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TTeemmaa  IIVV    

Objetivos   

���� Conocer el concepto de aplicación lineal entre dos espacios vectoriales. Saber 

comprobar si una determinada transformación es lineal. 

���� Saber calcular las imágenes mediante una transformación lineal de un vector o de 

un subespacio completo. 

���� Saber buscar qué vectores se transforman en el vector nulo y qué vectores son la 

imagen de algún vector. 

���� Entender que cada aplicación lineal puede ser representada por una matriz. Saber 

realizar todo lo anterior trabajando con dicha matriz. 

IV.1. DEFINICIÓN DE APLICACION LINEAL. PROPIEDADES. 

Definición. Sean E y F dos espacios vectoriales sobre el cuerpo K, de dimensiones n y 

m respectivamente. Una aplicación f de E en F que asigna a cada vector x de E un 

vector f(x) de F 

:

( )

f E F

f

→
→x x

 

es una aplicación lineal si verifica las condiciones 

) ,                   ( ) ( ) ( )

)        ( ) ( )

I E f f f

II E y K f fα α α
∀ ∈ + = +
∀ ∈ ∈ =
x y x y x y

x x x
 

La condición I) indica que la imagen de la suma de dos vectores es la suma de las 

imágenes. 

A veces nos referimos a las aplicaciones lineales como transformaciones lineales. 

AAPPLLIICCAACCIIOONNEESS  LLIINNEEAALLEESS 
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Ejemplo 

Se define la aplicación 

3 2

1
1 2

2
3

3

:

( )

f

x
x x

x f
x

x

→

 
+  = → =   

  
 

x x

ℝ ℝ

 

Probar que f es lineal. 

Solución. Sean ( )1 2 3

t
x x x=x  e ( )1 2 3

t
y y y=y dos vectores de �

3. 

Comprobemos las condiciones I) y II) de la definición de aplicación lineal. 

I) ( ) ( ) ( )1 2 3 1 2 3 1 1 2 2 3 3

t t t
x x x y y y x y x y x y+ = + = + + +x y   

( ) ( ) ( )1 1 2 2 3 3 1 2 3 1 2 3( ) ( ) ( )
t t t

f x y x y x y x x x y y y f f+ = + + + + = + + + = +x y x y  

II) 3   y α∀ ∈ ∈x ℝ K  se tiene que como ( ) ( )1 2 3 1 2 3

t t
x x x x x xα α α α α= =x , 

( ) ( )1 2 3 1 2 3( ) ( )
t t

f x x x x x x fα α α α α α= + = + =x x    ◄ 

Ejemplo 

Se define la aplicación 

3 2

1
1 2

2
3

3

:

( )
1

f

x
x x

x f
x

x

→

 
+  = → =    +  

 

x x

ℝ ℝ

 

Veamos si f es una aplicación lineal. 

Solución.  

Sean ( )1 2 3

t
x x x=x  e ( )1 2 3

t
y y y=y dos vectores de �3. Comprobemos las dos 

condiciones I) y II) anteriores. 
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Dado que ( ) ( ) ( )1 2 3 1 2 3 1 1 2 2 3 3

t t t
x x x y y y x y x y x y+ = + = + + +x y  se tiene 

que ( )1 1 2 2 3 3( ) 1
t

f x y x y x y+ = + + + + +x y  

Por otro lado, 

( ) ( ) ( )1 2 3 1 2 3 1 1 2 2 3 3( ) ( ) 1 1 2
t t t

f f x x x y y y x y x y x y+ = + + + + + = + + + + +x y . 

De donde ( ) ( ) ( )f f f+ ≠ +x y x y , luego f no es lineal.   ◄ 

Ejemplo 

Sea A una matriz real de tamaño m x n. Probar que la aplicación siguiente es lineal. 

:

( )

n mf

f A

→
→ = ⋅x x x

ℝ ℝ
 

Solución.  

Sean x e y dos vectores de �n y α un número real. La comprobación de las dos 

condiciones de linealidad es directa, utilizando las propiedades de las matrices 

( ) ( ) ( ) ( )

( ) ( ) ( )

f A A A f f

f A A fα α α α
+ = + = + = +

= = =
x y x y x y x y

x x x x
 

Por lo tanto, f es lineal.   ◄ 

Ejemplo 

Sea E un espacio vectorial real y { }B = 1 2 nu ,u ,…,u  una base de E. Probar que la 

aplicación coordenada es lineal 

:

( )

nf E

f

→
→ = B

ℝ

x x x
 

Solución. 

Supóngase que  
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1

2

n

x

x

x

 
 
 =
 
 
 

B
⋮

x     y   

1

2

n

y

y

y

 
 
 =
 
 
 

B
⋮

y  

Entonces  

( ) ( )1 2 1 2

1 1 2 2( ) ( ) ( )
n n

n n

x x x y y y

x y x y x y

+ = + + + + + + + =
= + + + + + +

1 2 n 1 2 n

1 2 n

x y u u u u u u

u u u

… …

…
 

con lo que 

( )
1 1 1 1

2 2 2 2

B

n n n n

x y x y

x y x y

x y x y

+     
     +     + = = + = +
     
     +     

⋮ ⋮ ⋮
B Bx y x y  

Es decir ( ) ( ) ( )f f f+ = +x y x y  

Por otro lado 

( )1 2 1 2n nx x x x x xα α α α α= + + + = + + +1 2 n 1 2 nx u u u u u u… …  

luego 

( )
1 1

2 2

B

n n

x x

x x

x x

   
   
   = = =
   
   
   

⋮ ⋮

α
α

α α α

α

Bx x  

y así ( ) ( )f fα α=x x  

En consecuencia, f es una aplicación lineal. 

Esta propiedad se sigue verificando si se cambia �n por �n.   ◄ 

Son muchos los ejemplos de aplicaciones lineales definidas entre espacios vectoriales. 

Así la proyección y la simetría respecto de cualquier eje coordenado son también 



Aplicaciones lineales 

 

Página 119 

aplicaciones lineales en el espacio vectorial V3. 

Propiedades de las aplicaciones lineales. 

Sea f una aplicación lineal definida entre los espacios vectoriales E y F sobre �. 

Entonces: 

1) ,     ,E y λ µ∀ ∈ ∀ ∈x y K  se tiene que ( ) ( ) ( )f f fλ µ λ µ+ = +x y x y  

Por extensión, la propiedad se puede generalizar a cualquier número de sumandos. 

2) Si se denota por 0E el elemento neutro para la suma en E y por 0F el elemento neutro 

para la suma en F se tiene que ( )f =E F0 0  puesto que ( ) (0 ) 0 ( )f f f= ⋅ = ⋅ =E F0 x x 0  

Sin embargo puede haber más elementos de E que tengan por imagen el 0F. Todos 

ellos constituirán un subespacio, que estudiaremos más adelante y se denominará 

núcleo de f. 

3) Si el conjunto { }S = 1 2 pe ,e ,…,e  es linealmente dependiente, entonces el 

conjunto { }( ) ( ), ( ), , ( )f S f f f= 1 2 pe e e…  es también linealmente dependiente. 

Demostración. Si el conjunto { }S = 1 2 pe ,e ,…,e  es linealmente dependiente 

entonces la combinación nula 1 2 pα α α⋅ + ⋅ + + ⋅ =1 2 p Ee e e 0…  se cumple con algún 

αi≠0. Sea 

( )1 2 1 2( ) ( ) ( ) ( )p pf f f f fα α α α α α⋅ + ⋅ + + ⋅ = = = + + +1 2 p E F 1 2 pe e e 0 0 e e e… …  

Esto es una relación nula de los ( )f ie  con algún αi≠0. Luego, 

{ }( ) ( ), ( ), , ( )f S f f f= 1 2 pe e e…  es linealmente dependiente.  ■ 

4) Si { }( ) ( ), ( ), , ( )f S f f f= 1 2 pe e e…  es linealmente independiente, entonces 

{ }S = 1 2 pe ,e ,…,e  es también linealmente independiente. 
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Demostración. Es evidente por la propiedad anterior, ya  que si S es ligado, entonces  

( )f S  también es ligado. ■ 

5) Si el conjunto { }S = 1 2 pe ,e ,…,e  es linealmente independiente, entonces el 

conjunto { }( ) ( ), ( ), , ( )f S f f f= 1 2 pe e e…  puede ser o no linealmente dependiente. 

Ejemplo 

Sea la aplicación lineal 

3 2

1
1 2

2
3

3

:

( )

f

x
x x

x f
x

x

→

 
+  = → =   

  
 

x x

ℝ ℝ

 

Consideremos el conjunto de vectores ( ) ( ) ( ){ }1 0 0 , 0 1 0 , 0 0 1
t t t

B =  de �3 

que es libre. Calculemos ( )f B : 

( ) ( ) ( ){ }( ) 1 0 , 1 0 , 0 1
t t t

f B =  que es un conjunto linealmente dependiente en �2. 

Si ahora se considera el conjunto ( ) ( ){ }1 0 0 , 0 0 1
t t

U =  de �3, se tiene que 

( ) ( ){ }( ) 1 0 , 0 1
t t

f U =  es un conjunto linealmente independiente en �2.   ◄ 

IV.2. IMAGEN Y NUCLEO DE UNA APLICACION LINEA 

Sea f una aplicación lineal definida entre los espacios vectoriales E y F, : E Ff →  

Definición. Se llama núcleo de f al subconjunto de E { }E / ( )Ker f f= ∈ = Fx x 0 , es 

decir, Ker f es el conjunto de vectores de E, que tienen como imagen por f el vector 

nulo de F. También se le suele denotar por Nuc f ó N( f ).  

el núcleo de una aplicación lineal es un subespacio vectorial de E. 

Teorema. El núcleo (Ker f ) de una aplicación lineal f es un subespacio vectorial de E. 
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Demostración: 

Hay que comprobar las tres condiciones de subespacio. 

El vector Ker f∈E0  ya que ( )f =E F0 0 . 

I) Ker f Ker f∀ ∈ ⇒ + ∈x,y x y .  

Sean :Ker f∈x,y De donde: 
,

( ) ( ) ( )
f lineal x Ker f y Ker f

f f f
∈ ∈

+ = + = + =F F Fx y x y 0 0 0  

luego, Ker f+ ∈x y  

II) Ker f Ker fα α∀ ∈ ∧ ∀ ∈ ⇒ ∈x xK . Sean Ker f α∈ ∧ ∈x K , luego 

( ) ( )
f lineal x Ker f

f fα α α
∈

= = =F Fx x 0 0  

por lo tanto Ker fα ∈x . 

Queda así demostrado que Ker f es un subespacio vectorial de E. ■ 

Definición. Se llama imagen de la aplicación lineal f al subconjunto de F 

{ }Im ( ) F / Ef f= ∈ ∈x x . Es decir, Im f  es el subconjunto de F, formado por las 

imágenes, mediante f, de los vectores de E. 

Teorema. La imagen (Im f) de una aplicación lineal : E Ff →  es un subespacio 

vectorial de F. 

Demostración: 

 Hay que comprobar las tres condiciones de subespacio vectorial. Puesto que 

( )f =E F0 0 , se tiene que Im f  contiene al vector nulo. 

I) , Im Imf f∀ ∈ ⇒ + ∈1 2 1 2y y y y  

Sean , Im f∈1 2y y  Entonces existen dos vectores , E∈1 2x x  tales que 
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( ) ( )f f= ∧ =1 1 2 2x y x y  

Como ( ) ( ) ( )
f lineal

f f f+ = + = +1 2 1 2 1 2y y x x x x  

se tiene que Im f+ ∈1 2y y  , ya que es imagen por f del vector +1 2x x  de E. 

II) Im Imf fα α∀ ∈ ∧ ∀ ∈ ⇒ ∈y yK . Sean Im f α∈ ∧ ∈y K , luego 

 
( ) ( )

f lineal
f fα α α= =y x x  

por lo tanto Im fα ∈y . 

Queda así demostrado que Im f es un subespacio vectorial de F.  ■ 

Observación: La imagen de un subespacio vectorial S de E { }(S) ( ) F / Sf f= ∈ ∈x x es 

un subespacio vectorial de F. 

El subespacio imagen más importante es el f (E), es decir la imagen de todo el espacio 

vectorial de E, que se denota, tal y como hemos visto, como Im f 

Ejemplo 

Sea la aplicación lineal  

3 2

1
1 2

2
1 2

3

:

x
x +x

x ( )
x -x

x

f

f

→

 
  = → =   
  

 

x x

ℝ ℝ

 

Siendo ( )T

1 2 3x x x=x . Se pide: 

Hallar  Ker f. 

Encontrar los vectores linealmente independientes de 3
ℝ con la misma imagen. 

Calcular  Im f. 



Aplicaciones lineales 

 

Página 123 

Solución: 

(i)  ( )T 1 2
1 2 3 1 2

1 2

0
x x x Ker 0

 -  0

x x
f x x

x x

+ = 
= ∈ ⇔ ⇔ = == 

x  

Así pues ( ){ }t

3 3Ker 0 0 x / xf = ∈ℝ , siendo ( ){ }t0 0 1  una base de Ker f, y por 

tanto dim Ker f =1 

(ii) De la definición de f se deduce que los vectores ( )t
1 1 1=u  y ( )t

1 1 2=v  

cumplen ( )t
( ) ( ) 2 0f f= =u v  

 (iii) Sea ( )f x  un vector de Im f siendo ( )t

1 2 3x x x=x , entonces 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2 1 2( )  - - 1 1 1 1
t t t t t

f x x x x x x x x x x= + = + = + −x  

Luego ( ) ( ){ }t t
Im 1 1 1 -1f Span=  

Puesto que ( ) ( ){ }t t
1 1 1 -1 es un conjunto linealmente independiente, es una base 

de Im f, con lo que dim Im f = 2, Obsérvese que se cumple la siguiente relación de 

dimensiones 3dim dim Ker dim Imf f= +ℝ . Esto será así en general (ver el Teorema 

fundamental de las aplicaciones lineales en IV.3). ◄ 

Definición: Se llama rango de una aplicación lineal a la dimensión del subespacio 

imagen  Im f:  rango f = dim f (E)= dim Im f 

Teorema: Sea : Ef F→  una aplicación lineal. Si { }B = 1 2 ne , e , , e⋯  es una 

base de E, entonces { }(B) ( ) ( ) ( )f f f f= 1 2 ne e e⋯ es un sistema generador de f 

(E) (es decir, de Im f). 

Demostración: 
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Sea x un vector arbitrario de E y { }B = 1 2 ne , e , , e⋯ una base de E. Entonces: 

1 2 nx x x x= + + +1 2 ne e e⋯   

Y 1 2 1 2( ) ( ) ( ) ( ) ( )n nf f x x x x f x f x f= + + + = + + +1 2 n 1 2 nx e e e e e e⋯ ⋯  

Luego { }Im ( ), ( ), , ( )f Span f f f= 1 2 ne e e⋯  y por tanto 

{ }(B) ( ), ( ), , ( )f f f f= 1 2 ne e e⋯ es un sistema generador de la Im f ■ 

Como consecuencia de este teorema se tiene que dim Im dim Ef n≤ = . 

Observación. Si B es una base de E entonces f (B) genera Im f, por lo que quedándonos 

con los vectores linealmente independientes de f (B) tendremos una base de Im f. 

IV.3. TEOREMA FUNDAMENTAL DE LAS APLICACIONES LINEALES 

Teorema. Sean E y F espacios vectoriales sobre K , siendo E de dimensión finita. 

Si : E Ff →  es una aplicación lineal entonces dim E = dim Ker f + dim Im f 

Demostración (opcional): 

Sea E un espacio vectorial de dimensión n, y { }1 2 pe , e , , e…  una base del Ker 

f, luego dim Ker f = p. Se probará que dim (Im f) = n - p 

Por el Teorema de la Base Incompleta (ya estudiado en el Tema 2), se puede 

encontrar una base de E de la forma 

{ }1 2 p p+1 p+2 ne ,e ,…,e ,e ,e ,…,e  

Ahora bien, se tiene que 

{ }Im ( ), ( ), , ( ), ( ), , ( )f Span f f f f f= 1 2 p p+1 ne e e e e⋯ ⋯  

Y como  F( ) 0 i 1,2, ,f p= ∀ = ⋯ie  

Entonces: 
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{ }Im ( ), ( ), , ( )f Span f f f= p+1 p+2 ne e e⋯  

Veamos que { }( ), f( ), , ( )f fp+1 p+2 ne e e⋯  es un conjunto linealmente 

independiente. Para ello se construye la combinación lineal nula 

p+1 p+2 n F( ) ( ) ( ) 0b f b f b f+ + + =p+1 p+2 ne e e⋯  

Entonces:  

p+1 p+2 n( )f b b b+ + + =p+1 p+2 n Fe e e 0⋯  

Luego el vector p+1 p+2 nb b b+ + +p+1 p+2 ne e e⋯ está en Ker f, y por tanto es 

combinación lineal de los vectores de la base de Ker f, es decir 

p+1 p+2 n 1 2 pb b b a a a+ + + = + + +p+1 p+2 n 1 2 pe e e e e e⋯ ⋯  

O equivalentemente 

1 2 p p+1 p+2 na a a b b b− − − − + + + + =1 2 p p+1 p+2 n Ee e e e e e 0⋯ ⋯  

y como { }1 2 p p+1 p+2 ne ,e ,…,e ,e ,e ,…,e  es una base de E, todos los coeficientes 

anteriores son nulos. En particular 

p+1 p+2 n 0b b b= = = =⋯  

Luego, { }( ), ( ), , ( )f f fp+1 p+2 ne e e⋯  es un conjunto linealmente 

independiente y en consecuencia una base de Im f. Claramente dim (Im f) = n - p 

Por tanto, dim Ker f + dim Im f = p + (n - p) = n.   ■ 

Si Ker f = {0E}, la demostración del teorema no se empezaría construyendo una base de 

Ker f por no existir, sino que se partiría de una base B arbitraria de E y todo el 

razonamiento del teorema sería el mismo. 

Si Ker f = E, entonces Im f = {0F} y se cumple trivialmente que                                       



Aplicaciones lineales 

 

Página 126 

dim Ker f + dim Im f = n + 0 = n. 

IV.4. CLASIFICACION DE LAS APLICACIONES LINEALES 

Sean E y F espacios vectoriales sobre �, y : E Ff →  una aplicación lineal. 

Definición. Se dice que:  

(i) f es inyectiva si / ( ) ( )f f∀ = ⇔ =x,y x y x y . 

(ii) f es sobreyectiva si para cualquier vector y de F, se puede encontrar un vector x 

de E tal que f (x) = y.  / ( )F E f∀ ∈ ⇒ ∃ ∈ =y x x y . 

(iii) f es biyectiva si f es inyectiva y sobreyectiva. Si f es biyectiva se llama 

isomorfismo. 

De acuerdo con las propiedades vistas al comienzo del tema, las aplicaciones lineales 

conservan la dependencia lineal. Sin embargo, en general, las aplicaciones lineales no 

conservan la independencia lineal. Ahora bien, cabría preguntarse si algún tipo 

determinado de aplicaciones la conserva. La clase de aplicaciones que pueden tener 

esta propiedad, son sin duda las aplicaciones inyectivas, ya que si un vector tiene 

antimagen, ésta es única. Los siguientes resultados prueban este comentario. 

Teorema (Caracterización de las aplicaciones lineales inyectivas). La condición 

necesaria y suficiente para que f sea inyectiva es que Ker f = {0E}. 

Demostración (opcional): 

)⇒ Supóngase que : E Ff →  es una aplicación lineal inyectiva. 

Sea Ker ( )f f∈ ⇒ = Fx x 0 . Además, por ser f lineal se tiene que f (0E) = 0F. 

( )
( ) ( )

( ) f inyectiva

f
f f

f

= 
⇒ = ⇒ == 

F
E E

E F

x 0
x 0 x 0

0 0
 

Como f es inyectiva  x = 0E. Por tanto Ker f = {0E}. 
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)⇐  Sea Ker f = (0E). Se va a demostrar que entonces f es inyectiva. Sean 

, / ( ) ( )E f f∈ =x y x y  o equivalentemente ( ) ( )f f− = Fx y 0 , y por ser f lineal 

( )f − = Fx y 0 . Luego { }Ker f− ∈ = Ex y 0 ,de donde x - y = {0E}, y por tanto x = y. 

Luego, f es inyectiva.  ■ 

Nótese que como consecuencia del teorema anterior, si E y F son dos espacios 

vectoriales de dimensión finita y : E Ff →  es una aplicación lineal inyectiva, entonces 

dim E dim F≤ . 

Teorema. Si : E Ff →  es una aplicación lineal inyectiva y { }, , ,1 2 pe e e⋯  es  un 

conjunto de vectores de E linealmente independientes, entonces 

{ }( ), ( ), ( )f f f1 2 pe e e⋯  son también linealmente independientes en F. 

Demostración: 

Sea { }, , ,1 2 pe e e⋯  un conjunto de vectores de E. 

La combinación lineal nula 1 2 p( ) ( ) ( )f f fα α α+ + + =1 2 p Fe e e 0⋯  puede escribirse 

como 1 2 p( )f α α α+ + + =1 2 p Fe e e 0⋯ . Luego  1 2 p Ker fα α α+ + + ∈1 2 pe e e⋯  

y por ser f inyectiva, Ker f = (0E), de donde 

1 2 pα α α+ + + =1 2 p Ee e e 0⋯  

Como los vectores { }, , ,1 2 pe e e⋯  son linealmente independientes, entonces 

1 2 p 0α α α= = = =⋯  

Por tanto { }( ), ( ), ( )f f f1 2 pe e e⋯  son linealmente independientes.  ■ 

Teorema (Caracterización de las aplicaciones lineales sobreyectivas). 

Sea : E Ff →  una aplicación lineal. La condición necesaria y suficiente para que f sea 

sobreyectiva es que Im f = F. 
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Demostración (opcional): 

)⇒  Supóngase que : E Ff →  es una aplicación lineal sobreyectiva, es decir, para 

cualquier vector y de F se puede encontrar un vector x de E tal que f (x) = y. Luego        

Im f = F. 

)⇐  Sea y un vector de F = Im f, entonces existe un vector E∈x  tal que f (x) = y   ■ 

Si : E Ff →  es una aplicación lineal sobreyectiva, y E y F son dos espacios vectoriales 

de dimensión finita, se sigue, del teorema anterior, que dim E dim F≥ . 

Corolario:  Sea : E Ff →  una aplicación lineal. La condición necesaria y suficiente para 

que f  sea biyectiva es que { }Ker f = E0  e Im f = F. 

Como consecuencia de este corolario, se deduce que, si E y F son dos espacios 

vectoriales de dimensión finita y : E Ff →  es una aplicación lineal biyectiva, entonces 

dim E = dim F. 

Recíprocamente, si dim E = dim F, entonces la aplicación lineal : E Ff → , cumple: 

a) f  es biyectiva ⇔  es inyectiva ( { }Ker f = E0 ) 

b) f  es biyectiva ⇔  es sobreyectiva (Im f = F). 

Definición: Si la aplicación lineal está definida de un espacio vectorial E en sí mismo, 

: E Ef → , recibe el nombre de endomorfismo. 

Corolario: Según lo anteriormente expuesto, si : E Ef →  endomorfismo y la dim E es 

finita, entonces se cumple que 

a) f  es biyectiva ⇔  es inyectiva ( { }Ker f = E0 ) 

b) f  es biyectiva ⇔  es sobreyectiva (Im f = E). 
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IV.5. EXPRESION MATRICIAL DE UNA APLICACION LINEAL. CAMBIO DE 
BASE. 

IV.5.1. Expresión matricial de una aplicación lineal 

En este apartado se va a calcular la imagen de un vector x de E en función de las 

coordenadas de dicho vector respecto a una base de E. 

Sean E y F dos espacios vectoriales de dimensión finita sobre el mismo cuerpo K . Sea f 

una aplicación lineal definida entre E y F. Sean { }, , ,U = 1 2 nu u u⋯ y 

{ }, , ,V = 1 2 mv v v⋯  bases de E y F, respectivamente. 

Si x es un vector de E, entonces 

1 2 nx x x= + + +1 2 nx u u u⋯  

con lo que 

1

2

n

x

x

x

 
 
 =
 
 
 

U
⋮

x  

Entonces, la  imagen de x puede expresarse de la forma siguiente 

por ser 
 lineal

1 2 1 2( ) ( ) ( ) ( ) ( )

f

n nf f x x x x f x f x f= + + + = + + +⋯ ⋯1 2 n 1 2 nx u u u u u u      (1) 

Es decir, la imagen del vector x es combinación lineal de las imágenes de los vectores 

de la base U de E. 

Los vectores ( ), ( ), ( ), , ( )f f f f…1 2 nx u u u  pertenecen al espacio vectorial V. Si la 

relación (1) se cumple, también se cumplirá la misma relación entre las coordenadas de 

estos vectores en cualquier base de F, en nuestro caso la base V. Por tanto: 

( ) ( ) ( ) ( )1 2( ) ( ) ( ) ( )nV V V V
f x f x f x f= + + +1 2 n⋯x u u u  

Y escribiendo la relación anterior como un producto matricial 
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( ) ( ) ( ) ( )( )
1

2( ) ( ) ( ) ( )
V V V V

n

x

x
f f f f

x

 
 
 = ⋅
 
 
 

⋯
⋮

x 1 2 n1 2 n1 2 n1 2 nu u uu u uu u uu u u  

O 

( )( ) ( )VU BV
f M f= ⋅x x  (2) 

Donde la matriz ( )VUM f  se llama matriz de f respecto a las bases U y V. Nótese que la 

primera columna de ( )VUM f  está formada por las coordenadas (respecto a la base V), 

de la imagen del primer vector de la base U; la segunda columna por las coordenadas 

(respecto a la base V) de la imagen del segundo vector de la base U. En general, la j-

ésima columna está formada por las coordenadas (respecto a la base V) de la imagen 

del j-ésimo vector de la base U. 

( )VUM f  es una matriz de orden m x n, si dim E = n y dim F = m. 

Del resultado anterior se deduce que todas las aplicaciones lineales entre espacios 

vectoriales de dimensión finita reales o complejos son equivalentes a la multiplicación 

matricial de vectores coordenados. Esquemáticamente: 

 

donde A es la matriz de f respecto a las bases U y V, es decir, ( )VUM f . 
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Ejemplo 

Sea la aplicación  

3 2:

( ) - (0)
( ) ( )

f

v t v
v t f v

t

→

→ =

� �

 

(i) Hallar la matriz de f respecto a las bases { }2 2U 1 t, t+t , t 1= + +  de �3, y 

{ }V 1 t, 1 t= + −  de �2. 

(ii) Empleando la expresión matricial de la aplicación lineal, obtener 2(1 t t )f + +  

Solución: 

(i) La matriz de f respecto a las bases U y V es de la forma: 

( ) ( ) ( )( )2 2( ) (1 t) (t t ) (t 1)VU V V V
M f f f f= + + +  

Calculemos ( )(1 t)
V

f + . Obsérvese que f(1+t) = 1 y este vector se expresa en función 

de la base V como 1 = 0.5 (1+t) + 0.5 (1-t) 

Luego ( ) 0.5
(1 t) (1)

0.5VV
f

 
+ = =  

 
 

Por otra parte 2(t t ) 1 tf + = +  que en la base V se expresa como 1 + t = 1 (1+t) + 0 (l-i) 

Luego ( ) ( )2 1
(t t ) 1 t

0VV
f

 
+ = + =  

 
 

Finalmente 2(t 1)f + = t = 0.5 ( 1 + t ) – 0.5 ( 1 – t ) 

Luego ( ) ( )2 0.5
(t 1) t

0.5VV
f

 
+ = =  − 

 

Por tanto la matriz de f respecto a las base U y V es 
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0.5 1 0.5
( )

0.5 0 0.5VUM f
 

=  − 
 

(ii) Sea v = 1+t+t2, que se expresa en la base U como 

1+t+t2 = 0.5 (1+t) + 0.5 (t+t2) + 0.5 (t2+l) 

luego 

( )2

0.5

1 t t 0.5

0.5
U

 
 + + =  
 
 

 

Por lo tanto ( ) ( )2 2

0.5
0.5 1 0.5 1

( ) 1 t t 0.5 (1 t t )
0.5 0 0.5 0

0.5
VU U V

M f f

 
    ⋅ + + = ⋅ = = + +    −    

 

 

siendo ( )2(1 t t )
V

f + +  el vector coordenado, en la base V, de 2(1 t t )f + + . Según la 

notación comentada anteriormente 

( ) ( )2 2

0.5
0.5 1 0.5 1

( ) 1 t t x 0.5 y (1 t t )
0.5 0 0.5 0

0.5
VU U V

M f A f

 
    ⋅ + + = ⋅ = ⋅ = = = + +    −    

 

  ◄ 

Ejemplo 

Sea la aplicación lineal 

2 2

1 1

2 2

:

-
( )

-

f

x x
f

x x

→

   
= → =   
   

x x

ℝ ℝ

 

Se pide 

(i) Hallar la matriz de f respecto a las bases canónicas. 

(ii) Calcular f (z), donde z = (2 -3)t, utilizando la matriz de f 
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Solución: 

 (i) Sea ( ) ( ){ }t t
B 1 0 0 1= = =1 2e e  la base canónica de �2. 

Entonces  

( ) ( )( )BB B B( ) ( ) ( )M f C f C f= 1 2e e  

Como 

( ) ( )t

B( ) 1 0 ( )f C f= − =1 1e e  

( ) ( )t

B( ) 0 1 ( )f C f= − =2 2e e  

se tiene que BB

1 0
( )

0 1
M f

− 
=  − 

 

 (ii) Como ( )B BB B( ) ( ) ( )C f M f C= ⋅z z  entonces 

( )B

1 0 2 2
( ) ( )

0 1 3 3
C f f

− −    
= = =    − −    

z z    ◄ 

IV.5.2. Cambio de base: relación entre las matrices de una 
aplicación lineal en bases distintas 

Si se consideran ahora otras dos bases { }' , , ,U = 1 2 nu' u' u'⋯  y 

{ }' , , ,V = 1 2 mv' v' v'⋯ para E y F, respectivamente, según lo visto en el apartado 

anterior la expresión de la aplicación lineal respecto de estas bases vendrá dada por 

' ' ' '( )
V V U U

M f= ⋅y x   (3) 

Por otra parte, teniendo en cuenta la relación que existe entre las coordenadas de un 

vector de un espacio vectorial respecto a dos bases distintas vista en el Tema II, 

sabemos que si E∈x  y P es la matriz de paso (regular) de la base U de E a la base U' 

de E, se tiene que  
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'U UP= ⋅x x   (4) 

Análogamente, si F∈y y Q es la matriz de paso (regular) de la base V de F a la base V' 

de F 

'V VQ= ⋅y y   (5) 

Según lo visto en el subapartado anterior, la expresión matricial de f respecto de las 

bases U y V de E y F, respectivamente, viene dada por la ecuación (2) 

( )V VU UM f= ⋅y x  

Esquemáticamente: 

 

Si la matriz ( )VUM f  se representa como A1, la expresión (2) queda: 

 1V UA= ⋅y x   (6) 

Si la matriz ' ' ( )
V U

M f  se representa como A2 la expresión anterior resulta: 

 ' 2 'V UA= ⋅y x   (7) 

Sustituyendo en (6) las expresiones (4) y (5) que relacionan las coordenadas de los 

vectores en bases distintas se obtiene: 

 ' 1 'V UQ A P⋅ = ⋅ ⋅y x  

Premultiplicando por R-1 resulta: 
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1
' 1 'V UQ A P−= ⋅ ⋅ ⋅y x    (8) 

Como la expresión matricial de una aplicación lineal, una vez elegidas una base para E y 

otra para V, es única, las expresiones (7) y (8) han de ser iguales, con lo que se obtiene 

que 

-1
2 1A Q A P= ⋅ ⋅  

o lo que es lo mismo ' '
-1( ) ( )VUV U

M f Q M f P= ⋅ ⋅  

Esta es la relación que verifican las matrices asociadas a una misma aplicación lineal f 

cuando se cambian las bases de E y de F. Se dice que A1 y A2 son equivalentes, como 

establece la siguiente definición. 

Definición: Dos matrices A1 y A2 , ambas pertenecientes a ( )mxnE K , se dicen 

equivalentes si están asociadas a una misma aplicación lineal de E en F (respecto de 

bases adecuadas) o, lo que es lo mismo, si existen dos matrices regulares P y Q 

cuadradas de orden n y m respectivamente , tales que -1
2 1A Q A P= ⋅ ⋅ . Recordando la 

teoría vista en el Tema I podemos decir que las matrices equivalentes A1 y A2 ,se 

caracterizan también por tener la misma dimensión y rango. 

En el caso particular en que E=F, es decir, en el caso de un endomorfismo se pueden 

tomar iguales las bases U y V entre sí, así como las bases U’ y V’ entre sí, por lo que las 

matrices de paso P y Q son idénticas. Esquemáticamente: 

 

Así, la relación entre las matrices del endomorfismo f al cambiar de base en E es: 
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-1
' '( ) ( )U U UUM f P M f P= ⋅ ⋅  

O bien llamando A1 a la matriz  ( )U UM f y A2 a la matriz ' '( )U UM f   

-1
2 1A P A P= ⋅ ⋅ . 

Se dice en este caso que las matrices A1 y A2 son semejantes, como establece la 

siguiente definición. 

Definición:  Dos matrices cuadradas A1 y A2 , ambas pertenecientes a ( )nxnE K , se dicen 

semejantes si están asociadas a un mismo endomorfismo (respecto de bases 

adecuadas) , lo que equivale a que exista una matriz P regular , cuadrada de orden n, 

tal que -1
2 1A P A P= ⋅ ⋅ . Se observa que la semejanza de matrices es un caso particular 

de la equivalencia; por lo tanto, las matrices semejantes también tienen la misma 

dimensión y el mismo rango. 

Observación 1 (sobre el rango de una aplicación lineal): es fácil darse cuenta de que el 

rango de una aplicación lineal f  (es decir, la dimensión del subespacio imagen de la 

aplicación)es igual al rango de su matriz A asociada en cualquier pareja de bases U y V 

de los espacios E y F, respectivamente.  Es decir 

Rang f = dim Im f = Rang A 

Esto es así porque, como se ha visto anteriormente, si { }, , ,U = 1 2 nu u u⋯  es 

base de E, entonces { }( ) ( ), ( ), , ( )f U f f f= 1 2 nu u u⋯  genera el subespacio 

imagen de la aplicación: Im f = f (E), por lo que para obtener una base de Im f  bastará 

con extraer de este conjunto los vectores que sean linealmente independientes. Pero 

las coordenadas de ( ), ( ), , ( )f f f1 2 nu u u⋯  (respecto de la base V) son 

precisamente  las columnas de la matriz A,  por lo que el número de estos vectores que 

son independientes (y por lo tanto el rango de f ) coincide con el rango de A. 

Observación 2: nótese que, fijadas las bases, la matriz de una aplicación lineal es única, 

si bien una aplicación lineal puede representarse mediante distintas matrices si se se 

consideran diferentes bases. Cualquier aplicación lineal entre espacios vectoriales E y F 
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de dimensiones n y m respectivamente, tiene asociada una matriz de dimensión mxn 

en función de las bases de E y de F que se hayan elegido. Recíprocamente, dada una 

matriz de dimensión mxn, cuyos elementos están definidos en un cierto cuerpo, es 

posible encontrar una aplicación lineal que respecto a ciertas bases de los espacios 

vectoriales considerados, tiene como matriz asociada  la matriz dada. 
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Tema IV. Ejercicios  

IV.1. Estudiar si las siguientes aplicaciones son lineales: 

a) 
2 2 2

1 2 1 2: / ( , )f f x x x x→ = ⋅ℝ ℝ
 

b) 
3 3

1 2 3 2 3: / ( , , ) (0, , )g g x x x x x→ =ℝ ℝ
 

IV.2. En el espacio vectorial V de las matrices cuadradas de orden n sobre � se 

considera la aplicación : / ( ) tF V V F A A A→ = + . 

Demostrar que F es lineal, calculando su nucleo y su imagen. 

IV.3. Sea el endomorfismo: 

3 3:

2 4 2

2

f V V

x x y z

y x y z

z x y z

λ λ

→
− + +   

   + +   
   − + +   

 

a) Demostrar que Rango(f)=2 ∀ λ ∈� 

b) Hallar Ker(f) e Im(f)para λ=-2 

IV.4. Sea V el espacio vectorial de las funciones reales de variable real con las 

operaciones usuales. Si 3:f V→ℝ , es la aplicación que a cada terna 3

a

b

c

 
 ∈ 
 
 

ℝ  

le asocia la función 2 2( ) ( )

a

f b a Sin x b Cos x c

c

 
  = ⋅ + ⋅ + 
 
 

, hallar una base de Ker(f) 

y otra de Im(f), analizando si f es inyectiva, y si es sobreyectiva. 

IV.5. Sean P3 y P2 los espacios vectoriales de los polinomios de grado menor o igual 

que tres y dos respectivamente. Se define una aplicación: 

2 3

0

:

( ) ( )
x

T P P

p T p p t dt

→

→ = ∫
 

Se pide: 

a) Hallar la matriz de la transformación. 
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b)  Hallar 2(2 4 )T x x+  y el vector o vectores originales de 3 22 2x x x− +  

respecto de la transformación lineal T. 

IV.6. En el espacio vectorial de los polinomios de grado menor o igual que tres: 

a) Demostrar que { }2 31,( 1), ( 1) ,x x x+ + forman una base. 

b) Hallar las coordenadas del vector 3( 1)x +  en esta base. 

c) Sea la plicación lineal f que a cada polinomio le hace corresponder su 

derivada. Hallar la matriz de dicha aplicación en la base usual 

{ }2 31, , ,B x x x=  y también en la definida en el apartado a) 

IV.7. Se considera el espacio vectorial V2 de las matrices cuadradas de orden 2 sobre 

los números reales y el espacio P3 de los polinomios de coeficientes reales de 

grado menor o igual que tres. Se define la aplicación: 

( )2 3 2 2: /    ( ) 1
x

f V P B V f B x B
x

 
→ ∀ ∈ =  

 
 

Se pide: 

a) Demostrar que es aplicación lineal. 

b) Calcular la matriz A de f en las bases canónicas y dar bases de la imagen y del 

núcleo. 

c) Calcular el conjunto de matrices que se transforman en el polinomio 
3 2 2x x x+ +  

IV.8. En el espacio vectorial: / , , ,
x y

E A x y z t
z t

  
= = ∈  

  
ℝ  se define la 

transformación T de E en si mismo : 

:

1 2
( ) ,siendo   

0 1

T E E

A T A M A A M M

→

 
→ = − =  

 
i i

 

Se pide: 

a) ¿Es la transformación T lineal? 

b) Ecuación matricial de la transformación. 

c) Dimensión y base del núcleo de T: Ker(T) 
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d) Dimensión y base del subespacio imagen de T: Im(T) 

e) Naturaleza de la transformación. 

IV.9. Dada la aplicación lineal 4 3:f →ℝ ℝ  que en la base canónica viene dada por la 

expresión 

1
1

2
2

3
1 2 3

4

x
x

x
f x

x
x x x

x

 
  
   =     − + +   

 

. Hallar la matriz A de la aplicación lineal en 

las bases canónicas de �
4 y �

3. ¿Es inyectiva? ¿Es sobreyectiva? Si las 

coordenadas del vector x respecto de la base 

1 0 0 1

1 1 0 1
'

0 0 1 1

0 0 0 1

B

        
        
        =                          

 son 

'

2

1
( )

1

1

BC

 
 
 =
 
 
 

x  hallar su transformado, es decir f(x). 

IV.10. En el espacio E3 de los vectores libres del espacio, se define una aplicación que 

transforma un vector en su simétrico respecto del plano horizontal Z=0. Se pide: 

a) Ecuación matricial de la transformación lineal y naturaleza de la misma. 

b) Dimensión, base y ecuaciones cartesianas del subespacio imagen. 

c) Dimensión, base y ecuaciones cartesianas del núcleo de la aplicación. 

IV.11. A un cubo de arista unidad y colocado según la figura, se le aplica un giro de 
2

π
 

radianes en el sentido positivo alrededor del eje Y y una traslación de vector 

1

2

3

 
 =  
 
 

v . 

a) Calcular las coordenadas de los vértice A y B del cubo transformado, 

escribiendo las ecuaciones matriciales del giro y la traslación efectuados. 

b) ¿Se pueden considerar el giro y la traslación como aplicaciones lineales? ¿Y la 

combinación de ambos?. 
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IV.12. En el espacio afín tridimensional E3 de vectores libres se dan las referencias 

ortonormadas de la figura, obteniéndose la base B’ a partir de la base B 

mediante un giro de 45º alrededor de u3==u’3, siendo { }B = 1 2 3u ,u ,u  y 

{ }'B = 1 2 3u' ,u' ,u' . 

 

Se pide: 

a)  Hallar la matriz de paso entre las bases, comprobando que es ortogonal. 

b) Obtener en las dos bases B y B’ la matriz de la transformación lineal que 

aplica E3 en sí mismo, haciendo corresponder a cualquier vector su simétrico 

respecto del plano x1=0. 

c) Relacionar mediante la matriz de paso las expresiones de la matriz de la 

transformación T en ambas bases. 

IV.13. Sean { }B = 1 2 3 4e ,e ,e ,e  y { }'B = 1 2 3e' ,e' ,e'  las bases canónicas de �4 y �3 

respectivamente y sea la aplicación lineal 4 3:f →ℝ ℝ  que verifica: 

{ }( ) ,Ker f Span= 1 2 3e 3e +e  

( )f = +2 1 3e e' e'  

( ) 2 2f + + + = − −1 2 3 4 2 1 3e e e e e' e' e'  
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a) Hallar la matriz de f en las bases canónicas. 

b) Hallar el rango de f. 

c) Hallar(obtener una base) el subespacio vectorial F de �4 de ecuaciones 

paramétricas: 

2

6
,

3

2 2

x

y

z

t

λ µ
µ

λ µ
λ µ
λ µ

= +
 = − ∈ = − −
 = +

ℝ  

Calcular una base de  f(F). 

IV.14. En el conjunto de los vectores libres del espacio se define una transformación 

lineal T de modo siguiente: 

T(v)=v  ∀v perteneciente al plano 1 2 3 0x x x− − =  

El vector 

0

1

1

 
 
 
 
 

 pertenece al núcleo. 

Se pide:  

a)  Transformados de los vectores de la base usual. 

b) Ecuación matricial de la transformación y naturaleza de la misma. 

c) Dimensión, base y ecuaciones de los subespacios núcleo e imagen. 

IV.15. En el espacio vectorial E3 sobre � relativo a la base { }B = 1 2 3e ,e ,e  se define 

una transformación lineal T del siguiente modo: 

- 

1

( ) 1

1

T

 
 =  
 
 

3e  

- El transformado del subespacio de ecuación x1-x2+x3=0 es el vector nulo. 

Se pide: 

a) Ecuación matricial y naturaleza de la transformación. 

b) Dimensión, base y ecuaciones de Im T 

c) Transformado (ecuaciones cartesianas )del subespacio S de ecuación           

x1-x3=0, razonando la respuesta. 
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d) Expresión de la transformación lineal en la base { }'B = 1 2 3e' ,e' ,e'  si 

= + +
 = −
 =

1 1 2 3

2 1 2

3 1

e' e e e

e' e e

e' e
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Tema IV. Soluciones Ej.  

IV.1.   

a) No. 

b) Si. 

IV.2. Ker F={ B∈Mnxn/B antisimétrica} 

Im F={ B∈Mnxn/B simétrica} 

IV.3. b) Im Ker 

2 2 2

1 2      =  1

1 1 0
f fB B

 −        
        = −        
        −        

 

IV.4. Ker 

1

1

1
fB

 
 =  
 − 

; { }2 2
Im ( ), ( )fB Sen x Cos x=  

f no es inyectiva, f no es sobreyectiva. 

IV.5.  

a) 

0 0 0

1 0 0

1
0 0

2
1

0 0
3

A

 
 
 
 =  
 
 
  

 

b) 2 2 32
(2 4 ) 2

3
T x x x x+ = +  

el vector original de 
3 22 2x x x− +  es 

22 4 3x x− +  

IV.6.    

a)  … 
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b) ( )( )3

1

3
1

3

1

C x

 
 − + =
 
 
 

 

c) en la base del apartado a:

0 1 0 3

0 0 2 6

0 0 0 3

0 0 0 0

 
 − 
 
 
 

; en la base usual: 

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

 
 
 
 
 
 

 

IV.7.  

a) … 

b) 

0 0 0 0

1 0 0 0

0 1 1 0

0 0 0 1

A

 
 
 =
 
 
 

 

Im

0 0 0

1 0 0

0 1 0

0 0 1

fB

      
      
      =                    

;  Ker

0 1

1 0fB
  

=   −  
 

c) 
2

1 1

b
B

b

 
=  − 

 

IV.8.  

a) Si 

b) 

1 1

2 2

3 3

4 4

0 0 2 0

2 0 0 2

0 0 0 0

0 0 2 0

y x

y x

y x

y x

    
    −    =
    
    −    

 

c) Dim Ker T=2  Ker 

1 0 0 1
=  

0 1 0 0TB
    
    
    

 

d) Dim Im T=2  Im 

0 1 1 0
=  

0 0 0 1TB
 −    
    −    
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e) Endomorfismo no inyectivo y no sobreyectivo. 

IV.9. 

1 0 0 0

0 1 0 0

1 1 1 0

A

 
 =  
 − 

 

No es inyectiva 

Es sobreyectiva 

3

( ) 4

3

f

 
 =  
 
 

x

 

IV.10.  

a) 
1 1

2 2

3 3

1 0 0

0 1 0

0 0 1

y x

y x

y x

     
    =    
    −     

; endomorfismo biyectivo. 

b) Im T=E3; una base de Im T será cualquier base de E3, no hay ecuaciones 

cartesianas o implícitas para la Im T. 

c) Ker T={0}; sus ecuaciones cartesianas son: x1=0; x2=0; x3=0. 

IV.11.  

a) 

2 1

' 3 ; ' 3

2 2

A B

   
   = =   
   
   

 

Giro: 

' 0 0 1

' 0 1 0

' 1 0 0

x x

y y

z z

    
    =    
    −    

 ;  

Traslación: 

'' ' 1

'' ' 2

'' ' 3

x x

y y

z z

     
     = +     
     
     

 

b) El giro si es una aplicación lineal, la traslación no y por tanto la composición 

de ambos movimientos no puede ser una aplicación lineal. 



Aplicaciones lineales 

 

Página 147 

IV.12.   

a) 

2 2
0

2 2

2 2
0 ;   

2 2
0 0 1

tP P P I

 
− 

 
 

= ⋅ = 
 
 
  
 

 

b) '

1 0 0 0 1 0

0 1 0 ,    1 0 0

0 0 1 0 0 1
B BA A

−   
   = =   
   
   

 

c) 1
'B BA P A P−= ⋅ ⋅  

IV.13.  

a) 

0 1 3 0

0 0 0 1

0 1 3 0

A

− 
 =  
 − 

 

b) Rango f=rango (A)=2 

c) F=Span

1 2

0 6

1 3

2 2

   
   
      − −       

 

IV.14.  

a) Tomando como base 

1 1 0

* 1 0 1

0 1 1

B

    
    =     
    
    

 

 *

1 0 0

0 1 0

0 0 0
BA

 
 =  
  

; 

1 0 0

1 1 1

2 2 2
1 1 1

2 2 2

BA

 
 
 − =
 
 −
 
 

 

b) No es sobreyectiva y por lo tanto no es biyectiva. 
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c) Dim Im f=2; Ecuaciones cartesianas: y1-y2-y3=0; Im

1 0

1 1

2 2
1 1

2 2

fB

    
    
    
    =         −         

 

Dim Ker f=1, Ecuaciones: x1=0 y x3-x2=0; Ker

0

1

1
fB

  
  =   
  
  

 

IV.15.   

a) 
1 1

2 2

3 3

1 1 1

1 1 1

1 1 1

y x

y x

y x

−     
    = −    
    −     

, T no es ni inyectiva ni sobreyectiva. 

b)  Im

1

1

1
TB

  
  =   
  
  

, Ecuaciones de Im T: y1=y2 ∧ y3=y2 

c)  T(S)= 

2 1

2 1

2 1

Span

 −    
    − ≡    
    −    

Im T 

d) 
1 1

2 2

3 3

1 2 1

0 0 0

0 0 0

y x

y x

y x

     
    =    
         

 


