular events directs this process (for instance, activation and de-activation of transcription or regulation of epigenetic mechanisms and controls). The 
unravelling of the processes that activate differentiation or de-differentiation events and the isolation and precise characterization of specific stem cell populations 
will open new avenues of therapy intervention in all areas of regenerative medicine, including eye pathologies. In the human anterior segment of the eye, adult stem 
cells can be found in the corneal limbus (the rim that separates cornea and conjunctiva). Currently, different approaches use transplantation of limbal epithelial stem 
cells (LESC) or corneal stromal stem cells (CSSC) to restore damaged cornea. LESC and CSSC establish a molecular dialogue that may support the maintenance 
of their stem phenotype. To restore corneal transparency and function other therapy approaches include the use of adult stem cells of different origins, bioengineered 
cells and biomaterials. 

Introduction
According to The World Health Organization (WHO), corneal 

blindness (5.1% of total cases of blindness or visual deterioration) 
represents the fourth cause of blindness globally, after cataract, 
glaucoma and age-related macular degeneration (AMD).

Updated advances in the application of stem cells to treat diseased 
cornea are reviewed in this work. Also, plasticity, “stemness” and 
regeneration are considered in the field of therapy endeavours targeted 
to tackle corneal pathologies. Stem cells have an essential role in 
development, tissue replacement and tissue repair. They reside in 
niches where an orchestrated ensemble of autocrine, paracrine and 
endocrine factors regulate their function and fate [1-3]. Stem cells are 
able to proliferate and differentiate into different cell types. Hence they 
are very important in cell renewal, both naturally and as a therapy tool.

Difficulties in effective treatments are sometimes due to the 
significant extent and gravity of the lesion produced by both external 
insults (such as pathogenic agents or accidental damage due to burn 
or chemical corrosion) and genetic abnormality or ill-function. The 
search for new and effective treatments to restore vision is therefore 
a paramount. It is in this context where cell therapy may have an 
important niche of action.

To regenerate a tissue to its partial or complete functional state 
new cells with high transformation potential should be obtained. 
Therefore, regeneration is based on appropriate replacement. Cell can 
be reprogrammed to an undifferentiated state from a differentiated 
one [4,5]. Also, some cell populations may shift among different 
states of differentiation. Anuran amphibians, for example, are able to 
regenerate the retina by means of a transdifferentiation process of the 
retinal pigmented epithelium and obtain a new lens from dorsal iris 
pigmented epithelium [6]. 

Cell differentiation is an intricate route that may progress in 
different directions. The complexities recline in molecular “orders” 

that carve the final fully functional cell. But the process can, at certain 
points, be stopped or reversed in opposite direction, thus making the 
pathway more flexible and prone to required adaptations [4,7]. 

In general, the term “stemness” refers to the dormant state and the 
capacity that some cells have to differentiate in given conditions [8]. 
But the expression incorporates different transformation capacities 
(totipotent stem cells exhibit the potential to generate any cell of an 
organism; an embryonic stem cell, however, generates all the cells of a 
given organism, but the trophoblast,  and the production of progenies 
by postnatal stem cells is restricted to the tissue where they dwell 
[8,9]. Common characteristics of stem cells are their ability to divide 
and maintain their division potential or differentiate and loose such 
capacity [10]. Cell division can be symmetrical, where two identical 
cells are generated. When cell division is asymmetrical, one daughter 
cell keeps “stemness” whereas the other differentiates [8,10]. How 
and when the cell “decides” between symmetrical and asymmetrical 
divisions is not fully known but both external and intrinsic factors are 
involved [10].

The molecular machinery (noteworthy, control and modulation of 
transcription) responsible for the capacity of a cell to maintain a given 
state of “stemness” reacts to different and numerous stimuli [11,12]. It 
is important therefore to define the molecular events that determine 
cell potencies and fates. Once we have the knowledge, and expertise, 
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cells may be controlled and reprogrammed to suit specific needs in the 
ambit of therapy [7]. 

Corneal insults caused by different agents and diseases produce 
damage and alter healthy eye function. The use of stem cells, residing 
both in the eye and in other organs, to palliate the consequences of 
damage, offers promising avenues to recover visual function [13]. 
However, caution is always sound, and approaches should be based in 
solid research.

Basic architecture of the cornea 
The cornea offers the appropriate molecular structure and 

architecture that ensures that the retina correctly receives light stimuli. 
Consequently, vision takes place. The molecular organization of the 
cornea and the absence of blood vessels maintain transparency. Three 
layers, namely epithelium, stroma and endothelium form the structure. 
The stroma contains keratocytes and is separated by two covers 
(Bowman and Descemet). The Bowman membrane, situated between 
the epithelium and the stroma and the Descemet membrane, which 
separates the stroma and the endothelium (a single layer of endothelial 
cells that extracts water from the stroma) are made of collagen [14,15]. 
The particular disposition of collagen fibers allows the passage of light 
and avoids light dispersion. Corneal transparency can be assessed by 
Fourier analysis [16].

When the corneal structure is damaged the pass of light may be 
severely impaired and vision may deteriorate or be lost. Restoration 
of corneal function has been approached by transplant procedures 
or replacement with artificial tissue [17-19]. Not always the methods 
are successful.  It has been set forth that combined surgical and 
pharmacological procedures become a necessity to overcome the 
immunological rejection responses caused by iatrogenic intervention 
[20]. 

The cornea harbors adult stem cells
Maintenance of tissue homeostasis is an essential peculiarity in 

many tissues, including the cornea [21]. The XYZ hypothesis [22] 
establishes that the renovation of the corneal epithelium can be defined 
by the formulation X+Y=Z, where Z (desquamation) is the sum of X 
(proliferation) and Y (migration). In this proposal the X component 
is represented by the corneal limbus, the boundary that separates the 
cornea and the conjunctiva. The limbus impedes the penetration of blood 
vessels to the cornea form the neighbouring conjunctiva. It also feeds 
the cornea with metabolic products. The corneal limbus accommodates 
stem cells named limbal epithelial stem cells (LESC or LSCs) [23]. These 
cells only differentiate, in physiological conditions, to corneal epithelial 
cells. The pathway to a fully differentiated phenotype follows several 
steps (including transient amplifying cells (TAC) and post mitotic 
cells [24]). One relevant difficulty concerning the usefulness of limbal 
stem cells is their isolation as a homogeneous population. One helpful 
method to attain isolated LESC is the analysis of molecular markers 
only found in these cells. Candidates to be considered as markers have 
been proposed (including ABCG2 protein and cytokeratin 19 [25]). 
The consideration of morphological traits may also benefit proper 
isolation [24,26]. Besides, studies of gene expression that can be carried 
out by using microarrays are relevant [27,28]. Characterization of an 
ample group of cell surface markers, including cell adhesion molecules, 
cadherins, integrins or surface carbohydrates, combined with the 
investigation of colony forming potential and determination of 
transcriptional profiles are valid methodological approaches to assess 
LESC uniqueness [29]. In this context one consideration that has to 

be taken into account is that stem cells may offer changeable profiles, 
depending on their state (proliferation or dormant states). Therefore, 
the existence of many different and relevant profiles might difficult the 
identification and isolation of these cells [30,31]. It has been indicated 
that these cells are able to divide asymmetrically to ensure the pool 
of LESC and to provide, when needed, cells to replace the corneal 
epithelium [20]. 

The population of LESC within the limbus seems to be not 
homogeneous since the superior and inferior limbus accommodates 
more cells than the rest of the rim [31,32]. LESC harvested from the 
superior region of the limbus are able to produce thicker structures 
when cultivated [33]. The differential properties of the superior region 
LESC have been related to the peculiar structure of the limbal rim in 
this region, where crypts and projections from the stroma are abundant 
[15,32].

Based on evidence obtained from patients suffering from inefficient 
LESC, it has been proposed that the limbus is not essential for corneal 
epithelium turnover in physiological conditions [34]. Moreover, when 
the cornea is wounded, the response of LESC is not immediate but 
delayed some hours. Apparently, the first remedy response is carried 
out by the central part of the cornea [35]. Consequently, the cellular 
mechanisms involved in remodelling and reparation of injured or 
deteriorated corneal epithelium may be accomplished by separated cell 
populations. However, the factors and conditions that determine such 
processes are not fully understood.

Other adult stem cells found in the limbal corneal stroma need 
consideration. They are called corneal stromal stem cells (CSSC). These 
cells exhibit the properties of mesenchymal stem cells (clonal growth, 
asymmetrical divisions and ability to differentiate into multiple cell 
types [36]).  CSSC are found in the limbalstroma, nearby Bowman´s 
membrane and close to limbal epithelial stem cells [36]. These cells 
show similar properties to bone marrow-derived mesenchymal 
stromal cells [37] and their identification as mesenchymal stem cells 
[38] can be assessed (standard criteria established by the International 
Society of Cellular Therapy, ISCT, see [39]). Also, they exhibit 
immunomodulatory properties [40,41] and their tolerogenicpotentical 
may be partially due to the generation of microvesicles [42]. Limbal 
stromal mesenchymal cells are niche cells that prevent differentiation 
and keep clonal growth of LESC [43,44] through mechanisms involving 
both soluble factors and/or microvesicles that may stimulate target cells 
directly or indirectly by delivering proteins and genetic material [45]. 
Therefore, CSSC and mesenchymal cells from other origins may have 
a crucial role, together with LESC, in maintaining corneal integrity. A 
recently described type of interstitial cells, telocytes, has been found 
in the corneal limbus. These cells establish direct contact (by means 
of telopodes) with stromal stem cells, melanocytes, macrophages and 
exert a paracrine influence by delivering exosomes to other cells within 
the limbal niche [46]. In a long-term study using a rabbit model of 
corneal deficiency, the reconstruction of a stem cell niche was observed 
[47]. Interestingly, the characterized cornea-like cells (expressing 
cytokeratin 12) were apparently generated from fibroblasts by EMT 
(epithelial-mesenchimal transition) induction. Therefore, the potential 
of resident corneal cells of different types should be considered and 
the molecular mechanisms underlying their transformation further 
explored.

Therapy with LESC and CSSC
LESC deficiency is a condition where limbal organization is 

destroyed, stem cells are not longer functional, the cornea is invaded 
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by the conjunctiva and blood vessels penetrate corneal tissue. The 
consequence is that the epithelium looses architecture and thickness 
and is less protected against laceration [34,48,49]. The shortage of 
stem cells and the consequent impaired capacity to rehabilitate ruined 
corneal tissue produces clear symptoms, including pain, irritation and 
even distress and loss of vision if opacity is severe. It has to be indicated, 
however, that LESC deficiency is not, at present, considered as a unique 
and delimited condition where stem cells are no active. Often, the 
capacity of reaction towards injury also depends on the integrity and 
action of stromal cells and other cells that reside in the epithelium [50].

When an individual, due to trauma or disease, looses the capacity 
to regenerate its cornea with local stem cells in one eye, the healthy eye 
may serve as a alternative to implement a transplant [51]. Autologous 
transplant of cornea cultivated ex vivo was performed for the first 
time in patients suffering severe corneal opacity after burn [52]. To 
get success, in vitro cultivation of LESC demands suited requirements 
to obtain grown tissue in the best possible conditions for the grafting 
method. For instance structural material such as collagen, amniotic 
membranes, synthetic polymers, fibrin, silk fibroin, acellular corneal 
matrix, human lens capsule, etc [15,20,53-55] are needed to obtain 
useful tissue coats. Cloning efficiency and ROS-scavenging capacity of 
LESC can notably be improved by manipulating Rho-associated coiled 
coil kinase signalling pathways [56]. Also, the process can be improved 
by using other cells that feed LESC (co-cultivation with fibroblasts, 
for instance [57]). Mesenchymal stem cells have also feeder capacity 
and may transdifferenciate into epithelial-like cells when seeded on 
acellularxenogenic corneal matrix [54]. But cultivation procedures 
require further analysis aimed to improve cloning capacity of stem 
cells and effective tissue layers [37,58,59]. A good cultivation strategy 
that combines adequate bio or artificial support with feeder cells, 
together with the use of exogenous agents, may result in new effective 
applications to treat corneal wreckage [60].

Other courses of action should be taken when corneal lesion is 
bilateral and own resources are not available. In this case, the tactics 
include the use of other donors. Allograft transplant may lead to 
rejection. Therefore, concomitant immunosuppressant treatments 
must be used [61,62]. Interestingly, the application of allografts 
obtained by co-cultivation of LESC and CSSC or mesenchymal cells 
from other sources [37,54,63]  may allow transplantation procedures 
that require no concomitant immunosuppressant treatment to palliate 
rejection. 

Treatment aimed to cure or partially repair the harm must be based 
on the numerous circumstances found in the diseased eye (cause of 
damage, clinical situation of the patient, and so forth) [64].

Therapy with cells from other origins
Other localizations have been searched to obtain cells that can be 

used to treat corneal diseases. Interesting experimental findings show 
that corneal damage mobilizes bone marrow mesenchymal stem cells 
that home to the altered corneal tissue and contribute to regeneration 
[65]. Also, subconjunctival injection of bone marrow mesenchymal 
stem cells recovered corneal epithelium in an experimental acute 
alkali burn model 44. Bone marrow mesenchymal stem cells promote 
LESC survival and proliferation in a paracrine mode when co-cultured 
in vitro [63]. Human umbilical cord blood (hUCB) cells [66,67] or 
adipose-derived stem cells (ASCs) [55,68] are competent candidates to 
be examined in corneal repair. A recent study, using a rabbit model, 
adipose-derived mesenchimal cells were seeded on an acellular human 
cornel matrix to obtain a biocompatible graft [69]. Other locations 

pondered for the recruitment of suitable cells include the oral mucosa 
and the conjunctiva [62,70]. Also, rectal, nasal, oesophageal, anal or 
vaginal squamous epithelial cells should be analyzed for autologous 
transplant [62]. Additional therapy approaches include the application 
of osteo-odontokeratoprothesis (OOKP), especially when limbal 
transplantation is contraindicated (for instance in severe dry eye) 
[71,72]. Specifically, in cases of bilateral limbal stem cell deficiency, the 
search for autologous tissue sources is paramount [73].

Therapy with manipulated and engineered cells
Activation of certain transcription factors [74] or manipulation of 

gene expression [75] allows reprogramming of cells to a pluripotent 
state (iPS, induced pluripotent stem cell). Their broad therapeutic value 
is based on the capacity of iPS cells to re-differentiate into cells of the 
three germ layers. Paripassu, iPS cells do not raise the controversy 
derived from the use of human embryonic cells in research and therapy 
[76]. Nevertheless, the mechanisms behind reprogramming are not well 
understood and need attention and study. Gene expression controls 
and epigenetic machinery play a fundamental role in the process and 
should be puzzled out [76]. 

To be useful in therapy approaches, a programmed cell must 
exhibit the pertinent phenotype and respond in the adequate signalling 
milieu to reach the location where it is required. As an example, it has 
been shown that the transcription factor named Slug has a principal 
role in the process of migration [77]. NF-κB is also a transcription 
factor that influences endothelial mesenchymal transformation in 
the cornea in response to interleukin (IL)-1β stimulation [78]. Also, 
healthy maintenance of in vitro cultures is important.

The design of bioengineered tissues destined to regenerative 
therapies relies on in vitro models that recreate natural organogenesis. 
Co-cultivation of epithelial and mesenchymal feeder cells in the 
presence of keratinocyte growth factor and a rho kinase inhibitor 
permits long-term maintenance of limbal epithelial progenitor cells 
[79]. Amniotic membranes have been used to reconstruct ocular 
surfaces with variable results in part due to differences in mechanical 
stiffness or preparation and storage conditions [80,81]. Structural 
uniformity and manipulation of both physical and mechanical 
properties can be reached with hydrogels [82] which consist of three 
dimensional networks of polymers and water. Some examples are the 
nanofiber scaffolds, [83], type I collagen or polylactic-co-glycolic acid 
[84]. These materials are being assayed to secure appropriate support 
and environment for cell growth and stem cell profile maintenance. 
Reparation of corneal damage could be combined with other 
approaches, such as nanoparticles that may deliver drugs that facilitate 
wound healing and block neovascularisation [85].

Undoubtedly, knowledge of the molecular events that conduct and 
control differentiation and cell movement, the dialogue that different 
types of cells establish in their natural niches and the regulation of 
the main genes with a leading role in this context, will benefit clinical 
analysis and treatment designs [86-89]. Also, adequate animal models 
of limbal stem deficiency are very valuable to study interactions and to 
test methodologies [90]. 

In sum, precise characterization of both morphological traits 
and molecular mechanisms directing dormancy, differentiation 
and migration in LESC and other stem cells are of vital importance 
to apply them in different repair approaches [91]. It is desirable that 
many different options are ready for use to suit specific needs and more 
non-invasive approaches. Figure 1 summarizes the basic structure of 
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the corneal limbus niche and the main corneal restoration approaches 
based on the use of stem cells. 
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