ENGLISH FRIENDLY COURSES (EFC) 2024–2025
CAMPUS OF ARABA

Link to website: https://www.ehu.eus/en/web/farmazia-fakultatea/kanpoko-ikaslego
Contact: farmacia.internacional@ehu.eus

In addition to the general offer of courses taught in English, some Centers offer for incoming students English Friendly Courses (EFC); subjects taught in Spanish or Basque, in which the syllabus summary, lecturer tutoring, examinations and/or papers are available in English.

English Friendly Courses taught in SPANISH:

FACULTY OF PHARMACY (125)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SEMESTER1</th>
<th>CREDITS</th>
<th>SCHEDULE2</th>
<th>LINK TO SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor’s Degree in Human Nutrition and Diet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25192 Epidemiología Nutricional</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25190 Química y Bioquímica de los Alimentos</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25194 Bioquímica</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25203 Expresión Génica y Control Metabólico</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Bachelor’s Degree in Pharmacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25259 Fisica</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25264 Biología Molecular</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25282 Dermofarmacia</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25288 Determinación estructural de fármacos</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25289 Farmacovigilancia</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25194 Bioquímica</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25265 Bioquímica Clinica</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25272 Farmacia Galénica</td>
<td>2nd</td>
<td>9</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Bachelor’s Degree in Environmental Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25227 Geología</td>
<td>1st</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25238 Meteorología y Oceanografía</td>
<td>1st</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

1 SEMESTER: 1st: September 2024 to January 2025
 2nd: January 2025 to May 2025

2 SCHEDULE: Morning (M)/ Afternoon (A): begins at 13.30
FACULTY OF PHARMACY (125)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SEMESTER</th>
<th>CREDITS</th>
<th>SCHEDULE</th>
<th>LINK TO SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25108 Fisica</td>
<td>2nd</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25254 Gestión Energética y Ecoeficiencia</td>
<td>1st</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s Degree in Food Science and Technology

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SEMESTER</th>
<th>CREDITS</th>
<th>SCHEDULE</th>
<th>LINK TO SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25112 Bioquimica</td>
<td>1st</td>
<td>9</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25108 Fisica</td>
<td>2nd</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25124 Tecnologia de los Alimentos</td>
<td>2nd</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

English Friendly Courses taught in BASQUE:

FACULTY OF PHARMACY (125)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SEMESTER</th>
<th>CREDITS</th>
<th>SCHEDULE</th>
<th>LINK TO SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor’s Degree in Human Nutrition and Diet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25192 Nutrizioari lotutako epidemiologia</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25190 Elikagaien Kimika eta Biokimika</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25194 Biokimika</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25203 Gene espresioa eta kontrol metabolikoa</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s Degree in Pharmacy

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SEMESTER</th>
<th>CREDITS</th>
<th>SCHEDULE</th>
<th>LINK TO SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25264 Biologia Molekularra</td>
<td>1st</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>25265 Biokimika Klinikoa</td>
<td>2nd</td>
<td>6</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s Degree in Environmental Sciences

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SEMESTER</th>
<th>CREDITS</th>
<th>SCHEDULE</th>
<th>LINK TO SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25227 Geologia</td>
<td>1st</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25238 Meteorologia eta Ozeanografia</td>
<td>1st</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25108 Fisika</td>
<td>2nd</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25254 Energiaren Kudeaketa eta Ekoeraginkortasuna</td>
<td>1st</td>
<td>7,5</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s Degree in Food Science and Technology

<table>
<thead>
<tr>
<th>COURSE</th>
<th>SEMESTER</th>
<th>CREDITS</th>
<th>SCHEDULE</th>
<th>LINK TO SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25112 Biokimika</td>
<td>1st</td>
<td>9</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25108 Fisika</td>
<td>2nd</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25130 Haragiaren, Arrainaren eta Produktu Erorriren Zientzia eta Teknologia</td>
<td>1st</td>
<td>9</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25115 Ingeniariitzza Kimikoa</td>
<td>1st</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

3 SEMESTER: 1st: September 2024 to January 2025
 2nd: January 2025 to May 2025
4 SCHEDULE: Morning (M)/ Afternoon (A): begins at 13.30
COURSE GUIDE 2024/25
Faculty: 125 - Faculty of Pharmacy
Degree: GNUTRI10 - Bachelor's Degree in Human Nutrition & Dietetics

COURSE
COURSE DESCRIPTION
This subject provides an updated vision of the methodological basis of epidemiology, highlighting the special features inherent to nutritional epidemiology. This subject also inter-relates and completes knowledge that a Graduate in Nutrition and Diet acquires during the course, offering an overall vision of research in nutritional epidemiology in human beings and provides the scientific level required to work as a professional in the field of Nutrition in decision-making and therapeutic practical work.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

COMPETENCES
1. Participate in the analysis, planning, intervention and evaluation of epidemiological studies and intervention programmes in diet and nutrition in different areas (M05CM02).
2. Design and make nutritional evaluations to identify the population's needs in terms of diet and nutrition, and identify key factors in nutritional health (M05CM03).
3. Design, intervene in and carry out diet-nutrition educational programmes, and training in diet and nutrition (M05CM04).

LEARNING OUTCOMES
1. Apply the epidemiological method to study the effect of diet on human health.
2. Learn about the main types of epidemiological studies used to respond to a research question.
3. Calculate the main epidemiological measures in different types of epidemiological studies.
4. Analyse statistically the data from nutritional epidemiological studies.
5. Evaluate the validity of the nutritional epidemiology studies.
6. Make bibliography searches in biomedical databases.
7. Critically evaluate scientific articles in the field of nutritional epidemiology.
8. Formulate an evidence-based nutritional recommendation.
9. Select methods to measure diet and the intake of the most suitable nutrients in different types of epidemiological studies.
10. Carry out teamwork in a collaborative and cooperative manner.

Theoretical and Practical Contents
Introduction to Nutritional Epidemiology.
Types of study design in Nutritional Epidemiology.
Frequency measures / association and effect measures.
Data analysis.
Causality
Validity in nutritional studies. Bias and confusion
Diet evaluation in Nutritional studies

TEACHING METHODS
1. In theory classes (lectures) the concepts of the subject will be taught, with student participation in occasional debates.
2. In the practical work sessions, individual and collective exercises will be done. Problem-solving in class will be done in a participative way: Problems and exercises will be provided to be worked on individually or in groups, to go into greater detail in the theoretical knowledge of the subject and relate Public Health to other similar areas.
3. In the practical work with computers the students will make bibliography searches using biomedical search engines, and they will carry out epidemiological exercises to learn how to calculate the main measures of frequency and effect applied to different epidemiological studies. At the end, each group will present the main methodological aspects of the study they have worked on to their fellow students. In this way, the formulation of questions and open discussion will be encouraged so that students can acquire skills related to oral communication, the ability to summarise and work in a team.
TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>12</td>
<td>12</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>34</td>
<td>16</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 60%
- Exercises, cases or problem sets 10%
- Individual assignments 5%
- Teamwork assignments (problem solving, Project design) 10%
- Oral presentation of assigned tasks, Reading 10%
- Otros: Participación, actitud y asistencia 5%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

A) 40 % TEORIA (4 puntos):
- 1 punto: Búsqueda de información y participación en clase.
- 3 puntos: Examen

B) 60 % PRÁCTICAS (6 puntos):
- 3 puntos Trabajo en grupo (diseño de un estudio epidemiologico)
- 3 puntos: Examen

Tipo de Examen:
- Preguntas cortas, preguntas largas, preguntas test y ejercicos.
- 5 puntos nota mínima para aprobar la asignatura.
- 4 puntos nota mínima en el examen para aprobar.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Assessment will be in the combined modality, as follows:

- Theory-practice exam 60%
- Information search, exercises, participation, attitude and attendance: 20%
- Individual work (data analysis) 5%
- Team work: 20 (10% writing and 10% oral presentation)
- Attendance and participation:5%

Clarifications:
- If the student does not present him/herself at the exam he/she will be considered to have withdrawn from the call and will appear as “Not presented”.
- Minimum mark to pass the subject: 5 points
- Minimum mark to pass the theory-practical exam: 5 points.

MANDATORY MATERIALS
BIBLIOGRAPHY

Basic bibliography
Colimon KM. Fundamentos de Epidemiología. Madrid: Díaz de Santos; 1990

Detailed bibliography

Books:
Rothman et al. Modern Epidemiology (3. edición).

Scientific papers:

Journals

• European Journal of Clinical Nutrition http://www.nature.com/ejcn/index.html

• European Journal of Epidemiology http://link.springer.com/journal/10654

• American Journal of Clinical Nutrition http://ajcn.nutrition.org/

• American Journal of Epidemiology https://academic.oup.com/aje

Web sites of interest

OBSERVATIONS
COURSE GUIDE 2024/25

Faculty 125 - Faculty of Pharmacy
Degree GNUTRI10 - Bachelor's Degree in Human Nutrition & Dietetics
Cycle
Year First year

COURSE
25190 - Chemistry and Biochemistry of Food
Credits, ECTS: 6

COURSE DESCRIPTION
The subject of Food Chemistry and Biochemistry is taught in the 2nd four-month period of the 1st year of the Degree in Human Nutrition and Dietetics, and it is part of the Food Science module of this Degree. Foodstuffs have a complex chemical and biochemical composition, and it is in this subject where the main chemical components of food are studied (water, carbohydrates, lipids and dietary proteins, vitamins and minerals, natural pigments, and taste and flavour components), together with the main food additives. Their chemical structure, physico-chemical properties, effects and function in foods, as well as the main chemical alteration reactions in foods are subject of study.

This subject provides the basic knowledge of the chemical components of food, their chemical properties and functionality, as well as the main changes that food undergoes as a consequence of processing and preservation processes and that affect food nutritional and organoleptic properties, among others. This knowledge is fundamental for the Dietitian-Nutritionist, who, in his or her professional practice, must understand and apply the relationship between food, nutrition and health in their field of work.

In order to follow the subject correctly, it is necessary to have previous knowledge of the basic subjects taken in the first four-month period of the Degree, such as General Chemistry and Physico-chemistry, as well as to relate certain concepts of the subject Food Chemistry and Biochemistry with basic aspects explained in the subject of Organic Chemistry in this course. Likewise, this subject serves as a basis to be able to adequately develop, among others, other subjects of the degree such as Bromatology (2nd year) and Culinary Technology and Food Processing (2nd year).

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT
1. Identify and differentiate the chemical structure and properties of the main chemical and biochemical components responsible for the quality attributes of food products.
2. Relate the chemical structure of these components with their functionality in food.
3. Analyse and compare the behaviour of chemical and biochemical components under certain food processing and preservation conditions.
4. Identify the main chemical reactions that can occur during food processing and preservation and their impact on food quality.
5. Study some major and minor food components (concentration, properties) using different methodologies and interpret the results obtained.
6. Organise and plan group work for the search, selection and synthesis of information; express themselves clearly, using the correct nomenclature of Food Chemistry; understand reports on analytical procedures of food components, and interpret the results obtained.

Theoretical and Practical Contents
THEORETICAL PROGRAMME
2. Carbohydrates in food. Definition. Classification.
10. Amino acids and peptides in food. Definition. Classification. Importance of their presence in food.

PRACTICAL PROGRAMME
Laboratory practical classes on the study of some properties and behaviour of certain important components in foodstuffs:
1. Characterisation of edible oils after extraction of fatty acids. Refractive indexes of edible oils.
2. Fractionation and quantification of food proteins in egg products.

TEACHING METHODS

The teachers in charge of the subject belong to the Food Technology Area, and use different teaching methodologies in this subject:

- **Lectures (M)** in which the basic contents of the subject will be presented.
- **Laboratory practical classes (GL)** will be carried out in working groups and include two different and complementary tasks: (1) carrying out the practical exercises in the laboratory and subsequent discussion of the results obtained in a seminar and (2) preparation of a written report in which the most relevant results obtained and their interpretation will be included. The active participation of the students will be encouraged and evaluated.
- **Classroom practice (GA)** consists of two types of activities directed by the teacher: (1) resolution of exercises individually, and (2) oral presentation, after group work, on the chemistry, behaviour and functionality of a type of food additive (lesson 15), in which the active participation of the students will be encouraged and evaluated.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>40</td>
<td>5</td>
<td>15</td>
<td>70</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **M:** Lecture-based
- **S:** Seminar
- **GA:** Applied classroom-based groups
- **GL:** Applied laboratory-based groups
- **GO:** Applied computer-based groups
- **GCL:** Applied clinical-based groups
- **TA:** Workshop
- **TI:** Industrial workshop
- **GCA:** Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 70%
- Exercises, cases or problem sets 18%
- Oral presentation of assigned tasks, Reading 12%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Continuous Assessment System: The student's final grade will be the result of the weighted evaluation of the following tests and activities:

- **Final written exam (individual):** 70%. This is a test on the theoretical (and practical) contents of the programme. It must be passed with a minimum score of 5 points out of 10.
- **Laboratory practice report,** together with the work carried out in the laboratory and active participation in the seminar (by groups): 18%. It must be passed with a minimum score of 5 out of 10 points. If it is not passed, the student will have to do a written practical exam, where the competences and/or learning results of the laboratory practical classes will be evaluated.
- **Oral presentation on food additives and active participation of students (in groups):** 12%.

If the student does not pass the subject as a whole, the grade for the practical activities of the subject passed will only be kept for the following academic year, provided that the grade for these activities is at least 7 points out of 10. However, if the student takes these practical activities again, he/she will be eligible for a new grade.

Waiver of the Continuous Assessment System (Student assessment regulations BOPV 13.03.2017, Art. 8.3): Students must submit in writing to the lecturer responsible for the subject the waiver of the Continuous Assessment System, for which they will have a period of 9 weeks, starting from the beginning of the term, in accordance with the academic calendar of the centre. Students who waive the Continuous Assessment System will have the right to be assessed through the Final Assessment System, which will consist of a test consisting of one or more exams and global assessment activities of the subject, which will take place during the official exam period, and will comprise 100% of the mark for the subject. This test will cover all the theoretical and practical content worked on in the subject.

The waiver of the Exam will be in accordance with the student assessment regulations (BOPV 13.03.2017 and 28.06.2019, Art. 12.). In the case of Continuous Assessment, failure to take the final exam will result in the waiver of the exam. In the case of Final Assessment, failure to sit the final exam set on the official exam date will result in the automatic waiver of the exam. Failure to sit the final exam will result in a grade of "not presented".

Note: The "Protocol on academic ethics and prevention of dishonest or fraudulent practices in assessment tests and academic work of the UPV/EHU" will be applicable. The detection of fraud, copying or plagiarism during an assessment test will result in a failing grade and a numerical grade of "0.0"; and likewise if during the correction of a test or academic work the commission of a fraudulent practice relevant to its result becomes evident.
EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The same assessment criteria will be followed as in the Ordinary Call.

If students have taken the Continuous Assessment and obtained positive results, these grades may be maintained for the extraordinary exam of the same academic year.

Students have the right to take the exams and assessment activities that make up the final assessment test of the extraordinary call, which will consist of as many exams and assessment activities as necessary to evaluate and measure the defined learning outcomes, in a similar way to how they were assessed in the ordinary call. In this extraordinary call, students will be able to obtain 100% of the grade. The aforementioned protocol will apply.

Failure to take the final exam will mean that the student will be graded as a "not presented".

MANDATORY MATERIALS

El profesor pone a disposición del alumno/a el material escrito que considere oportuno para su utilización en las clases magistrales y ejercicios de aula, pautas de elaboración de la presentación, guiones de prácticas de laboratorio y cuestiones derivadas, entre otros. Como apoyo a las actividades presenciales en la plataforma eGela se pone a disposición del alumnado documentación complementaria de la guía de la asignatura, material para el seguimiento de la asignatura (listado de actividades, grupos y calendario, recursos bibliográficos, entre otros) y otros documentos de interés relacionados con la materia que se está impartiendo.

Para la realización de las prácticas de laboratorio es obligatorio el uso de bata y gafas de seguridad de laboratorio, cuaderno de laboratorio y calculadora.

BIBLIOGRAPHY

Basic bibliography

FRANKEL, E.N. Lipid Oxida

Detailed bibliography

Journals

Food Chemistry
Journal of Agricultural and Food Chemistry

Web sites of interest

Food and Agriculture Organization of the United Nations (FAO): www.fao.org
Codex Alimentarius: www.codexalimentarius.net/web/index_es.jsp
The European Federation of Food Science and Technology (EFFoST): www.effost.org
Integrating Safety and Environmental Knowledge Into Food Studies: www.esb.ucp.pt/iseki/

OBSERVATIONS
COURSE GUIDE 2024/25

<table>
<thead>
<tr>
<th>Faculty</th>
<th>125 - Faculty of Pharmacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>GNUTR10 - Bachelor's Degree in Human Nutrition & Dietetics</td>
</tr>
<tr>
<td>Cycle</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>First year</td>
</tr>
</tbody>
</table>

COURSE

25194 - Biochemistry

Credits, ECTS: 6

COURSE DESCRIPTION

Biochemistry is one of the basic subjects of the first year of three Degrees: (i) Degree in Pharmacy, (ii) Degree in Human Nutrition and Dietetics, and (iii) Double Degree in Pharmacy and Human Nutrition and Dietetics. Studying biochemistry, students acquire a basic knowledge of the structure and functions of the molecules that form living organisms. At the same time, students develop a general and integrated vision of cellular metabolism from the point of view of bioenergetics. To this end, the main metabolic pathways, both degradative and biosynthetic, are described. The course also includes an experimental section, which will contribute to the familiarization of the students with the different basic techniques in biochemistry.

It is, therefore, a subject that lays the foundations of biochemistry on which many of the subsequent subjects of the degree will be based and deepen, such as Molecular Biology, Clinical Biochemistry or Pharmacology, in the Degree in Pharmacy and in the Double Degree, and Gene Expression and Metabolic Control and Human Nutrition, for example, in the Degree in Human Nutrition and Dietetics.

On the other hand, in order to make good progress in this subject, it is required a basic knowledge of concepts of Cell and Tissue Biology, General and Inorganic Chemistry/General Chemistry and Physicochemistry/Physics, and Mathematics and Statistics, subjects that are taught in the first quarter of the first year and that help a better understanding of Biochemistry.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

Competencies:
- To identify the structure, know the properties and biochemical function of biomolecules.
- To understand the chemical processes by which the organism obtains metabolic energy from nutrients, as well as those that consume that energy in the synthesis of essential components.
- To understand the basic principles of enzymology, distinguishing the effects of the different types of factors that modulate enzymatic activity (inhibitors, allosterism) and their application in health sciences.
- To know and interpret the metabolic changes that occur under different nutritional and physical conditions of a healthy organism.
- To be able to understand and evaluate the impact of biochemical problems, and to know how to predict the effect of a metabolic change (defect) on human health.
- To perform biochemical analyses and interpret the results; in order to establish the basis for understanding clinical analyses.

Learning outcomes:
- Differentiates proteinogenic amino acids from other amino acids.
- Knows the properties of the peptide bond.
- Differentiates distinct structural levels of a protein.
- Differentiates enzymes from other catalysts.
- Understands Michaelis-Menten kinetics.
- Calculates the activity of Michaelis enzymes.
- Knows the different metabolic pathways and their interconnections.
- Is able to understand the general mechanisms of regulation of metabolic pathways.

Theoretical and Practical Contents

TOPIC 1. - Biomolecules: Introduction to biological molecules.

TOPIC 2. - Amino acids, peptides and proteins.
- 2.1. Amino acids: General chemical-biological characteristics. Types.
- 2.3. Primary structure of proteins.

TOPIC 3. - Three-dimensional structure of proteins.
- 3.3. Quaternary structure.

TOPIC 4. - Enzymes
- 4.2. Nomenclature and classification of enzymes. Coenzymes and prosthetic groups.
TOPIC 5.- Enzyme kinetics.

TOPIC 6.- Bioenergetics and metabolism.
6.1. Introduction to intermediary metabolism: Concept of metabolic pathway. Anabolism and catabolism. Regulation of metabolism.

TOPIC 7.- Carbohydrates: Description, classification, carbohydrates of metabolic interest.

TOPIC 8.- Carbohydrate catabolism.
8.2. Fates of pyruvate under anaerobic and aerobic conditions. Regulation.
8.3. Glycogenolysis.

TOPIC 9.- Krebs cycle and oxidative phosphorylation.
9.2. Respiratory chain: Location, components, reactions and control. Variation of free energy in the respiratory chain.
9.4. Energy balance of total glucose oxidation.

TOPIC 10.- Carbohydrate Anabolism
10.2. Glycogenogenesis. Allosteric and hormonal regulation of glycogen metabolism.

TOPIC 11.- Lipids: Concept of lipids, classification and biological interest.
TOPIC 12.- Lipid catabolism.
12.1. Mobilization of triglycerides from adipose tissue. Activation and transport of fatty acids from the cytoplasm to the mitochondrial matrix.

TOPIC 13.- Lipid anabolism
13.2. Cholesterol biosynthesis.

TEACHING METHODS
LECTURES: 45 hours
Theoretical concepts and practical exercises (problems, questions, tests, etc.) will be worked on.

BIOCHEMISTRY LABORATORY: 3 sessions of 4 hours
1.- Preparation of an extract and determination of an enzyme activity.
2.- Determination of the Vmax and Km of the extracted enzyme.
3.- Chromatographic separation of lipids.

COMPUTER PRACTICES: 1 session of 3 hours
1.- Calculation of the kinetic parameters of an enzyme by iterative fitting using specific software. The data obtained in the laboratory will be fitted to curves and straight lines whose constants coincide with these parameters. Exercises and proposed problems will be carried out.

NON-PERSONAL ACTIVITY: 90 hours
- Consultation of texts, elaboration of diagrams and study.
- Solving problems and exercises in class.
- Use of the e-learning platform (eGela) to obtain the information provided by the teaching staff (scripts and groups of practices, videos/ showings, etc.) and to answer the tests and questions posed through this platform.
- Use of information and communication technologies (ICT) to view animations and additional didactic material.
NOTE: If face-to-face teaching is suspended, the teaching methodology of the different modalities will be carried out online, using the resources and digital platforms provided by the UPV/EHU.
TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>45</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>67,5</td>
<td>18</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods:
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark:
- Multiple choice test 60%
- Exercises, cases or problem sets 20%
- Individual assignments 10%
- Teamwork assignments (problem solving, Project design) 10%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The final exam consists of a theoretical and a practical part. The theoretical part will account for 60% of the final grade of the course. The practical part will account for 20% of the final grade. To pass the course it is necessary to pass both parts separately. The remaining 20% of the grade is obtained through continuous assessment, through questions and exercises that the teacher will pose in class or on the eGela platform during the course. The realization of laboratory practices is mandatory. During the development of the practices, the attitude and skills in the laboratory work will be graded, as well as the students' capacity of expression and teamwork.

In any case, students will have the right to be evaluated through the final evaluation system, regardless of whether or not they have participated in the continuous evaluation system. To do so, students must submit in writing to the teacher responsible for the subject the waiver of continuous assessment, for which they will have a period of 9 weeks from the beginning of the course.

Both in the case of continuous assessment and in the case of final assessment, failure to attend the test set on the official exam date will mean the automatic waiver of the call, and will result in the qualification of not presented.

NOTE: In the event that the evaluation cannot be carried out in person, the tests will be taken on-line using the digital tools and platforms offered by the UPV/EHU.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Students who pass any of the parts in the ordinary exam will not have to repeat it in the extraordinary exam, i.e., they will only have to take the exam of the failed part.

MANDATORY MATERIALS

- Computer connected to the Internet (available in the computer rooms)
- Textbooks (available in the library)
- Lab coat
- Practice scripts and graph paper (or computer)

BIBLIOGRAPHY

Basic bibliography:

Detailed bibliography:

Journals

This table shows the distribution of teaching hours, with an emphasis on lecture-based (M) and seminar (S) sessions, along with various application-based groups.

In the evaluation section, continuous and end-of-course assessments are detailed, with specific emphasis on testing methods like multiple choice, exercises, and individual/teamwork assignments.

The examination guidelines outline the conditions for participating in the final evaluation system, emphasizing the need to pass both theoretical and practical parts separately.

The bibliography includes foundational and detailed works in biochemistry, providing resources for students to delve deeper into the subject matter.
http://www.nature.com/nature/index.html
http://www.ehu.eus/ojs/index.php/ekaia

Web sites of interest
http://highered.mheducation.com/sites/0072507470/student_view0/index.html
https://www.sebbm.es/web/en/
https://www.rcsb.org/

http://www.ehu.es/biomoleculas
http://www.biorom.uma.es/

OBSERVATIONS
COURSE GUIDE 2024/25

<table>
<thead>
<tr>
<th>Faculty</th>
<th>125 - Faculty of Pharmacy</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>GNUTRI10 - Bachelor's Degree in Human Nutrition & Dietetics</td>
<td>Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second year</td>
</tr>
</tbody>
</table>

COURSE

25203 - Gene Expression & Metabolic Control

Credits, ECTS: 6

COURSE DESCRIPTION

Human organism needs energy to carry out vital processes, to play sports, or simply to sleep ... And food is the only source of energy for the human organism.

In this course, students will learn the metabolic processes that occur with nutrients after eating them until the body uses them to get energy. In addition, students will learn that all these processes are regulated, so they occur at the time and extent and in the place when and where they are required.

To understand metabolic regulation, it is necessary to know how enzymes (proteins) are synthesized, how their synthesis is regulated, how their activity is adjusted to the needs of each organ and tissue, and how all this is coordinated in order to satisfy the needs of the organism, as a whole, at any time of the day. That is, you will understand how the metabolism adapts throughout the day, in the cycles of feeding and fasting; and, in the longer term, how metabolism adapts to different physiological and pathophysiological situations (eg, diets to lose weight or prolonged fasting).

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

- Know different mechanisms for metabolic regulation.
- Understand the structure and metabolism of macromolecules that are the basis of genetic information.
- Understand the relationship between gene expression and the metabolic condition of the cell, and, by the way, understand how this expression affects the state of the organism and its nutritional needs.
- Know the metabolic function of each human organ and tissue.
- Predict metabolic changes and adaptations of the organism to different nutritional state.
- To be able to analyze the genetic material and the results of its expression and to interpret the results obtained in the analyses.
- Have the ability to search, critique and explain information on any subject related to the regulation, control and integration of metabolism.
- Understand how food components, through changes in gene expression, can control metabolism.
- Know the mechanisms by which food controls the metabolic processes by changes in gene expression.

Theoretical and Practical Contents

PART 1. METABOLISM OF NUCLEIC ACIDS AND PROTEINS

2. STRUCTURE OF NUCLEIC ACIDS. Primary structure. DNA secondary structure.
3. METABOLISM OF AMINOACIDS AND NUCLEOTIDES. Routes of synthesis and degradation.
4. DNA REPPLICATION. General characteristics. Enzymes and phases. Replication in eukaryotic cells.
5. ESTRUCTURE OF RNA. RNA types and functions.
6. TRANSCRIPTION. General characteristics. Structure of genes. Transcription enzymes and phases.
7. MATURATION OF THE RNA. Primary transcripts. Maturation of mRNA precursors in eukaryotic cells. tRNA and rRNA processing.
8. TRANSLATION. Genetic code. General characteristics. Amino acids activation.
9. SYNTHESIS OF PROTEINS II. Initiation, elongation and termination.
11. MUTATION AND DNA REPAIR MECHANISMS. DNA molecules modifications: types causes and consequences. Methods to repair the DNA. Physiologic polymorphisms. Mutations and pathologic polymorphisms.

PART 2. REGULATION OF GENE EXPRESSION

13. REGULATION OF GENE EXPRESSION IN EUKARYOTES. Eukaryotic promoters and enhancers. Epigenetic regulation, chromatin restructuration and gene silencing. Regulators RNA.

PART 3. METABOLIC CONTROL

14. METABOLIC REGULATION. AN OVERVIEW. Systems and levels for metabolic regulation.

PART 4. NUTRIGENOMIC

18. NUTRIGENOMIC AND NUTRIGENETIC. Definitions and objectives.

PRACTICAL PROGRAMME

LABORATORY PRACTICES

1. DNA extraction, characterization and quantification.

2. STR polymorphism analysis by PCR.

3. Analysis of lactate dehydrogenase (LDH) isozymes.

COMPUTER PRACTICES

Nutrigenomic applications.

TEACHING METHODS

The theoretical contents of the course will be developed in master classes. During these classes, lecturers or professors will raise questions or exercises that the students will have to solve within the period established by teachers.

The laboratory practices will consist of three practical sessions of four hours each. Previously, the student must read the laboratory protocols and answer a questionnaire. At the end of the laboratory practice period, the student will have to submit a practice report and take an exam.

The computer practices will be carried out in 1 session of three hours. At the end, the students must submit a report on the work done.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>45</td>
<td>12</td>
<td>3</td>
<td>67.5</td>
<td>18</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 10%
- Multiple choice test 50%
- Exercises, cases or problem sets 20%
- Individual assignments 10%
- Teamwork assignments (problem solving, Project design) 10%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

FINAL THEORY EXAM

It will be about the topics covered in the theoretical classes and will consist in two parts. One part will consist in a multiple choice questions exam. This exam will account for 50% of the final score. Another part will consist of questions to be short-answered. This will account for 10% of the final score.

To pass the theory exam, it will be necessary to pass both parts. To do this, 60% of the multiple choice questions exam and half of the short-answer questions must be answered correctly. It will account for 60% of the final grade for the course.

In the case the exam could not be made on-site, it will be done online, using the digital tools and platforms available in UPV/EHU.

EVALUATION OF PRACTICES

The completion of the laboratory practices will be compulsory.

Previous questionnaire: 5% of the final grade; Report: 5% of final grade.
Students who do not carry out the laboratory practices must take a laboratory examination.
Practice exam: 10% of the final grade.
Computer practice report: 10% of the final grade.

QUESTIONS AND ACTIVITIES IN THE CLASSROOM AND OUT THE CLASSROOM
The lecturer/professor will periodically raise questions and propose activities to be performed in class or at home. Some of them should be done individually and others in groups.
All these activities will be designed to facilitate understanding and learning of the course topics.
Participating in these activities will account for 15% of the final grade.

All students have the right to obtain 100% of the grade through a single final exam. For that, student have to request it before the 9th week of the semester.
This exam will include theoretical and practical content and will be longer and more complete than the normal exam. In any case, laboratory practices will be mandatory. If they are not done, the final exam will include a laboratory exam.

In any case, not taking the exam on the official date of the call will automatically mean the resignation of the corresponding call and will be classified as "not presented".

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
In the extraordinary call, the exam and criteria for passing it will be the same as those described for the ordinary call. If in the ordinary call the theoretical or practical part of the exam is passed, in the extraordinary call only the exam corresponding to the suspended part will be carried out

MANDATORY MATERIALS
Usual safety equipment for laboratory practices (gown, glasses).

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography
http://www.mcgraw-hill.es

Journals

Web sites of interest
http://w3.cnice.mec.es/proyectos/genetica/precarga.swf
http://www.biorom.uma.es/contenido/av_bma/apuntes/T15/transpo.htm
COURSE GUIDE 2024/25

Faculty 125 - Faculty of Pharmacy

Degree GFARMA10 - Bachelor’s Degree in Pharmacy

Cycle .

Year First year

COURSE

25259 - Physics

Credits, ECTS: 6

COURSE DESCRIPTION

Physics is one of the basic courses of the first year of the Degree in Pharmacy. Here some basic physical concepts are developed, which will be later applied in other courses of the degree, such as Instrumental Techniques.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

1. To accurately use the International System of Units and Magnitudes.
2. To apply computational and data processing techniques to Physics-related data and information.
3. To apply Physics-related criteria to the design of experiments.
4. To understand the nature and effects of the different types of radiation used in medical diagnosis and therapies.
5. To be able to interpret the symbols and parameters of the radioactive nuclei, along with understanding their physical behavior and their use in radio-pharmacy.

Common competences

To develop communication and information transmission capabilities, both oral and written.

To encourage team-work abilities.

Theoretical and Practical Contents

Unit 1.- Observables, magnitudes, units. Dimensional equations. Scale relations. Treatment and representation of experimental data.

Unit 2.- Ideal fluid mechanics.

Unit 3.- Oscillations. Resonance phenomenon. Relation to microscopic systems.

Unit 5.- Electromagnetic waves: electromagnetic spectrum. Properties of each type of radiation, and their interaction with physical matter.

Computer practice sessions

1. Introduction to spreadsheets: relative and absolute variables, cell filling with various types of contents, functions, formats, data tables, and graphical representation.

Laboratory practice sessions

TEACHING METHODS

- Lectures: classes in which the teacher will explain the contents of the course. Low/medium difficulty problems may be proposed and solved during the class, in order to help settle the newly learned concepts. Student participation is encouraged.

- Class practices: the teacher and/or designated students will solve medium/high difficulty problems from a list assigned at the start of each unit.

- Computer/laboratory practices: the students will perform experiments and computer calculations on matters closely related to the contents of the course. Student attendance is mandatory.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>36</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>54</td>
<td>18</td>
<td>4,5</td>
<td>13,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 80%
- Exercises, cases or problem sets 20%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
Students will be able to choose between "continuous assessment" and "final assessment" modalities:

Continuous assessment

The exams and their weights break down as follows:
- Midterm exam: 20% of the grade.
- Final exam: 80% of the grade (20% for the practices exam, 60% for the course contents exam).

Final assessment

A single final examination will be taken at the end of the term, weighting 100% of the grade (20% for the practices exam, 80% for the course contents exam).

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
The June examination will be graded following the final assessment modality, therefore a single final examination will be taken, weighting 100% of the grade (20% for the practices exam, 80% for the course contents exam).

MANDATORY MATERIALS

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography
- Serway RA, Jewett JW. Physics for Scientists and Engineers. 10th ed. Cole Publishing; 2013

Journals

Web sites of interest
- What is a Wave? Available at http://www.acs.psu.edu/drussell/Demos/waves-intro/waves-intro.html [last access, July 2023]
- Nuclear Data Center at KAERI. Available at http://atom.kaeri.re.kr/ [last access, July 2023]
- Interactive simulations. Available at URL: https://phet.colorado.edu/en/simulations/category/physics [last access, July 2023]
- Física con ordenador. Available at http://www.sc.ehu.es/sbweb/fisica/ [last access, July 2023]

OBSERVATIONS
COURSE GUIDE

Faculty: 125 - Faculty of Pharmacy
Degree: GFARMA10 - Bachelor’s Degree in Pharmacy

COURSE

25264 - Molecular Biology

COURSE DESCRIPTION

Biologia Molekularreko izaki bizidunetan aurkitzen diren makromolekulen egitura, antolamendua eta funtzioa aztertzen ditu, batez ere material genetikoaren egitura hala nola gene eta genomen funtzionamendua. Azken urteotan osasun zientzien arloan gehien garatu den esparru konertzatzen da eta aurretik biomedikuntza, esaterako gaixotasunen diagnostikoan, pronostikoan, terapia genikoan, farmako eta txertoen ekoizpenean eta abar. Hori dela eta, Farmazia munduko profesional berriek betebear garrantziak lortzeko gaixotasunen ezagutzaren ekoizpenean eta terapeutikoa. Hori dela eta, gaur egun, azken urteotan osasun zientzien arloan gehien garatu den esparru bat da eta aurretik biomedikuntza, esaterako gaixotasunen diagnostikoan, pronostikoan, terapia genikoan, farmako eta txertoen ekoizpenean eta abar.

Ikasturtearen azken urtean lehen urtearen barruan osatutako biologia molekularreko irakasgaiak ikasketasun konertzatzen dira, bai eta aplikazio historikoa indartsutako oinarrizko tekniketan aukaratuz. Biologia molekularreko irakasgaiak lehen ikasturtean ikasten den Biokimika irakasgaia da, eta bere plangintzak edukiaren egoera, informazio genetikoaren trasmizioa, metabolismoa eta regulazioa, adierazitako oinarrizko teknika, eta biologia molekularreko irakasgaiaren teknologiak, bere irudia, eta hori moduan apaintzen den biologia molekularreko irakasgaiak erabiltzen den teknologia.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

- Informazio genetikoaren trasmizioan parte hartzen duten makromolekulen egitura, metabolismoa eta erregulazioa ezagutzeari.
- DNA errekonbinantearekin arloak egindako osasunak ezagutzeari.
- Osasun zientzien arloaren interesgarrien biologia molekularreko teknologiak, bere terminologia eta orainak ezagutzeari.
- Gaixotasun heredagaiak eragiten dituzten aldaketa genetikoak, eta bere analisiaren oinarrizko teknika.
- Gaixotasun konertzatzen den ekoizpenean.
- Klonazio teknika, eta genetikoa eta identifikazio burutzeko gai izatea.

ZEHARKAKO GAITASUNAK

- Gaiarekin zerikusia duten gaien inguruko informazioa bilatu, taldean landu eta azaltzeko gai izatea.
- Zuzen idaztea, ortografia akats gabe eta terminologia egokia erabiliz.

Theoretical and Practical Contents

EGITARAU TEORIKOA:

0. GAIA: Irakasgaiaren aurkezpena eta plangintza. Bibliografia.

INFORMAZIO GENETIKOA TRANSMIZIOA.

3. GAIA: AMINOAZIDOEN ETA NUKLEOTIDOEN METABOLISMOA.Sintesia eta degradazioa.

INFORMAZIO GENETIKOAREN TRANSMISIOAN OINARRITUTAKO TEKNOLOGIA.

11. GAIA. DNAaren SEKUENTZIATZIOA. Metodo kimikoa eta entzimikoa.

APLIKAZIOAK

13.- GENE TERAPIA. Oinarriak, terapia genikoaren bitartez trata daitezkeen gaixotasunak.

15. GAIA. GENEEN TRANSFERENTZIA ANIMALIA ZELULETARA. Animalia transgenikoak. Proteina errekonbinatuen ekoizpena animalia zeluletan eta animalia transgenikoetan.

EGITARAU PRAKTIKO

Laborategi praktikak:
1. Ehunetatik DNAren erauztea, purifikazioa eta kuantifikazioa.
2. STR polimorfismoen analisia polimerasaren erreakzioa kateatuak (PCR) dela medio.

Ordenagailu praktikak:
1. Beta S globinaren polimorfismoa RFLP bidez analizatzeko eta diagnostikatzeko murrizketa entzimen saiakuntza
2. Gene adierazpeneko DNA mikroarray baten emaitzen analisi bioinformatikoa.

TEACHING METHODS

IRAKASKUNTZA MAGISTRALA: 45 ordu
Teoria eta ariketa praktikoa (buruketak, test erako galdetegiak eta abar.) egingo dira

LABORATEGI PRAKTIKAK: 4 orduko 2 saio
1. DNAren erauzketa, purifikazioa eta kuantifikazioa
2. STR polimorfismoen analisia polimerasaren erreakzioa kateatuak (PCR) dela medio

ORDENAGAILU PRAKTIKAK: 3,5 orduko 2 saio
1. Beta S globinaren polimorfismoa RFLP bidez analizatzeko eta diagnostikatzeko murrizketa entzimen saiakuntza
2. DNA mikrotxip baten analisi bioinformatikoa.

IKASGELAZ KANPOKO JARDUERAK: 90 ordu
- Landutako gaien inguruko irakurketa
- Textuak kontsultatu, eskemak egin eta ikasi
- Klase magistralen planteatutako buruketa eta ariketen ebazpena
- eGELA bidez eskuragarri jarri diren galdetegiak erantzun
- Informazioaren eta komunikazioaren teknologiak erabili (TIC), eGELAn eskuragarri egongo diren bideo eta animazioak ikusi.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>45</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td>67.5</td>
<td>12</td>
<td>10.5</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 60%
- Exercises, cases or problem sets 15%
- Individual assignments 15%
- Teamwork assignments (problem solving, Project design) 10%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
- Irakasgaiaren nota osoa (%100) azken azterketatik eskuratu nahi duten ikasleak lau hilabetekoaren lehengo 9 asteetan jakinarazi beharko diote. Kasu horretan, irakasgaiaren kalifikazioa "ez aurkeztua" izango dute.
- Deialdi bati uko egiteko nahikoa da, probara ez aurkeztea. Kasu horretan kalifikazioa "ez aurkeztua" izango dute.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

MANDATORY MATERIALS
- Internetera konektatutako ordenagailua (Campuseko ordenagailu geletan eskuragarri).
- Testu liburuak (Campuseko liburutegian eskuragarri).
- Laborategiko mantala.
- Kalkulagailua
- Lauki milimetratuak dituen laborategiko kaiera (edo euskarri informatiko baliokidea)

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

Journals
- Investigación y Ciencia.
- Molecular Biology Reports. Springer. Alemania.

Web sites of interest
http://www.ehu.es/biomoleculas
http://sebbm.bq.ub.es
http://www.biorom.uma.es/
http://www.gen-es.org
http://croptechnology.unl.edu/download.cgi
www.webofknowledge.com/ (EHUtik)

OBSERVATIONS
Course Guide 2024/25

Faculty: 125 - Faculty of Pharmacy
Degree: GFARMA10 - Bachelor’s Degree in Pharmacy
Cycle:
Year: Fifth year

Course:
25282 - Dermopharmacy
Credits, ECTS: 6

Course Description
Skin pharmacy is a branch of Pharmacy that studies, manufactures and dispenses cosmetic products. A 'cosmetic product' is any substance or preparation designed for contact with the superficial parts of the human body (skin, hair and capillary system, nails, lips and external genital organs) or with teeth and buccal mucosa with the aim of cleaning or perfuming them, modifying their appearance and correcting body odours, and protecting or keeping them in good condition.

This subject is divided into 8 modules, and the histology and physiology of the skin, superficial skin parts, mouth and teeth will be studied. In addition, the cosmetic products used for their care, cleaning, hydration or treatment will be explored.

Competencies/Learning Results for the Subject
- Know, formulate and prepare products used for the hygiene, protection and beautification of people's skin and appendages.
- Identify states of healthy skin and the alterations/pathologies that require dermo-pharmaceutical treatment.
- Identify and select the most suitable excipients for creating different types of cosmetic formulations.
- Collect and analyse information in the field of dermo-pharmaceutics to develop and formulate a line of specific products for a particular kind of skin.

Theoretical and Practical Contents

Theoretical Programme
Module 1: General Concepts

Module 2: Structure and Physiology of the Skin: Dermo-Pharmaceutical Implications.
2. Histology and physiology of the skin and appendages. Basic aspects and cosmetic implications.

Module 3: Dermo-Pharmaceutical Preparations for Facial Application

Module 4: Dermo-Pharmaceutical Preparations for Solar Protection

Module 5: Dermo-Pharmaceutical Preparations for Body Application

Module 6: Dermo-Pharmaceutical Preparations for Hair
15. Anti-dandruff and anti-sebaceous preparations.

Module 7: Dermo-Pharmaceutical Preparations for Oral Hygiene

Module 9: Controls on Cosmetics
17. Control of cosmetic products.
WRITTEN WORK IN GROUPS
Students will make an analysis of the type of skin presented to formulate the most suitable product. They will write a report containing 5 specific formulations for their type of skin.

PRACTICAL PROGRAMME
Preparation of different formulations
- Exfoliating gel
- Fluid or body lotion for dry skin
- Shampoo with panthenol and silk proteins
- Moisturising-nourishing cream
- After-shave cream-gel
- Serum with alpha hydroxy acids
- Facial tonic
- Oily dermal paste with physical filters
- Anti-acne, anti-sebaceous and keratolytic mask
- Lip salve
- Oil-free hand cream

TEACHING METHODS
METHODOLOGY
Theoretical lessons
Practical case solving
Laboratory practices
eGela
Tutorials

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>40</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>70</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 60%
- Exercises, cases or problem sets 10%
- Teamwork assignments (problem solving, Project design) 30%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
EVALUATION INSTRUMENTS AND CRITERIA
THEORETICAL-PRACTICAL WRITTEN EXAMINATION (60%):
- Objective test (multiple-choice, short comprehension questions on theory, solving practical cases)
- A mark of 50% must be achieved in the exam to pass the subject
- Evaluation criteria:
 - Understanding the general concepts of the theory, coherent explanation.
 - Correct application of the concepts, reasoning of the answers given.
 - Relationship between theoretical and practicant contents.
 - Absence of conceptual mistakes.

WRITTEN WORK IN GROUPS (30%):
- Development of cosmetic products suitable for patients/clients skin type.
- Presentation of the final report before deadline
- Evaluation criteria:
 - Content and knowledge degree of the topic, absence of severe mistakes.
 - Structure of the information provided, clarity, originality.
 - Participation in the sessions with communicative attitude
 - Work in group

LABORATORY PRACTICES (10%)

- Practical work: pass/not pass. If not passed, a laboratory exam should be taken. It is required to pass the laboratory practices to pass the subject
 - Evaluation criteria:
 - Team working and participation
 - Skills for working in the laboratory
 - Organization, cleanliness and correct elimination of the residues.
 - Showing the lecturer the prepared products.

- Analysis of a commercial cosmetic product (10%): determine if a product is adequate for a given type of skin and describe the main function of its components. Written communication (grammar, spelling and language) will also be taken into account.

NOTE ABOUT THE WRITTEN COMMUNICATION
The spelling and syntax mistakes will be taken into account in all the evaluation documents; Each mistake will diminish the mark by 0.1 points, up to 0.5 points.

SELECTION OF THE EVALUATION SYSTEM
Students can choose to perform only a final exam (of 10 points). For that purpose, they have to communicate it to the lecturer by using the suitable application form, in the first 9 weeks of the semester.

RENOUNCE TO THE CALL
Not attending to the official evaluation test will imply getting the "not presented" mark.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
The last evaluation will be considered as a final evaluation (10 points). Anyway, if the students want so, they can maintain the marks obtained in the continuous evaluation activities (laboratory practices and seminar).
This marks can also be maintained for the next academic course, if the student wants so, and by a written document.

RENOUNCE TO THE CALL
Not attending to the official evaluation test will imply getting the "not presented" mark.

MANDATORY MATERIALS

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography
- Elsner, Peter. Cosmeceuticals and active cosmetics: drugs versus cosmetics, 2005
- Goddard, E.D. y Gruber, J.V. Principles of polymer science and technology in cosmetics and personal care, 1999

Journals

Clinics in Dermatology

Journal of the American Academy of Dermatology
http://www.sciencedirect.com/science/journal/01909622

Journal of the European Academy of Dermatology and Venereology
http://www.sciencedirect.com/science/journal/09269959

Current Problems in Dermatology
http://www.sciencedirect.com/science/journal/10400486

Dermatología cosmética médica y quirúrgica
http://www.dcmq.com.mx/

Actualidad dermatológica
http://www.actualidaddermatol.com/

Journal of Dermatological Science
http://www.sciencedirect.com/science/journal/09231811

Offarm
http://www.elsevier.es/es-revista-offarm-4

Farmacia Profesional
http://www.elsevier.es/es-revista-farmacia-profesional-3

Web sites of interest

Consejo General de Colegios Oficiales de Farmacéuticos. Vocalía de Dermofarmacia
http://www.portalfarma.com/

Asociación Europea de Fabricantes de Productos Cosméticos (COLIPA)
www.colipa.com

Cosmetex
http://pharmacos.eudra.org/F3/home.html

Cosmetic, Toiletry and Fragance Association (CFTA)
http://www.ctfa.org/

Sociedad Dermatológica en internet
http://www.telemedicine.org/

Sociedad Española de Medicina y Cirugía Cosmética
http://www.semcc.com/

SUN-FX 365™
http://www.sun-fx365.com/

OBSERVATIONS

"Dermofarmazia" irakasgaia "Giza Anatomia" eta "Giza Fisiologia" irakasgaiekin lotuta dago. Farmaziako Graduko 1. eta 2. mailetan ematen dira, hurrenez hurren, eta haietan larruazalaren egiturari eta funtzioei buruzko ezagutzak jasotzen dira. Bertakoak, Dermofarmazia ikasi aurretik "Farmazia Galenikoa" (3. maila), "Teknologia Farmazeutikoa I" (4. maila) eta "Teknologia Farmazeutikoa II" (4. maila) irakasgaik menperatzea gomendatzen da, aplikazio topikoaren forma farmazeutikoak, horien elaborazio-prozedurak, eszipienteak eta kontrolak ezagutzeko, "Farmakologia I" etat
The subject "Structural Determination of Drugs" is an optional subject of the 5th year of the Degree in Pharmacy. It is located in the Chemistry module. Previously, in their first and second year, the students have completed the subjects Organic Chemistry and Advanced Organic Chemistry, related to the structure, properties and reactivity of organic compounds. In the third year of the degree, and within the same module, the students have completed the Pharmaceutical Chemistry course where the main methods for the design, synthesis and analysis of drugs are described. To conclude with this module, the subject "Structural Determination of Drugs" deals with the application of spectroscopic techniques, such as Infrared, Nuclear Magnetic Resonance and Mass Spectrometry, to concrete examples, which will allow the students to understand the spectrum-structure correlation. The combined use of spectroscopic techniques is the best method for the interpretation of molecular spectra, and the determination of the structure of organic compounds, which are the main components of natural products and drugs. Unlike most of chemical assays, the spectroscopic techniques are non-destructive and require a very small amount of sample, which is an advantage especially in the case of new or highly complex compounds.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

- Consolidate the knowledge related to the application of different spectroscopic techniques for the analysis of organic structures.
- Apply Spectroscopic Techniques for the Structural Elucidation of Organic Molecules and Drugs.
- Determine the structure of polyfunctional compounds in view of the information obtained from the different spectroscopic techniques.
- Acquire a solid base for the development of scientific research work.

Theoretical and Practical Contents

1. Infrared spectroscopy. Basic concepts.
 1.1. Introduction and applications
 1.2. Infrared absorption theory.
 1.4. Selection rules
2. Infrared spectroscopy. Applications to qualitative analysis.
 2.1. Characteristic frequencies
 - X-H stretching vibration region
 - Triple bond stretching vibration region
 - Double bond stretching vibration region
 - Fingerprint region
 2.2. The effect of the substituents and the chemical environment on the absorption frequency.
 - Inductive effect
 - Bond strain
 - Hydrogen bonding
 - Conjugation
 2.3. Empirical correlations to obtain information about structure
 2.4. How to analyze IR spectra. Functional group identification.
3. Mass spectroscopy
 3.1. General concepts. Instrumentation. Applications
 3.2. Molecular ions. Isotopic abundance.
 3.3. HRMS
 3.4. Types of fragmentation reactions
 3.5. Fragmentations in functional groups
 4.1. General concepts. Mass spectrum analysis
 4.2. Mass spectra of several types of compounds
5. Introduction to NMR Spectroscopy
 5.1. Introduction
 5.2. NMR Phenomenon.
 5.4. NMR instruments.
5.5. Chemical shift.
5.6. Factors affecting chemical shift.
5.7. Signal strength
6. Spin coupling
6.1. Spin-spin interaction
6.3. Pople Nomenclature for coupled spin systems
6.4. First order and second order coupling.
6.5. Two spin systems. A2, AX and AB
6.6. Three spin systems. AB2 and AX2, AMX, ABX and ABC.
6.7. Four spin systems.
7. Coupling constants
7.1. Short and long distance coupling.
7.2. Coupling constant magnitude and sign
7.3. Geminal and vicinal coupling constant
7.4. Long distance coupling constant.
7.5. Structural elucidation.
8. 13C NMR Spectroscopy
8.1. Introduction.
8.2. Record techniques and decoupling techniques.
8.3. Shift-structure correlations.
8.4. Coupling constants 13C-1H.
8.5. Structural elucidation.

TEACHING METHODS
Master classes will be used in which an overview of each of the spectroscopic techniques is given, discussing in the first place the theoretical principles to, later, study their applications with concrete examples. In order to settle the concepts, problems and exercises will be provided, that they students will develop individually or in groups. The resolution of the questions in the classroom will be carried out in a participative way.

The laboratory practices will consist of experimental work oriented to learn the spectroscopic techniques and the preparation of different types of samples. Cases with polyfunctional compounds will be carried out, where the joint use of all the technique is necessary for their identification, given their complementary nature. This part will be developed in groups, encouraging the formulation of questions, participation, discussion and teamwork.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas de face-to-face teaching</td>
<td>36</td>
<td>24</td>
<td>24</td>
<td>70</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 55%
- Exercises, cases or problem sets 15%
- Test IR/MS and RMN 30%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
- Continuous evaluation: Throughout the course, there will be several written tests of the different topics (30%). To consider this note in the final grade, you must pass 70% in each of the tests and attend to at least 80% of the face-to-face activities. Otherwise, the whole subject will be evaluated in the final written exam
- Attendance to practical courses, work sheets and practical exam (15%).
- Extraordinary written final exam (55-85%). A 40% minimum in the final exam is mandatory prior to add the note at the practical courses to the final mark.

A 40% minimum in the final exam is mandatory prior to add the note at the practical courses. In accordance with the regulations of the UPV/EHU, not taking the final evaluation test, whether ordinary or extraordinary, will mean the resignation of the call for evaluation and the qualification of the student will be recorded as a "No Show".

The student who has previously completed the subject may either renounce to the continuous evaluation at other subjects
from previous courses or renounce to the mixed evaluation in Structural Determination and face the whole evaluation in a single final test. In any case, the final test must certify THE ACQUISITION OF BOTH THEORETICAL AND PRACTICAL SKILLS.

The students who have completed the practical courses in the previous years will keep their note for a course (if it is higher than 0.75) and, even if they do not meet the 80% attendance requirement (that is, even if they have opted for the evaluation in a single final test) will have the right to carry out the practices attending always at 100% of the hours (except for reasons of force majeure). The student that chooses not to attend to the practical courses must pass a practical exam as part of the final test.

Protocol on academic ethics: During the development of the evaluation tests, the use of books, or notes, as well as phone, computer or other devices or devices will be prohibited [Only a calculator and spectroscopy tables without any type of mark are allowed]. In view of any case of dishonest or fraudulent practice in the evaluation tests or academic tasks the protocol on academic ethics academics at the UPV/EHU will be applied.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

In the case a student does not pass the subject at the ordinary call, he/she can attend to the final test at the extraordinary call, where the same evaluation system used for the single evaluation will be applied.

- Attendance to practical courses, work sheets and practical exam (15%).
- Extraordinary written final exam (85%). A 40% minimum in the final exam is mandatory prior to add the note at the practical courses to the final mark.

In accordance with the regulations of the UPV/EHU, not taking the final evaluation test, whether ordinary or extraordinary, will mean the resignation of the call for evaluation and the qualification of the student will be recorded as a "No Show".

MANDATORY MATERIALS

BIBLIOGRAPHY

Basic bibliography

4.- Análisis orgánico. A. Garcia, E. Teso. UNED. 1992

Detailed bibliography

- UNMR Spectroscopy in Drug Development and Analysis. U. Holzgrabe, I. Wawer, B. Diehl
- Two-Dimensional NMR Spectroscopy: Applications for Chemists and Biochemists, Second Edition, Fully Updated and Expanded to Include Multidimensional Work W. R. Croasmun (Editor), R. M. K. Carlson (Editor) 1994

Journals

Chemical Reviews: http://pubs.acs.org/journal/chreay
Jounal of the American Chemical Society: http://pubs.acs.org/journal/jacsat
Organic Letters: http://pubs.acs.org/journal/orle7

Web sites of interest
Exercices on spectroscopy:

Elucidación de estructuras orgánicas (Notre Dame) http://www.nd.edu/~smithgrp/structure/workbook.html
Problemas de RMN e IR (UCLA) http://www.chem.ucla.edu/~webspectra/
Problemas IR (Colby College) http://www.colby.edu/chemistry/JCAMP/IRHelperNS.html

PÁGINAS WEB:
Tutorial espectrometría de masas (University of Arizona) http://www.chem.arizona.edu/massspec/
Métodos modernos de espectrometría de masas (University of Leeds) http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm
Tutorial de RMN y problemas de espectroscopía (Imperial College) http://www.ch.ic.ac.uk/local/nmr/
Espectroscopía RMN. Libro de texto virtual (Joseph Hornak, Rochester Institute of Technology) http://www.cis.rit.edu/htbooks/nmr/
NMR meets Musicians (University of Erlangen-Nuremberg, Institute of Organic Chemistry) http://www.chemie.uni-erlangen.de/oc/research/NMR/music.html
Herramientas espectroscópicas (RMN, IR y MS, University of Potsdam) http://www.chem.uni-potsdam.de/tools/index.html
Más herramientas espectroscópicas (Aplicaciones para la interpretación de espectros RMN, IR y MS, Colby College) http://www.colby.edu/chemistry/NMR/NMR.html

OBSERVATIONS
La asignatura "Farmacovigilancia" se centra en el estudio de las reacciones adversas inducidas por los fármacos (mecanismos de las mismas, diagnóstico clínico y prevención), así como en los principales síndromes clínicos que pueden ocurrir con el empleo de los fármacos a dosis habitualmente utilizadas para el diagnóstico, la prevención o el tratamiento de la enfermedad (Farmacopatología).

El objetivo de esta asignatura es conocer los efectos indeseables de los medicamentos, así los métodos necesarios para su prevención, detección y tratamiento.

Durante el curso de la asignatura el alumno adquirirá las siguientes competencias:
- Conocer los fundamentos farmacológicos que permitan comprender las peculiaridades de los fármacos como fuente de riesgos para la salud pública
- Conocer las bases teóricas del razonamiento y el método epidemiológico aplicados a la evaluación de la seguridad de los medicamentos.
- Saber gestionar las notificaciones de sospechas de reacciones adversas realizadas por los profesionales sanitarios
- Conocer las reacciones adversas más típicas pertenecientes a cada grupo farmacológico

Theoretical and Practical Contents

I.- Farmacovigilancia. Aspectos generales.
2. Farmacoepidemiología: concepto y metodología básica. Cálculo de la incidencia y de la prevalencia. Definición de riesgo relativo y de riesgo absoluto.
3. Métodos para la detección de reacciones adversas a fármacos. Estudios analíticos. I.
4. Métodos para la detección de reacciones adversas a fármacos. Estudios analíticos. II.
5. Métodos para la detección de reacciones adversas a fármacos. Estudios descriptivos.
 Notificación voluntaria.
7. El Sistema Español de Farmacovigilancia. Programa Internacional de Farmacovigilancia de la O.M.S.
8. Estudios de utilización de medicamentos.
II.- Farmacopatología. Aspectos generales.
11. Mecanismos de las reacciones adversas del tipo A. Reacciones adversas de base farmacéutica, farmacocinética y farmacodinámica.
12. Mecanismos de las reacciones adversas del tipo B. Reacciones adversas de base genética (idosyncrasia) e inmunológica (alergia a fármacos).
13. Interacciones farmacológicas: importancia como causa de reacciones adversas a fármacos.

TEACHING METHODS

El desarrollo de la asignatura incluirá las siguientes modalidades docentes en las que se utilizarán distintas metodologías enseñanza-aprendizaje:
- Clases expositivas, que serán de carácter abierto y participativo con presentación de conceptos, cuestiones y debates sobre los mismos.
- Prácticas de aula y de ordenador, en las que se realizarán cuestiones y ejercicios prácticos.
- Tutorías, donde se atenderá a los alumnos individual y grupalmente, con el fin de resolver dudas y favorecer la retroalimentación de forma personalizada, en horario previamente establecido que figura en la página web de la Facultad y/o en horario previamente concertado con el profesorado.
- Plataforma virtual e-gela, en la que habrá material de trabajo para los distintos temas de la asignatura y se interaccionará con los alumnos mediante foros y propuesta de actividades/tareas.
TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>36</td>
<td>4</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>64</td>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 70%
- Multiple choice test 10%
- Exercises, cases or problem sets 10%
- Teamwork assignments (problem solving, Project design) 10%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

La evaluación de la asignatura será continua, excepto en aquellos casos en los que el alumno lo justifique previamente según la normativa del centro.

La evaluación constará de las siguientes partes:

A.1) Actividades teóricas: (90% de la nota final)
Examen final de la asignatura 90%: El examen final de la asignatura constará de varias preguntas de desarrollar (70%) y de una pregunta de tipo test que constituya el 20% de la nota final

A.2) Actividades prácticas (10% de la nota final):
Evaluación de prácticas mediante exposición de trabajos que será necesario superar para aprobar la asignatura.
Se valorará además de los contenidos la expresión hablada y escrita.

Si a pesar de realizar los exámenes parciales, finalmente el alumno renunciara a la convocatoria ordinaria, la nota de dichos parciales únicamente se tendría en cuenta para la convocatoria extraordinaria del mismo año.

El alumnado podrá acogerse a la Normativa vigente de la UPV/EHU, por la que tendrá derecho a ser evaluado mediante el sistema de evaluación final, independientemente de que haya participado o no en el sistema de evaluación continua.
Para ello, el alumnado deberá presentar por escrito al profesorado responsable de la asignatura la renuncia a la evaluación continua, para lo que dispondrán de un plazo de 9 semanas a contar desde el comienzo del cuatrimestre o curso respectivamente, de acuerdo con el calendario académico del centro.

No obstante, para que el desarrollo de la asignatura no se vea gravemente afectado, es recomendable que el alumnado comunique al Profesor(a) durante la primera quincena del cuatrimestre.

Renuncia a la convocatoria
1.- La renuncia a la convocatoria supondrá la calificación de no presentado o no presentada.
2.- En el caso de evaluación continua, el alumnado podrá renunciar a la convocatoria en un plazo que, como mínimo, será hasta un mes antes de la fecha de finalización del período docente de la asignatura correspondiente. Esta renuncia deberá presentarse por escrito ante el profesorado responsable de la asignatura.
3.- Cuando se trate de evaluación final, la no presentación a la prueba fijada en la fecha oficial de exámenes supondrá la renuncia automática a la convocatoria correspondiente.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Se realizará según los criterios fijados para la convocatoria ordinaria

MANDATORY MATERIALS
BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

Journals

Web sites of interest

OBSERVATIONS

Durante el desarrollo de la prueba de evaluación, quedará prohibida la utilización de libros, notas o apuntes, así como de aparatos o dispositivos telefónicos, electrónicos, informáticos, o de otro tipo, por parte del alumnado. En el momento de celebración de la prueba se podrán señalar, si es preciso, los lugares en que pueden depositar los materiales no autorizados, de manera que queden fuera del alcance del alumnado.
COURSE GUIDE 2024/25

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 - Faculty of Pharmacy</td>
<td>GFARMA10 - Bachelor’s Degree in Pharmacy</td>
</tr>
</tbody>
</table>

COURSE

25194 - Biochemistry

Credits, ECTS: 6

COURSE DESCRIPTION

Biochemistry is one of the basic subjects of the first year of three Degrees: (i) Degree in Pharmacy, (ii) Degree in Human Nutrition and Dietetics, and (iii) Double Degree in Pharmacy and Human Nutrition and Dietetics. Studying biochemistry, students acquire a basic knowledge of the structure and functions of the molecules that form living organisms. At the same time, students develop a general and integrated vision of cellular metabolism from the point of view of bioenergetics. To this end, the main metabolic pathways, both degradative and biosynthetic, are described. The course also includes an experimental section, which will contribute to the familiarization of the students with the different basic techniques in biochemistry.

It is, therefore, a subject that lays the foundations of biochemistry on which many of the subsequent subjects of the degree will be based and deepen, such as Molecular Biology, Clinical Biochemistry or Pharmacology, in the Degree in Pharmacy and in the Double Degree, and Gene Expression and Metabolic Control and Human Nutrition, for example, in the Degree in Human Nutrition and Dietetics.

On the other hand, in order to make good progress in this subject, it is required a basic knowledge of concepts of Cell and Tissue Biology, General and Inorganic Chemistry/General Chemistry and Physicochemistry/Physics, and Mathematics and Statistics, subjects that are taught in the first quarter of the first year and that help a better understanding of Biochemistry.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

Competencies:
- To identify the structure, know the properties and biochemical function of biomolecules.
- To understand the chemical processes by which the organism obtains metabolic energy from nutrients, as well as those that consume that energy in the synthesis of essential components.
- To understand the basic principles of enzymology, distinguishing the effects of the different types of factors that modulate enzymatic activity (inhibitors, allostery) and their application in health sciences.
- To know and interpret the metabolic changes that occur under different nutritional and physical conditions of a healthy organism.
- To be able to understand and evaluate the impact of biochemical problems, and to know how to predict the effect of a metabolic change (defect) on human health.
- To perform biochemical analyses and interpret the results; in order to establish the basis for understanding clinical analyses.

Learning outcomes:
- Differentiates proteinogenic amino acids from other amino acids.
- Knows the properties of the peptide bond.
- Differentiates distinct structural levels of a protein.
- Differentiates enzymes from other catalysts.
- Understands Michaelis-Menten kinetics.
- Calculates the activity of Michaelis enzymes.
- Knows the different metabolic pathways and their interconnections.
- Is able to understand the general mechanisms of regulation of metabolic pathways.

Theoretical and Practical Contents

TOPIC 1 - Biomolecules: Introduction to biological molecules.
TOPIC 2 - Amino acids, peptides and proteins.
 2.1. Amino acids: General chemical-biological characteristics. Types.
 2.3. Primary structure of proteins.
TOPIC 3 - Three-dimensional structure of proteins.
 3.2. Tertiary structure. Stabilizing forces. Denaturation.
 3.3. Quaternary structure.
TOPIC 4 - Enzymes
TOPIC 5.- Enzyme kinetics.

TOPIC 6.- Bioenergetics and metabolism.
6.1. Introduction to intermediary metabolism: Concept of metabolic pathway. Anabolism and catabolism. Regulation of metabolism.

TOPIC 7.- Carbohydrates: Description, classification, carbohydrates of metabolic interest.

TOPIC 8.- Carbohydrate catabolism.
8.2. Fates of pyruvate under anaerobic and aerobic conditions. Regulation.
8.3. Glycogenolysis.

TOPIC 9.- Krebs cycle and oxidative phosphorylation.
9.2. Respiratory chain: Location, components, reactions and control. Variation of free energy in the respiratory chain.
9.4. Energy balance of total glucose oxidation.

TOPIC 10.- Carbohydrate Anabolism
10.2. Glycogenogenesis. Allosteric and hormonal regulation of glycogen metabolism.

TOPIC 11.- Lipids: Concept of lipids, classification and biological interest.

TOPIC 12.- Lipid catabolism.
12.1. Mobilization of triglycerides from adipose tissue. Activation and transport of fatty acids from the cytoplasm to the mitochondrial matrix.
12.4. Cholesterol biosynthesis.

TEACHING METHODS

LECTURES: 45 hours
Theoretical concepts and practical exercises (problems, questions, tests, etc.) will be worked on.

BIOCHEMISTRY LABORATORY: 3 sessions of 4 hours
1.- Preparation of an extract and determination of an enzyme activity.
2.- Determination of the Vmax and Km of the extracted enzyme.
3.- Chromatographic separation of lipids.

COMPUTER PRACTICES: 1 session of 3 hours
1.- Calculation of the kinetic parameters of an enzyme by iterative fitting using specific software. The data obtained in the laboratory will be fitted to curves and straight lines whose constants coincide with these parameters. Exercises and proposed problems will be carried out.

NON-PERSONAL ACTIVITY: 90 hours
- Consultation of texts, elaboration of diagrams and study.
- Solving problems and exercises in class.
- Use of the e-learning platform (eGela) to obtain the information provided by the teaching staff (scripts and groups of practices, videos/ showings, etc.) and to answer the tests and questions posed through this platform.
- Use of information and communication technologies (ICT) to view animations and additional didactic material.

NOTE: If face-to-face teaching is suspended, the teaching methodology of the different modalities will be carried out online, using the resources and digital platforms provided by the UPV/EHU.
Types of teaching

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>45</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>67.5</td>
<td>18</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Multiple choice test 60%
- Exercises, cases or problem sets 20%
- Individual assignments 10%
- Teamwork assignments (problem solving, Project design) 10%

Ordinary Examination Period: Guidelines and Opting Out

The final exam consists of a theoretical and a practical part. The theoretical part will account for 60% of the final grade of the course. The practical part will account for 20% of the final grade. To pass the course it is necessary to pass both parts separately. The remaining 20% of the grade is obtained through continuous assessment, through questions and exercises that the teacher will pose in class or on the eGela platform during the course. The realization of laboratory practices is mandatory. During the development of the practices, the attitude and skills in the laboratory work will be graded, as well as the students’ capacity of expression and teamwork.

In any case, students will have the right to be evaluated through the final evaluation system, regardless of whether or not they have participated in the continuous evaluation system. To do so, students must submit in writing to the teacher responsible for the subject the waiver of continuous assessment, for which they will have a period of 9 weeks from the beginning of the course.

Both in the case of continuous assessment and in the case of final assessment, failure to attend the test set on the official exam date will mean the automatic waiver of the call, and will result in the qualification of not presented.

Note: In the event that the evaluation cannot be carried out in person, the tests will be taken on-line using the digital tools and platforms offered by the UPV/EHU.

Extraordinary Examination Period: Guidelines and Opting Out

Students who pass any of the parts in the ordinary exam will not have to repeat it in the extraordinary exam, i.e., they will only have to take the exam of the failed part.

Mandatory Materials
- Computer connected to the Internet (available in the computer rooms)
- Textbooks (available in the library)
- Lab coat
- Practice scripts and graph paper (or computer)

Bibliography

Basic bibliography

Detailed bibliography

Journals
http://www.nature.com/nature/index.html
http://www.ehu.eus/ojs/index.php/ekaia

Web sites of interest

http://highered.mheducation.com/sites/0072507470/student_view0/index.html
https://www.sebbm.es/web/en/
https://www.rcsb.org/

http://www.ehu.es/biomoleculas
http://www.biorom.uma.es/

OBSERVATIONS
Clinical analyses are common in the professional practice of pharmacists. These analyses serve for screening, diagnosis, prognosis and monitoring of multiple health conditions and it is important for them to be able to perform and understand these analyses in order to explore and treat multiple health conditions.

Therefore, the general objectives for students in the Clinical Biochemistry class are the following:

1. To know and to explain the biochemical changes that occur during pathological processes in relation to normal physiological states.
2. To know the procedures that are commonly used in the laboratory for the detection of biochemical changes, diagnosis and monitoring of pathological states that pharmacy graduates can find in their professional activity as well as the limitations of such procedures.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

Prior knowledge of Biochemistry, Molecular Biology, Physiology, Physiopathology, Analytical Chemistry and Statistics is convenient.

Along the course, students will:
1. Know how to treat and manipulate biological samples that are analyzed in Clinical Biochemistry laboratories.
2. Appropriately apply analysis procedures, taking into account their analytical properties and their usefulness for detecting biochemical alterations in pathological situations.
3. Know how to use the appropriate quality controls for the different components and stages that are part of the analytical processes.
4. Assess the limitations of each analytical procedure, in order to choose the most appropriate one.
5. Know how to define the reference values of the biochemical substances present in the biological fluids of apparently healthy populations.
6. Know the possible causes that influence the deviations from reference values.
7. Based on the results obtained with the analyses carried out on biological fluids, interpret the biochemical processes of various pathological states and their variations with respect to a situation considered physiologically normal.

LEARNING OUTCOMES

Students will correctly interpret and explain (both orally and in writing) the theoretical contents of the subject. They will be able to carry out the analyses indicated in the practical contents section both individually and in groups and will be able to search for information on the subject.

Theoretical and Practical Contents

THEORETICAL CONTENT:
1. Introduction. Usefulness of biochemical tests in clinical medicine. Taking and handling samples.
7. Tumor markers.
13. Cardiac function. Cardiac markers.
14. Liver function. Liver function tests.
19.- Thyroid hormones. Thyroid function. Thyroid function tests.

TEACHING METHODS

Students will have lectures (35 hours), laboratory sessions (15 hours) and classroom practical sessions (10 hours)

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>35</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>60</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 30%
- Multiple choice test 40%
- Exercises, cases or problem sets 15%
- Individual assignments 5%
- Oral presentation of assigned tasks, Reading 10%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Students with continuous or final evaluation system have to pass a final test, which consists of two parts
1.1) Theoretical part of the subject. It will be a multiple-choice test with 40 questions with a single answer out of five possible ones. Score: 1 point for each correct answer; 0.25 negative points for each incorrect answer; 0 points for each blank answer. Students can obtain a maximum of 40 points.
1.2) Technical and practical part of the subject. It will consist of 6 questions with short answer sub-questions. Each question will score a maximum of 5 points. Students can obtain a maximum of 30 points.
In all cases, students must obtain a minimum of 35 points out of 70 in the final test to pass the class. Of these, it is essential to obtain at least 20 points in the multiple choice test of the theoretical part and 15 points in the questions related to the technical and practical part. Students who do not pass the test in one call must take the full test (both parts, multiple choice and short answer questions) in the next call even if they have passed one of the two parts.
To renounce an evaluation call, it will be sufficient not to take the final exam.
2.- Continuous evaluation.
In addition to the final test, students with continuous evaluation have to solve exercises in class with the help of their class notes. Maximum score: 15 points.
2.1.) Develop brief written works related to the topics of the subject, which will later be presented orally. Maximum score: 10 points.
2.3.) Assessment of active participation in the classroom and in the laboratory. Maximum score: 5 points.
Students who obtain the minimum score required in the final test will obtain the final grade for the subject by adding the points obtained in the final test to the continuous evaluation score. A minimum total of 50 points is required in order to pass the class.
The results obtained in the continuous evaluation may be taken into account for the two calls of the same academic year. Laboratory experience is essential in order to pass the class. That is why there are laboratory sessions. Students who do not carry out these practical sessions will have to demonstrate their experience by completing a practical test in the laboratory.
3.- Final evaluation.
Students have the right to invoke the final evaluation system. Interested students must inform the professor within the first nine weeks of the semester and all of the final score depends on the final test.
In any case, they will have the same obligations as the rest of the students with respect to laboratory sessions. Therefore, students who do not carry out the practical sessions will have to demonstrate their experience by completing a practical test in the laboratory.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Same as the ordinary call (see previous box).
Bibliography

Basic bibliography

Detailed bibliography

Journals

1. Clinical Chemistry
2. Clinica Chimica Acta
3. Clinical Biochemistry
4. Annals of Clinical Biochemistry

Web sites of interest

- http://www.seqc.es
- http://www.sciencedirect.com
- http://www.clinchem.org
- http://www.aacc.org

Observations
Galenic Pharmacy is a subject in which the basic principles of the design of drug delivery systems are studied. These principles are based on the physico-chemical properties of the active ingredients, the characteristics of the dosage forms, and the physio-pathological conditions of the patients. Therefore, concepts that the students have previously taken in other subjects of the degree (such as Physico-chemistry, Human Anatomy or Human Physiology) are handled. These subjects are scheduled in the 1st or 2nd academic year.

This subject is closely related to the subjects Biopharmacy and Pharmacokinetics, Pharmaceutical Technology I, and Pharmaceutical Technology II, scheduled in the 4th academic year. It is convenient that the students take the subject Galenic Pharmacy before taking the mentioned subjects.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

SPECIFIC SKILLS
1. Evaluate the influence of anatomic and physiological aspects of the site of administration on the disposition of drugs.
2. Identify and assess the properties of the drugs that condition their disposition in the organism from the dosage forms.
3. Analyse and evaluate the biopharmaceutical behaviour of drug products that condition the design of the dosage forms.
4. Select the most suitable route of administration based on the characteristics of the patient, the drug, and the desired therapeutic effect.
5. Determine the bioavailability, evaluate the bioequivalence, and know the factors that condition them.

TRANSVERSAL SKILLS
1. Develop communication and information skills, both oral and written, to deal with patients and users of the work center where the professional activity is performed. Promote working and collaborative capacities in multidisciplinary teams and those capacities related to other healthcare professionals.
2. Recognize the own limitations and the need to maintain and update professional skills, paying special attention to the self-learning of new knowledge based on the available scientific evidence.

Theoretical and Practical Contents

THEORETICAL PROGRAMME

MODULE I: RELEASE AND ABSORPTION OF DRUGS
1. Introduction to Galenic Pharmacy.
2. Transit of drugs in the organism: concept of LADME.
3. Drug release.
4. Drug absorption.

MODULE II: ENTERAL ROUTES OF ADMINISTRATION OF DRUGS
5. Drug administration routes.
6. Oral administration.
7. Buccal administration
8. Rectal administration.

MODULE III: PARENTERAL ROUTES OF ADMINISTRATION OF DRUGS
10. Intravenous and intra-arterial drug administration.
11. Intramuscular administration.
12. Subcutaneous administration.
13. Other routes of parenteral administration.

MODULE IV: ADMINISTRATION OF DRUGS THROUGH MUCOUS
14. Nasal administration
15. Pulmonary administration.
16. Administration of drugs in the skin.
17. Ophthalmic administration.
18. Administration in the ear.
19. Vaginal administration.

MODULE V: ADMINISTRATION OF DRUGS IN THE CENTRAL NERVOUS SYSTEM
20. Administration of drugs in the central nervous system.

MODULE VI: BIOAVAILABILITY AND BIOEQUIVALENCE
22. Bioequivalence.

MODULE VII: ADMINISTRATION OF BIOLOGICAL DRUGS
23. Administration and delivery of therapeutic peptides and proteins.

PRACTICAL PROGRAMME
Practice 1. Determination of the partition coefficient of salicylic acid.
Practice 2. Influence of the excipient in the release of active ingredients based on an iodine ointment: release test.
Practice 3. Release study of pantoprazole from gastro-resistant tablets using a continuous flow dissolving equipment.
Practice 4. Determination of the solubility of drugs.
Practice 5. Dissolution kinetics of furantoin from tablets.
Practice 6. Evaluation in of the permeation capacity of various semi-solid formulations by using Franz cell chambers.

COMPUTER PRACTICES:
1. “Biopharmaceutics” program.
2. In vitro equivalence study of citalopram formulations.

CLASSROOM PRACTICES
1. Dissolution kinetics: a practical case
2. Calculation of the permeability constant of a drug: a practical case
3. Preparation of the group work
4. Bioequivalence study: a practical case
5. Self-evaluation tests

TEACHING METHODS
METHODOLOGY
1. Lectures. (5.5 ECTS)
2. Classroom practices: solving practical cases. (0.5 ECTS)
3. Practical laboratory classes. (2.6 ECTS)
4. Practical computer class. (0.4 ECTS)
5. Self-evaluation tests through the e-Gela platform.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>55</td>
<td>5</td>
<td>26</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>82.5</td>
<td>7.5</td>
<td>39</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation
Evaluation tools and percentages of final mark

- Written test, open questions 60%
- Exercises, cases or problem sets 15%
- Individual assignments 10%
- Teamwork assignments (problem solving, Project design) 15%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

COMBINED EVALUATION SYSTEM

Compulsory written test.
Requirements:
Absence of conceptual errors
Obtain a score higher than 0 in at least 70% of the questions
Obtain a minimum of 5 points
Spelling and syntax errors will be penalised depending on their number (-0.1 points for each one, up to a maximum of - 0.5 points).

Practical classes.
Attendance at and benefit from practical classes. Scores from 0 to 5.
Punctuality
Good housekeeping
Attitude
Results and preparation of the practice book
To pass the practical part of the subject, the sum of the scores in sections A and B must be 7 points as a minimum.
Laboratory examination. Students who have not attended all the practical classes. The following will be considered: good housekeeping, laboratory skills and the results and preparation of the final report. The percentage of this test in the final mark is 15% (7% work and 8% oral presentation).
Oral presentation and debate on the group work. 10-15-minute oral presentation of a scientific publication related to the subject, using an audiovisual followed by a 10-minute debate. The professors will decide which part of the work will be presented by each student. An evaluation matrix will be used to evaluate each student. It will be handed over together with the work. The final mark for the work (7%) will be the same for the members of the group (i.e. average for the group).
Withdrawal: The student must submit her/his exam withdrawal request. The deadline will be the day before the official call.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The positive results of the activities of continuous evaluation (laboratory practices and group work) will be maintained in the extraordinary call.

MANDATORY MATERIALS

Cuaderno de prácticas de laboratorio y de ordenador. Este cuaderno es elaborado por el profesorado y se hace accesible para los alumnos a través de la plataforma eGELA. Los alumnos deben disponer de él cuando acudan a realizar las prácticas.

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

Journals

Web sites of interest
3. www.wits.ac.za/pharmacy/biopharmacy.htm
4. A First Course in Pharmacokinetics and Biopharmaceutics. David Bourne, Ph.D. www.boomer.org/c/p1/
5. www.farm.kuleuven.ac.be/pharbio/aplink.htm
7. WILEY. http://www3.interscience.wiley.com
8. ELSEVIER http://www. Sciencedirect.com

OBSERVATIONS
<table>
<thead>
<tr>
<th>COURSE GUIDE</th>
<th>2024/25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>125 - Faculty of Pharmacy</td>
</tr>
<tr>
<td>Degree</td>
<td>GCAMBI11 - Bachelor’s Degree in Environmental Science</td>
</tr>
<tr>
<td>Cycle</td>
<td>.</td>
</tr>
<tr>
<td>Year</td>
<td>First year</td>
</tr>
</tbody>
</table>

| COURSE | 25227 - Geology | Credits, ECTS: | 6 |

<table>
<thead>
<tr>
<th>COURSE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is intended to provide a solid basis for the understanding of the origin of rocks, the geodynamic context where they are formed and a first approach to their description and classification. In parallel, the course is designed to make the students of this subject understand the geological processes involved in the formation and evolution of the Earth as well as their relationship with humanity and natural environment.</td>
</tr>
<tr>
<td>This course is included within the "Module 01: General scientific basis" and it is considered as a fundamental subject for the Degree in Environmental Science.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC COMPETENCES</td>
</tr>
<tr>
<td>G001. Ability to acquire and integrate basic scientific knowledge into social, economic, legal and ethics spheres leading to the identification of possible environmental issues.</td>
</tr>
<tr>
<td>G003. Integration into professional working groups focused on professional tasks, including those related to teaching and environmental research.</td>
</tr>
<tr>
<td>CB1: Ability to learn and understand the basic principles of certain research fields.</td>
</tr>
<tr>
<td>CB2: Ability to apply the acquired knowledge in a professional mannerhab to working practices and vocation</td>
</tr>
<tr>
<td>CB3: Ability to collect and interpret significant data in order to address ideas and opinions calling for a profound reflection on important topics related to society, science or ethics.</td>
</tr>
<tr>
<td>CB4: Ability to transmit information, ideas, issues and solutions to specialist and non-specialist audience.</td>
</tr>
<tr>
<td>CB5: Development of learning abilities to be used with a high grade of autonomy in posterior studies.</td>
</tr>
<tr>
<td>CROSS-DISCIPLINARY COMPETENCES</td>
</tr>
<tr>
<td>G009: Ability to use, interpret and give information extracted from different sources.</td>
</tr>
<tr>
<td>G010: Team-working ability: interchange of information, ideas and suggestions in order to achieve scientific and professional goals.</td>
</tr>
<tr>
<td>SPECIFIC COMPETENCES</td>
</tr>
<tr>
<td>M01CM03: Ability to use different units, dimensions, scales and tools of all the basic disciplines.</td>
</tr>
<tr>
<td>M01CM07: Interpretation of basic geological information obtained from field work and/or geological maps.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theoretical and Practical Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORETICAL CONTENTS</td>
</tr>
<tr>
<td>1. Introduction to Geology: Concept and methods in Geology. Geological disciplines and relationship with other sciences. Fundamental principles. The geological timescale.</td>
</tr>
</tbody>
</table>

PRACTICAL CONTENTS

Laboratory sessions

1. Topographic maps: information sources, description, topographic symbols and interpretation
2. Geological maps: information sources, cartographic symbols, representation of geological structures and interpretation of geological maps
3. Geological cross-sections, interpretation and reconstruction of the recorded geological history
4. Measurement of geological structures: planes and lines
5. Representation of orientation measures: orthogonal projection
6. Identification of igneous rocks
7. Identifications of metamorphic rocks
8. Identification of sedimentary rocks

Field trips

1. Half day trip in order to provide valuable experience of geological principles and practice

TEACHING METHODS

1. Theory classes: they take place in a classroom and are intended to give an overview of the course, introduce the theoretical content of the subject in an organized manner and provide practical information and dates (due dates for assignments, exams...)

2. Laboratory classes: group work sessions. They are supervised by a professor and are focused on the identification and recognition of rocks, measurement and representation of geological structures, and interpretation of topographic, geological maps and cross-sections.

3. Fieldwork in order to consolidate and put into practice the theoretical and practical content worked upon during the course.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>39</td>
<td>15</td>
<td>25</td>
<td>60</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>60</td>
<td>25</td>
<td>5</td>
<td>60</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods

- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 70%
- Exercises, cases or problem sets 20%
- Individual assignments 10%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The evaluation methods are those stipulated in the BOPV of March 13, 2017 "Acuerdo de 15 de diciembre de 2016, Consejo de Gobierno de la Universidad del País Vasco/Euskal Herriko Unibertsitatea, por el que se aprueba la Normativa Reguladora de la Evaluación del Alumnado en las titulaciones oficiales de Grado". and posterior modifications.

As such, this is an end-of-course evaluation (Chapter II, Article 8, Paragraph 2b) including individual assignments that permit to achieve and evaluate the specific and cross-disciplinary competences and skills contemplated in this course.

The final grade is the weighted sum of the individual scores attained in each evaluated part. A score of more than 4 is required in each of the parts in order to pass the subject.

During the examination the protocol on academic ethics and prevention of dishonest or fraudulent practices in assessment tests and in academic work at the UPV/EHU will be applied.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The evaluation methods are those stipulated in the BOPV of March 13, 2017 "Acuerdo de 15 de diciembre de 2016, Consejo de Gobierno de la Universidad del País Vasco/Euskal Herriko Unibertsitatea, por el que se aprueba la Normativa Reguladora de la Evaluación del Alumnado en las titulaciones oficiales de Grado". and posterior modifications.

As such, this is an end-of-course evaluation (Chapter II, Article 8, Paragraph 2b) including individual assignments that permit to achieve and evaluate the specific and cross-disciplinary competences and skills contemplated in this course.

The final grade is the weighted sum of the individual scores attained in each evaluated part. A score of more than 4 is required in each of the parts in order to pass the subject.

During the examination the protocol on academic ethics and prevention of dishonest or fraudulent practices in assessment tests and in academic work at the UPV/EHU will be applied.

MANDATORY MATERIALS

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

Journals

Web sites of interest
1) www.scotese.com
2) www.igme.com
3) www.agportal.eve.eus
4) www.geo.euskadi.eus
5) www.sociedadgeologica.org

OBSERVATIONS
Meteorology and Oceanography is the last course from the module Scientific Bases of Natural Environment. This module involves those sciences most specifically related to the knowledge, interpretation and description of natural environment, in order to correctly interpret the multiple relations between this and human activities: their repercussion, protection or conservation actions, etc.

This course particularly analyzes meteorological phenomena and their origin, as well as basic climate processes and their relation with oceans. An special importance is given to the gathering and analysis of meteorological data.

It is encouraged to previously study first year's Physics and Mathematics in order to realize this course.

Apart from the basic competences, which are common to every degree, the following general competences will be practiced:

G001: To acquire basic scientific knowledge and use it in the social, economic, legal and ethical spheres, in order to identify environmental problems.

G003: To be part of professional teams (including teaching or research work) from the environmental field.

And the transversal competence (G009): To be able to use the information obtained from different sources about an applied topic. To interpret it correctly, to extract significant conclusions and to present them publicly.

Regarding the specific module competences, the following will be practiced:

M02CM05: To learn the basic principles of structural-, dynamical- and climatic-geomorphology.

M02CM06: To use the basic techniques for the obtainment, analysis and cartographic representation of the environmental information.

M02CM08: To analyze and interpret meteorological and oceanographic processes, and use them for the planning and development of environmental projects, territorial planning and the methodology of environmental impact evaluation.

The learning results of the student will be the following:

a) The student is able to describe the basic characteristics and causes of the following meteorological and oceanographic phenomena:
 - Greenhouse effect
 - General atmospheric and oceanic circulation
 - Wind
 - Sea/land breezes and foehn effect
 - Turbulence
 - Tides
 - Waves
 - Oceanic upwellings

b) The student is able to apply the following equations in order to describe atmospheric/oceanic behavior:
 - Hydrostatic equation
 - Geostrophic equation
 - Technical formula for the obtainment of altitude wind's value inside the Atmospheric Boundary Layer
 - Weibull's statistical distribution for the wind
 - Electrical power generated by an aerogenerator
 - Tide's height sinusoidal interpolation

c) The student is able to use correctly the technical vocabulary employed in meteorology and Oceanography.

d) The student is able to obtain and use meteorological/oceanographic information through internet.
Theoretical and Practical Contents

1. Composition and structure of Earth’s atmosphere:
 - Atmospheric layers
 - Principal atmospheric meteors
 - Hydrostatic equation
 - Vertical atmospherical sounding
 - Types of clouds in the troposphere

2. Atmospheric general circulation
 - Wind's geostrophic equation
 - Atmospheric Boundary Layer (ABL)
 - Electrical power of an aerogenerator
 - Mesometeorological phenomena
 - Dispersion of pollutants
 - General circulation cells and world wind systems
 - Influence of general circulation in Earth’s climate
 - Air masses affecting Iberic Peninsula

3. Earth atmosphere’s heat budget
 - Insolation
 - Geophysical limit for energy sustainability
 - Sun-Earth irradiation flux
 - Greenhouse effect
 - 1D simple model for climate change

4. Composition and structure of ocean
 - Oceanic layers
 - Oceanic temperature, salinity and density profiles
 - Ocean bottom

5. Oceanic currents and tides
 - General oceanic circulation
 - Thermohaline circulation
 - Forces generating tides
 - Types of tides
 - Tide height estimation
 - Eckman’s spiral
 - Descent and subsidence phenomenon due to Eckman's pumping
 - Oceanic upwelling

6. Waves and their energy
 - Wave amplitude, valley, length, period and velocity
 - Beaufort’s scale
 - Estimation of wave’s height (fetch)
 - Energy of waves

TEACHING METHODS

During this course we do not completely differentiate between the so called master classes and practical lessons (being these last ones compulsory). Instead, master classes are complemented with the resolution of practical activities. With that purpose, lessons in the regular classroom and lessons in the computer room are equally combined.

Both in the classroom and the computer room an active participatory methodology is followed, where the student is the protagonist of her/his own learning process. In the classroom, usually theoretical contents are presented through bibliographical research, presentations or problem resolution, whereas in the computer room meteorological/oceanographic information is collected for its posterior treatment and analysis.
TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>30</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>45</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 25%
- Exercises, cases or problem sets 30%
- Teamwork assignments (problem solving, Project design) 30%
- TEST PROBA PARTZIALAK 15%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

There are two types of evaluation: the continuous and the final one.

Those who choose final evaluation, should officially notify it to the professor during the first 9 weeks of the course. In this case, if the student does not show up to the final exam, that will be enough to renounce to the evaluation.

Those who choose continuous evaluation do not have to do a final exam. Apart from group problems, projects, presentations, etc. students should realize a practical exam and two theoretical exams. In order to pass the course it will be compulsory to pass those practical and theoretical exams. In order to renounce to the evaluation, students should officially notify it to the professor at least a month before the semester ends.

In case sanitary situation obligates to take measures which impede a face-to-face evaluation a distance evaluation will be activated. The students will be informed about that.

Spelling or syntax mistakes will be penalized; each mistake will rest 0.1 points and a maximum of 0.5 points will be rested.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

In the extraordinary call the only evaluation form will be the final one. In order to renounce to the evaluation, it will be enough not to be presented to the final exam.

In case sanitary situation obligates to take measures which impede a face-to-face evaluation a distance evaluation will be activated. The students will be informed about that.

Spelling or syntax mistakes will be penalized; each mistake will rest 0.1 points and a maximum of 0.5 points will be rested.

MANDATORY MATERIALS

BIBLIOGRAPHY

Basic bibliography

- Understanding Weather and Climate. E. Aguado y J. E. Burt. Pearson Education
- The Atmosphere. F. K. Lutgens y E. J. Tarbuck. Pearson Education

Detailed bibliography

Practical Meteorology, R. Stull. https://www.eoas.ubc.ca/books/PracticalMeteorology/

Journals

Elhuyar

Web sites of interest

- Wyoming-eko unibertsitatea: http://weather.uwyo.edu/
- Euskalmet: http://www.euskalmet.euskadi.eus/hasiera
- AEMET: http://www.aemet.es/eu/portada
- UK meteorologia zerbitzua: https://www.metoffice.gov.uk/
- Wetterzentrale: http://www.wetterzentrale.de/
- National Center for Atmospheric Research (USA): https://ncar.ucar.edu/
- Bilbaoport: https://www.bilbaoport.eus/eu/
- Puertos del Estado: http://www.puertos.es/eu-es#

OBSERVATIONS
COURSE GUIDE 2024/25

Faculty: 125 - Faculty of Pharmacy
Degree: GCAMBI11 - Bachelor's Degree in Environmental Science
COURSE
COURSE DESCRIPTION
Physics is one of the basic courses of the first year of the Degree in Environmental Sciences and the Degree in Food Science and Technology.

This course offers a overall view of Physics, aimed towards basic concepts such as magnitudes and units, laws of motion, work and energy, and gravitational and electric forces.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT
- Accurately use the international system of magnitudes and units.
- Analyzes and explains the different concepts of Physics in the context of the degree.
- Reduces and simplifies problems to their most essential aspects, solving them by means of analysis, hypothesis emission, elaboration of strategies and analysis of results.
- Uses measuring instruments typical of a Physics laboratory, interpreting data and graphs accurately and evaluates experimental errors appropriately.
- Solve practical exercises applying the general principles and laws of Physics, justifying the method of resolution adopted.

Common competences
Is able to use information from various sources on an applied topic, interpret it appropriately, draw meaningful conclusions and present them publicly.

Theoretical and Practical Contents

THEORETICAL CONTENTS:

Unit 1.- Observables, magnitudes, units. Significant figures.

Unit 2.- Laws of motion. Inertia, equilibrium, acceleration. Motion in a straight line, circular and parabolic. Inertial and non inertial frames of reference. Relative motion. Energy and work. Conservative and non conservative forces.

LABORATORY:
1.- Computer spreadsheet basics
2.- Mechanics
3.- Electromagnetic Induction
4.- Ohm's law

TEACHING METHODS
- Lectures: classes in which the teacher will explain the contents of the course. Low/medium difficulty problems may be proposed and solved during the class, in order to help settle the newly learned concepts. Student participation is encouraged.

- Class practices: the teacher and/or designated students will solve medium/high difficulty problems from a list assigned at the start of each unit.
Evaluation tools and percentages of final mark

- Jigsaw: this group activity forms part of an educative project (HBP/PIE i3lab 24-40) of the degree of Food Science and Technology. The project consists on working on the Sustainable Development Goals in different subjects along the whole degree.

- Computer/laboratory practices: the students will perform experiments and computer calculations on matters closely related to the contents of the course. Student attendance is mandatory.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Hours of face-to-face teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>54</td>
<td>18</td>
<td>13.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Continuous assessment
 - Deliverable tasks: 20%
 - Mid term exams: 20%
 - Final exam: 60%

- Teamwork assignments (problem solving, Project design): 20%

- Midterms: 20%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Students will be able to choose between "continuous assessment" and "final assessment" modalities:

Continuous assessment

The exams and their weights break down as follows:
- 20%: Deliverable tasks
- 20%: Mid term exams
- 60%: Final exam of the grade. 20% will count for the practices exam, it will be necessary to obtain a 4 out of 10 in this part in order to pass the course. 40% will count for the course contents exam, it will be necessary to obtain a 5 out of 10 in this part in order to pass the course.

Final assessment

A single final examination will be taken at the end of the term, weighting 100% of the grade (20% for the practices exam, 80% for the course contents exam).

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The July examination will be graded following the final assessment modality, therefore a single final examination will be taken, weighting 100% of the grade (20% for the practices exam, 80% for the course contents exam).

MANDATORY MATERIALS

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

Journals

Elhuyar aldizkaria.

Web sites of interest

- http://www.sc.ehu.es/sbweb/fisica/
- http://lectureonline.cl.msu.edu/~mmp/applist/applets.htm
- http://phet.colorado.edu/index.php

OBSERVATIONS
<table>
<thead>
<tr>
<th>COURSE GUIDE</th>
<th>2024/25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>125 - Faculty of Pharmacy</td>
</tr>
<tr>
<td>Degree</td>
<td>GCAMBI11 - Bachelor's Degree in Environmental Science</td>
</tr>
<tr>
<td>Cycle</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Fourth year</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

This subject addresses the management of eco-energies based on renewable sources and energy efficiency, with a description of the technologies, modeling and control of eco-efficient energy flow.

Aims:
- Visualising the current energy system from an eco-efficient approach of global and local energy management, which introduces renewable energies into a distributed generation system.
- Evaluating possible eco-efficient actions in energy systems, which are involved in the different processes from generation and distribution to final consumption.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

General and basic skills
- G002 - Planning and developing environmental projects with a transdisciplinary approach.
- G003 - Joining work teams that carry out professional tasks, including teaching or research in the environmental field.
- G006 - Developing, implementing and maintaining environmental management systems in the company, and identifying, analysing and preventing environmental risks to health.
- G007 - Evaluating the environmental impact of projects, plans, and programs.

CB1 - Students must have demonstrated knowledge and understanding in an area of study that is based on general secondary education. Although supported by advanced textbooks, this also includes some aspects of cutting-edge knowledge of their field of study.

CB2 - Students are able to apply their knowledge to their work or vocation in a professional manner and possess the skills that are usually displayed through the elaboration and defense of arguments and the resolution of problems within their area of study.

CB3 - Students are able to gather and interpret relevant data (normally within their area of study) to make judgments that include reflection on relevant topics of a social, scientific or ethical nature.

CB4 - Students are able to convey information, ideas, problems and solutions to both a specialised and a lay audience.

CB5 - Students have developed the learning skills necessary to undertake further studies with a high degree of autonomy.

Specific skills
- M05CM01 - The acquisition of general knowledge about environmental management systems applicable to companies and administrations.
- M05CM02 - The planning and development of environmental management in the company and administration using the computer tools available.

Transversal skills
- G009 - The ability to use information from various sources on an applied topic, interpret it appropriately, draw significant conclusions and present them to the public.

Learning outcomes
1. Students will identify and recognize the generation principles of different conventional and renewable energy sources.
2. Students will evaluate the different sources of renewable energy in a sustainable environment: solar, wind, hydraulic, biomass, geothermal, etc.
3. Students will delve into the aspects of the electrical system that apply to generation systems using renewable energy sources.
4. Students will use and apply the most sustainable generation, storage and consumption technologies currently available to reduce consumption and environmental pollution, protect health and the environment and guarantee the sustainability of the energy system.
5. Students will analyse and implement eco-efficient strategies that replace conventional energies.
6. Students will interpret the scope and implications of the proposed eco-efficient alternatives through energy simulation.

Theoretical and Practical Contents

Topic 1. Current energy scenario

Topic 2. New energy model
- Energy transition. Integrated Energy and Climate Plan. Integration of renewable energies into the electrical system.

Topic 3. Eco-efficient actions
Assessment of possible eco-efficient actions with the different technologies available in economic, efficiency and environmental impact terms. Sustainability criteria, social and environmental commitment applicable in the field of energy generation, transportation, distribution and consumption.

TEACHING METHODS
The master classes are taught through a presentation by the teaching staff supported by teaching material and/or documents from prestigious institutions. Afterwards, the students will carry out team tasks to delve deeper into the proposed topics using active methodologies and present their work in front of the class.
During classroom practices, exercises and practical cases are worked on in work teams. In addition, with the advice of the teaching staff, the documents that must be completed during the course are prepared in Dissertation format.
During IT practices, various simulation activities and information collection are carried out on the topics which will then be shared. The tasks are collected in reports prepared as a team.
As for field practices, visits are made to companies in the energy sector or to facilities that have eco-efficient systems. Subsequently, the students will complete a brief report or a questionnaire associated with the field practice, to be carried out as a team.
Tutoring, both individual and group, is used to resolve doubts, guide work and exercises, propose improvements, etc. In general, tutoring is a voluntary activity at the request of the students.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>30</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>45</td>
<td>22.5</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.5</td>
</tr>
</tbody>
</table>

Legend:
M: Lecture-based
S: Seminar
GA: Applied classroom-based groups
GL: Applied laboratory-based groups
GO: Applied computer-based groups
GCL: Applied clinical-based groups
TA: Workshop
TI: Industrial workshop
GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 15%
- Multiple choice test 10%
- Oral defence 10%
- Exercises, cases or problem sets 10%
- Teamwork assignments (problem solving, Project design) 55%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT
Continuous assessment
The Ordinary Call is evaluated, preferably, through the continuous assessment system, which includes the following assessable activities:
Group tasks, which are evaluated with the following percentages:
- Practicum reports (computer and field): 10%
- Various tasks (exercises, presentations): 25%
- Written works in Dissertation format, including oral presentation: 40%
Final test, which is individual and is evaluated with the following percentages:
- Essay-based test: 15%
- Multiple-choice test: 10%

The subject will be passed if these two conditions are met:
- The final mark for the subject, calculated with the weightings indicated above, is 5 or more (out of 10).
- The final test mark is at least 2.5 out of 10. Otherwise, the subject will be failed with the mark calculated according to the weighted average but limited to a maximum of 4.5.

Final assessment
The final assessment consists of a single test on the contents covered during the course: the weight of the test is 100%.

Opting out
In order to opt out of the ordinary call in the continuous assessment system, students must communicate their decision within a period of at least one month before the end date of the teaching period for the subject. In this case, the mark will be recorded as "No show".
To opt out of the ordinary call in the final assessment system, it will be enough to not attend on the official date of the call. In this case, the mark will be "No show".

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Continuous assessment system
Students who choose not to take the ordinary exam, or who have failed it, will take the final continuous assessment test and will be able to maintain the continuous assessment marks achieved during the group tasks.

Final assessment system
The final assessment consists of a single test on the contents covered during the course. The weight of the test is 100%.

Opting out
Same conditions as in the ordinary call.

MANDATORY MATERIALS
Material incorporated into the eGela platform of the subject.

BIBLIOGRAPHY

Basic bibliography
Instituto para la Diversificación y Ahorro de Energía. Guía de autoconsumo colectivo (v.2). 2024. IDAE.
Instituto para la Diversificación y Ahorro de Energía. La bomba de calor en la rehabilitación energética de edificios. 2023. IDAE.

Detailed bibliography

Journals
Review of Environmental Economics and Policy
Sustainability
Energies

Web sites of interest
Red eléctrica:
https://www.sistemaelectrico-ree.es
European Commission. Nearly zero-energy buildings:
Instituto Catalán de Energía. Edificios de consumo energético casi cero:
https://icaen.gencat.cat/es/energia/usuarios_energia/edificios/consum_nulo
Instituto para la Diversificación Energética (IDAE):
https://www.idae.es
International Renewable Energy Agency (IRENA):
https://www.irena.org
International Energy Agency (IEA):
https://www.iea.org
Ente Vasco de la Energía (EVE):
https://www.eve.eus
Fundación Renovables:
https://fundacionrenovables.org
Asociación de empresas de energías renovables (APPA):
https://www.appa.es
OBSERVATIONS

If the final test cannot be held in person for health reasons, the subject will be assessed through an online test in which the students will respond orally and in writing to some questions on the contents and work covered during the course.
COURSE DESCRIPTION

The course describes the biomolecules that are part of the human organism, both from the structural point of view, and the metabolic transformations that take place within the cells. To this end, the reaction mechanisms carried out by enzymes, which are mainly proteins that function as biological catalysts, are detailed.

The second part of the course contains the description and analysis of the main metabolic pathways that occur in the organism to obtain the metabolic energy necessary for the synthesis of the macromolecules that keep the human organism alive. In order to reach this objective, it is necessary to ingest food, with different degrees of elaboration, which will generate the appropriate substrates so that these reactions can take place.

The third part explains how genetic information is transmitted so that the various proteins necessary for the maintenance of the metabolism and structures of living organisms can be expressed.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

1.-To know the structures, properties and biochemical functions of biomolecules.
2.-To understand, correlate and be able to explain the general chemical processes that living beings carry out and that are governed by enzymes.
3.-To identify and understand the chemical processes to obtain metabolic energy by the cell and those that consume that energy in the synthesis of biomolecules themselves.
4.-To know the pathways of expression, repair and transmission of the genetic message.
5.-To perform chemical and/or biochemical analysis and to interpret the results.

Theoretical and Practical Contents

TOPIC 1. PRESENTATION. Introduction to the biological molecules.

TOPIC 8. CARBOHYDRATES. Structure. Classification and biological interest.

TOPIC 9. NUCLEOTIDES. Structure and function.

TOPIC 11. INTRODUCTION TO INTERMEDIARY METABOLISM. Concept of metabolic pathway. Irreversible reactions. Energy-rich compounds. Regulation of metabolism.

TOPIC 12. BIOLOGICAL OXIDATIONS. Respiratory chain: location, components and control. Oxidative phosphorylation: Definition, mechanism and respiratory control.

TOPIC 13. CYCLE OF TRICARBOXYLIC ACIDS. Sequence, balance and functions.

TOPIC 15. GLUCOSE METABOLISM (2) Gluconeogenesis: Stages and balance from pyruvate. Pentose phosphate pathway.

TOPIC 16. REGULATION OF GLUCOSE METABOLISM. Coordinated regulation of glycolysis and gluconeogenesis.

TOPIC 17. GLYCOGEN METABOLISM. Glycogenolysis. Regulation of glycogen metabolism.

TOPIC 19.- CATABOLISM OF FATTY ACIDS. Activation of fatty acids. Oxidation of fatty acids. Ketone bodies: biosynthesis and utilization.

TOPIC 21.- LIPID BIOSYNTHESIS. Biosynthesis of triacylglycerides and phospholipids. Biosynthesis of cholesterol and steroid derivatives.

TOPIC 26.- DNA REPLICATION. Properties. DNA polymerases. Stages of replication.

TOPIC 27.- DNA MUTATION AND REPAIR. Causes of mutations and repair systems.

TOPIC 30.- REGULATION OF GENE EXPRESSION. Bacteria. Eukaryotes.

TEACHING METHODS

METHODODOLOGY OF TEACHING MODALITIES:
- **LECTURES:**
 They will be held in classrooms with blackboard, computer and projector (65 hours).
- **LABORATORY PRACTICES:**
 They will be carried out in practice laboratories (4 sessions of 5 hours each).
- **CLASSROOM PRACTICES:**
 They are carried out in classrooms with blackboard, computer and projector (2 sessions of 2.5 hours each).

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>65</td>
<td>5</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>97.5</td>
<td>7.5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods
- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark
- Written test, open questions 15%
- Multiple choice test 50%
- Exercises, cases or problem sets 20%
- Individual assignments 10%
- Teamwork assignments (problem solving, Project design) 5%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The final exam consists of a theoretical and a practical part. The theoretical part will account for 65% of the final grade of the course, there will be a test section (50%) and questions to be developed (15%). The practical part will account for 20% of the final grade. To pass the course it is necessary to pass both parts separately. The remaining 15% of the grade is obtained through continuous assessment, through questions and exercises that the teacher will pose in class or on the eGela platform during the course and two individual tests. The realization of laboratory practices is mandatory. During the development of the practices, the attitude and skills in the laboratory work will be graded, as well as the students’ capacity
of expression and teamwork.

In any case, students will have the right to be evaluated through the final evaluation system, regardless of whether or not they have participated in the continuous evaluation system. To do so, students must submit in writing to the teacher responsible for the subject the waiver of continuous assessment, for which they will have a period of 9 weeks from the beginning of the course.

Both in the case of continuous assessment and in the case of final assessment, failure to attend the test set on the official exam date will mean the automatic waiver of the call, and will result in the qualification of not presented.

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The same conditions as in the ordinary exam.

However, students who pass any of the parts in the ordinary exam will not have to repeat it in the extraordinary exam, i.e., they will only have to take the exam of the failed part.

MANDATORY MATERIALS

eGEiLa will be essential for the proper development of the lesson.

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

2. “The Regulation of DNA Replication and Transcription” M. Beljanski, 2013

Journals

Web sites of interest

http://highered.mheducation.com/sites/0072507470/student_view0/index.html
https://www.rcsb.org/
https://www.sebbm.es/web/en/

http://www.ehu.es/biomoleculas
http://www.biorom.uma.es/

OBSERVATIONS

Minimum knowledge of the following areas is required:

BIOLOGY
- Cell structure and organization.

CHEMISTRY
- Concentration units
- Chemical bonds and intermolecular forces
- Chemical kinetics
- Stereoisomerism

PHYSICS
- Basic thermodynamic quantities

MATHEMATICS
- Graphical representations and linear regression analysis.
COURSE GUIDE 2024/25

<table>
<thead>
<tr>
<th>Faculty</th>
<th>125 - Faculty of Pharmacy</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>GCTALI10 - Bachelor's Degree in Food Science and Technology</td>
<td>Year</td>
</tr>
</tbody>
</table>

COURSE

| Course Code | Physics | Credits, ECTS: | 6 |

COURSE DESCRIPTION

Physics is one of the basic courses of the first year of the Degree in Environmental Sciences and the Degree in Food Science and Technology.

This course offers a overall view of Physics, aimed towards basic concepts such as magnitudes and units, laws of motion, work and energy, and gravitational and electric forces.

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

- Accurately use the international system of magnitudes and units.
- Analyzes and explains the different concepts of Physics in the context of the degree.
- Reduces and simplifies problems to their most essential aspects, solving them by means of analysis, hypothesis emission, elaboration of strategies and analysis of results.
- Uses measuring instruments typical of a Physics laboratory, interpreting data and graphs accurately and evaluates experimental errors appropriately.
- Solve practical exercises applying the general principles and laws of Physics, justifying the method of resolution adopted.

Common competences

Is able to use information from various sources on an applied topic, interpret it appropriately, draw meaningful conclusions and present them publicly.

Theoretical and Practical Contents

THEORETICAL CONTENTS:

Unit 1.- Observables, magnitudes, units. Significant figures.

Unit 2.- Laws of motion. Inertia, equilibrium, acceleration. Motion in a straight line, circular and parabolic. Inertial and non inertial frames of reference. Relative motion. Energy and work. Conservative and non conservative forces.

LABORATORY:

1.- Computer spreadsheet basics

2.- Mechanics

3.- Electromagnetic Induction

4.- Ohm’s law

TEACHING METHODS

- Lectures: classes in which the teacher will explain the contents of the course. Low/medium difficulty problems may be proposed and solved during the class, in order to help settle the newly learned concepts. Student participation is encouraged.

- Class practices: the teacher and/or designated students will solve medium/high difficulty problems from a list assigned at the start of each unit.
- Jigsaw: this group activity forms part of an educative project (HBP/PIE i3lab 24-40) of the degree of Food Science and Technology. The project consists on working on the Sustainable Development Goals in different subjects along the whole degree.

- Computer/laboratory practices: the students will perform experiments and computer calculations on matters closely related to the contents of the course. Student attendance is mandatory.

TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>36</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>54</td>
<td>18</td>
<td>13.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 60%
- Teamwork assignments (problem solving, Project design) 20%
- Midterms 20%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

Students will be able to choose between "continuous assessment" and "final assessment" modalities:

Continuous assessment

The exams and their weights break down as follows:

- 20%: Deliverable tasks
- 20%: Mid term exams
- 60%: Final exam of the grade. 20% will count for the practices exam, it will be necessary to obtain a 4 out of 10 in this part in order to pass the course. 40% will count for the course contents exam, it will be necessary to obtain a 5 out of 10 in this part in order to pass the course.

Final assessment

A single final examination will be taken at the end of the term, weighting 100% of the grade (20% for the practices exam, 80% for the course contents exam).

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The July examination will be graded following the final assessment modality, therefore a single final examination will be taken, weighting 100% of the grade (20% for the practices exam, 80% for the course contents exam).

MANDATORY MATERIALS

BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

Journals
Elhuyar aldizkaria.

Web sites of interest
- http://www.sc.ehu.es/sbweb/fisica/
- http://lectureonline.cl.msu.edu/~mmp/applist/applets.htm
- http://phet.colorado.edu/index.php

OBSERVATIONS
The Food Technology discipline is made up of two subjects: Food Technology I and Food Technology II. The knowledge provided by this discipline ranges from the technological foundations of preservation and transformation processes to the changes that take place in the technological, nutritional and sensory characteristics of food during processing and storage. This knowledge is essential for the future food technologist to be able to correctly carry out their professional work in the field of food preparation and preservation. Thus, the aim of this subject is for the student to acquire the knowledge and skills related to all the operations involved in the manufacture of food, from the raw material to the finished product that reaches the consumer. This way, the students will be able to select the most appropriate technology in each case, taking into account the limitations, advantages and disadvantages of their choice.

This guide contains information related to the subject Food Technology I, which is taught during the 2nd four-month period of the 3rd year of the Bachelor’s Degree in Food Science and Technology. This subject, like Food Technology II, is part of the module called Food Technology, whose objective is that the student acquires the necessary technological basis for all the stages that affect the food, from the raw material to the finished product that reaches the consumer. In order to be able to follow this subject properly is necessary for students to have adequate training in subjects related to: Food Chemistry and Biochemistry, Basic Operations I and Food Microbiology and Hygiene. Likewise, Food Technology I serves as a basis for Food Technology II and other optional subjects that deal with the specific technologies of the different types of food that are developed in the 4th year.

COMPETENCES/LEARNING RESULTS FOR THE SUBJECT

DISCIPLINE-SPECIFIC COMPETENCES IN FOOD TECHNOLOGY:

C1. Accurately define the different processes involved in food manufacturing.

C2. Analyse and interpret the theoretical bases underpinning each type of operation involved in food processing.

C3. Understand the operation and design fundamentals of the different types of equipment that can be used in the food industry for each type of processing.

C4. Analyse and assess the effects that different forms of processing can cause on foodstuffs.

C5. Design and plan food manufacturing processes using different operations.

C6. Use in a practical way some equipment within a food manufacturing process and judge its effect.

TRANSVERSAL COMPETENCES OF THE DISCIPLINE FOOD TECHNOLOGY:

C7. Plan and carry out group work aimed at searching for information and obtaining, presenting and discussing results.

Theoretical and Practical Contents

THEORETICAL PROGRAMME

I INTRODUCTION
1. Introduction.

II. PRELIMINARY OPERATIONS AND OTHER OPERATIONS
2. Washing and Cleaning.
3. Sorting.
4. Size reduction in solid foods.
5. Size reduction in liquid foods.
6. Mixing and Molding.

III. SEPARATION PROCESSES
7. Centrifugation.
8. Filtration.
9. Pressure extraction.
10. Separation by Membranes.

IV. HEAT PROCESSING
12. Pasteurization.
13. Sterilization

V. WATER CONTENT REDUCTION PROCESSES
15. Dehydration: Dehydration by Evaporation. Dehydration by Sublimation (Freeze Drying).

PRACTICAL PROGRAMME

INDUSTRIAL WORKSHOPS: Several sessions will be held at a food plant scale with the aim of becoming familiar with the some of the equipment commonly used for food processing. When possible, the students will have to analyze the effect of the processing on the characteristics of the processed product. The practical sessions planned are the following:

1. Analysis and evaluation of the cold-pressing extraction operation. Assembly of the press, setting up, extraction of some oily seeds and evaluation.
2. Evaluation of the size reduction operation in liquids. Pressure homogenizer, set-up, operating conditions and evaluation.
3. Fruit juice pasteurization. Sensory and analytical evaluation of juices.

CLASSROOM PRACTICES: This will consist of the selection by groups of a specific application of an industrial process and subsequent presentation and argumentation in the classroom of the selected application.

FIELD PRACTICES: A field practice consisting of visiting a food processing plant will be carried out.

TEACHING METHODS

This subject uses a variety of teaching methodologies:

• Lectures (M) will be given in which the basic contents of the subject will be presented. The active participation of the students will be encouraged.

• Classroom practice (GA) will be carried out during normal class time and will consist of a project based on Problem Based Learning (PBL) methodology. This activity is part of the HBP/PIE i3lab 24-40 educational innovation project entitled "Educational innovation in Sustainable Development Goals (SDGs) in the Degree in Food Science and Technology". To carry out the project, students must choose, by groups, a specific application of an industrial process, as well as select commercial equipment based on its efficiency (energy, emissions, etc.) and consider the possibility of recovering the by-products generated. In this way, of the 17 SDGs defined in the United Nations 2030 Agenda, the aim is to work mainly on SDG 12, Responsible Production and Consumption. Likewise, this active methodology will be used to work on various complex transversal competences included in the EHU catalogue (2019), including Critical Thinking and Autonomy and Self-Regulation. The result will be presented to the rest of the class through an oral presentation. In addition, several practical cases will be proposed to be solved individually or in groups, which will allow to deepen the theoretical content of the subject.

Translated with DeepL.com (free version)

• The Industrial Workshops (IT) will be carried out in work groups in the Food Plant of the Faculty of Pharmacy.

• Students will also carry out a field practice (GCA) which will consist of a visit to a food industry in the sector. During the visit, students will be able to check the usefulness of their theoretical knowledge as they will see in situ machinery and processes for the preparation of raw materials and their transformation, which will have been previously dealt with in class, which will facilitate their understanding and learning.
TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>36</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>80</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 65%
- Exercises, cases or problem sets 15%
- Teamwork assignments (problem solving, Project design) 20%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The final mark of each student will be the result of a weighted evaluation of different tests and activities:

- Written exam (individual exam): 65% (it will be necessary to pass the exam in order to calculate the final weighted grade). This exam must be passed with a minimum score of 5 out of 10.

- Report on the results obtained in the industrial workshops (team work): 15%. It will consist of the elaboration, in groups, of a report that compiles the results, observations and conclusions obtained in the sessions of the industrial workshops. This test must be passed with a minimum score of 4 points out of 10.

- PBL-based work (team work): 20%. It will consist of carrying out a work based on PBL. This test must be passed with a minimum score of 4 out of 10 points.

Waiver of the Continuous Evaluation system (Art. 8.3 -see Normativa de Evaluación del Alumnado*):

To waiver of the continuous evaluation system, students must submit a written waiver to the lecturer responsible for the subject, for which they will have a period of 9 weeks counting from the beginning of the four-month period. Students who waive the Continuous Assessment System will have the right to be assessed through the final evaluation system, which will consist of as many exams and assessment activities as necessary to be able to evaluate and measure the defined learning outcomes, in an equivalent way to how they are assessed in the continuous evaluation system and will comprise 100% of the mark for the subject.

Waiver of the exam (Art. 12 see "Normativa de Evaluación del Alumnado**"): The non-presentation to the written exam will imply the renounce to the call, and will result in a "Not Presented" grade.

*https://www.ehu.eus/es/web/estudiosdegrado-gradukoikasketak/ebaluaziorako-arautegia

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The evaluation of the subjects in the extraordinary call will be carried out exclusively through the final evaluation system, as described for the ordinary call.

The non-presentation to the exam will imply the waiver of the call, and will result in a "Not Presented" grade.

MANDATORY MATERIALS

Para los Talleres Industriales será obligatorio el uso de bata.

En la plataforma web Moodle (eGela) se dispone de documentación sobre los objetivos, dinámica (calendario y actividades), programa de la asignatura, y recursos bibliográficos. También se dispone de los protocolos para el desarrollo de las prácticas en laboratorio. Los materiales didácticos necesarios para un adecuado seguimiento de la asignatura estarán disponibles, a lo largo del curso, en el servicio de reprografía de la Facultad de Farmacia.
BIBLIOGRAPHY

Basic bibliography

Detailed bibliography

Journals

Critical Reviews in Food Science and Nutrition
Food Chemistry
Food Science and Technology International
Journal of Agricultural and Food Chemistry
Journal of Food Science
Trends in Food Science and Technology

Web sites of interest

Agencia Española de Seguridad Alimentaria y Nutrición: http://www.aesan.msc.es
Codex Alimentarius Commission: http://www.codexalimentarius.net/web/index_es.jsp
European Federation of Food Science and Technology (EFFoST): http://www.effost.org
European Food Information Council (EUFIC): http://www.eufic.org/sp/home/home.htm
European Food Safety Authority (EFSA): http://www.efsa.europa.eu
Food and Agriculture Organization of the United Nations (FAO): http://www.fao.org
Institute of Food Science and Technology (IFST): http://www.ifst.org
Institute of Food Technologists (IFT): http://www.ift.org
Ministerio de Asuntos Sociales y Agenda 2030: https://www.agenda2030.gob.es/

OBSERVATIONS
The subject of Science and Technology of Meat, Fish and Derived Products is taught in the 1st four-month period of the last year of the Degree in Food Science and Technology and it is part of the “Food Sector” module. The general objective of the subject is to study in depth and from an applied perspective the composition, characteristics, preservation and transformation of meat and fish, as well as the processing technology and the properties and defects of meat and fish derivatives. Its purpose is for students to acquire the basic knowledge and skills that will enable them to select in each case the most appropriate raw materials, ingredients, additives and technologies for the preservation, transformation and elaboration of meat and fish derivatives. Thus, the course is closely related to the Food Technology I and II subjects (taught in the 3rd and 4th years of the Degree, respectively), since both are the basis of application to the technologies of the different sectors. Likewise, it integrates knowledge and competences previously acquired from other subjects of the degree such as Food Chemistry and Biochemistry (taught in 2nd year), and Food Microbiology and Hygiene (3rd year).

COMPETENCIES/LEARNING RESULTS FOR THE SUBJECT

C1. Identify the physico-chemical and functional characteristics of meat and fish, as well as their mechanisms of spoilage.
C2. Analyze and assess the effects of the different technologies applied in meat and fish preservation and processing on the characteristics of the final product.
C3. Identify the main defects in products derived from meat and fish and propose solutions.
C4. Design, plan and carry out meat and fish manufacturing processes to obtain derived products.
C5. Plan and carry out group work aimed at searching for information and obtaining, discussing and presenting results.

Theoretical and Practical Contents

THEORETICAL PROGRAMME
GENERAL INTRODUCTION TO THE SUBJECT SCIENCE AND TECHNOLOGY OF MEAT, FISH AND DERIVED PRODUCTS

I. SCIENCE AND TECHNOLOGY OF MEAT AND DERIVED PRODUCTS
 1. Introduction
 2. Structure of skeletal muscle tissue
 2. Chemical composition of muscle
 3. Muscle contraction

II. TRANSFORMATION OF MUSCLE TO MEAT. MEAT QUALITY PARAMETERS
 5. Development of rigor mortis
 6. Anomalous developments of rigor mortis
 7. Meat ageing
 8. Meat color
 9. Meat texture
 10. Meat aroma and taste
 11. Meat water holding capacity

III. INDUSTRIAL PRODUCTION OF MEAT. FRESH MEAT TECHNOLOGY
 12. Livestock slaughter
 14. Meat refrigeration
 15. Meat freezing

IV. MEAT TRANSFORMATION. TECHNOLOGICAL PROCESSES
 17. Meat curing. Meat emulsions
 18. Processing operations of meat derivatives
 19. Whole cured and aged meat derivatives
 20. Minced cured-aged meat derivatives
 21. Whole pasteurized meat derivatives
 22. Minced pasteurized meat derivatives
II PART. SCIENCE AND TECHNOLOGY OF FISH AND DERIVED PRODUCTS

1. Introduction
I. STRUCTURE AND COMPOSITION OF FISH
2. Structure and characteristics of fish muscle tissue
3. Chemical composition of fish
4. Structure and Composition variability and scientific-technical consequences

II. POST-MORTEM CHANGES IN FISH. FISH QUALITY
5. Changes in appearance, smell, taste and texture
6. Spoilage of fish
7. Shelf life and quality factors
8. Assessment of fish freshness

III. GENERAL OPERATIONS IN FISH HANDLING AND PROCESSING
9. Preliminary handling
10. Unitary technological processes
11. Refrigeration applied to fish
12. Freezing applied to fish
13. Thawing applied to fish

IV. TRANSFORMATION OF FISH. TECHNOLOGICAL PROCESSES
14. Classification of fish-derived products
15. Fish canning
16. Fish drying and salting
17. Fish Marinating
18. Fish smoking
19. Minced fish and Surimi
20. Fish gels and emulsions
21. Fish by-products

PRACTICAL PROGRAMME
Three different activities will be held: industrial practicals, workshop/exercises and field visits.

INDUSTRIAL PRACTICALS: Several sessions will be held to reproduce at a food plant scale some meat and fish manufacturing processes with the aim of elaborating certain derivatives and/or of processing different raw materials. In these sessions, students will become familiar with some equipment and processes, will be able to experiment with different variables and analyze the processing effect on the characteristics of the final product.

1. Elaboration of a cured-aged sausage and evaluation of the processes involved.
2. Elaboration of a pasteurized sausage and evaluation of the processes involved.
3. Elaboration of semi-preserved fish derivatives and evaluation of the processes involved.
4. Elaboration of smoked fish derivatives and evaluation of the processes involved.

WORKSHOPS (in classroom): Results from Industrial Practicals will be presented and defended in 2 sessions of 3 hours for each section (meat & fish).

FIELD VISITS: Visits to companies that manufacture meat and fish-derived products will be done.

TEACHING METHODS
El programa teórico se desarrollará mediante lecciones magistrales participativas.

Los Talleres Industriales se desarrollarán en pequeños grupos en la Planta Alimentaria. Estas sesiones se completarán con una sesión de exposición y discusión abierta de los resultados en aula.

Las Prácticas de Campo estarán dirigidas por un técnico de la propia empresa. Cada estudiante entregará individualmente un resumen o diagrama de flujo de los procesos observados durante la visita.
TYPES OF TEACHING

<table>
<thead>
<tr>
<th>Types of teaching</th>
<th>M</th>
<th>S</th>
<th>GA</th>
<th>GL</th>
<th>GO</th>
<th>GCL</th>
<th>TA</th>
<th>TI</th>
<th>GCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of face-to-face teaching</td>
<td>57</td>
<td>6</td>
<td>18</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas de Actividad No Presencial del Alumno/a</td>
<td>90</td>
<td>18</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- M: Lecture-based
- S: Seminar
- GA: Applied classroom-based groups
- GL: Applied laboratory-based groups
- GO: Applied computer-based groups
- GCL: Applied clinical-based groups
- TA: Workshop
- TI: Industrial workshop
- GCA: Applied fieldwork groups

Evaluation methods

- Continuous evaluation
- End-of-course evaluation

Evaluation tools and percentages of final mark

- Written test, open questions 70%
- Exercises, cases or problem sets 20%
- Individual assignments 10%

ORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The final grade of the student will be the result of the weighted evaluation of different tests and activities:

- **Written exam (70%)**: It will consist of an objective test on the theoretical and applied contents of the program. The student must obtain a minimum score of 5 out of 10 for each of the two parts of the course.

- **Exhibition and discussion of the results of the industrial workshops (20%)**: It will consist of the presentation and defense in group of the results, observations and conclusions obtained in the sessions of the Industrial Workshops through a PowerPoint presentation, and delivery of a final report. A session will be held for each of the parts of the subject, and they must be passed with a minimum score of 3 points out of 10.

- **Other activities (10%)**: Set of other activities carried out either individually or in small groups.

Student assessment regulations (BOPV 03-13-2017; 06-28-2019)

- **Waiver of the continuous evaluation system**

 To renounce the continuous assessment system, students must submit in writing to the teaching staff responsible for the subject their resignation from the continuous assessment system, for which they will have a period of 9 weeks, starting from the beginning of the semester, in accordance with the academic calendar of the center.

- **Students who renounce the continuous assessment system will have the right to be assessed through the final assessment system.**

- **Waiver of the call**

 Failure to submit to the written exam will lead to the renouncement of the call, and will lead to the qualification of "Not Presented".

EXTRAORDINARY EXAMINATION PERIOD: GUIDELINES AND OPTING OUT

The same evaluation criteria as for the ordinary call will be followed.

MANDATORY MATERIALS

Para la realización de los Talleres Industriales es obligatorio el uso de bata.

Para apoyar las actividades presenciales se empleará la plataforma eGela, como medio de comunicación entre las profesoras y el alumnado. A través de esta plataforma se proporcionarán documentos de interés relacionados con la materia.
BIBLIOGRAPHY

Basic bibliography

- Hall, G.M. 2012. Fish Processing Technology. Blackie Academic And Professional

Detailed bibliography

Journals

- Animal Critical Reviews in Food Science and Nutrition
- Comprehensive Reviews in Food Science and Food Safety
- European Food Research and Technology
- Food Chemistry
- Food and Technology
- Food Reviews International
- International Journal of Food Science and Technology
- Journal of Aquatic Food Product Technology
- Journal of Agricultural and Food Chemistry
- Journal of Animal Science
- Journal of Food Science
- Journal of the Science of Food and Agriculture
- LWT- Food Science and Technology
- Meat Science
- Trends in Food Science and Technology

Web sites of interest

- European Federation of Food Science and Technology (EFFoST). www.effost.org/
- Institute of Food Science and Technology. www.ifst.org/
- Integrating Food Science & Engineering Knowledge into the Food Chain. www.iseki-food.net
- Canadian Institute of Food Science & Technology. www.cifst.ca

OBSERVATIONS