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Abstract
Lucas structures can be abstracted from within Fibonacci structures ex-
pressed as Lindenmayer-trees by «atomizing» certain chunks of structure 
(which yields the Padovan series) and by pruning the immediate context of 
said atomizations. Such conditions may define a space with arguable syn-
tactic significance. Fibonacci and Lucas structures are common in nature, 
and have been most studied in botanics. Padovan structures have been in-
dependently studied in aesthetics.

0. Introduction*1

Fibonacci patterns are amply attested in nature (Jean 1994). A simple 
way to generate a Fibonacci pattern is in terms of an extension of Chomsky-
style rewrite rules proposed by Aristid Lindenmayer, the L-system (Linden-
mayer & Prusinkiewicz 1990). In L-systems, which may be seen as “natural” 
(or growth) grammars, several rewrite rules —all applicable rules— apply 
simultaneously to a given derivational line. Moreover, in these devices no 
significant distinction is made between terminal and non-terminal nodes, so 
rule application iterates indefinitely. Consider the example in (1):

(1) 0 → 1 (“rewrite ‘0’ as ‘1’ ’’), 1 → 1 0 (“rewrite ‘1’ as ‘1 0’ ”)

This system, applied Lindenmayer-style, generates a graph like (2), 
which involves 1, 1, 2, 3, 5, … number of symbols in each derivational line. 
That is, of course, the Fibonacci sequence, obtained by adding successive 
numbers starting with 1:

* It is a great honor for me to present this paper in celebration of Ibon Sarasola’s career, 
spanning from engineering to philology. I appreciate useful feedback from Bill Idsardi, Terje 
Lohndal, Guillermo Lorenzo, Roger Martin, David Medeiros, Massimo Piattelli-Palmarini and 
Doug Saddy. All errors, mischaracterizations, or involuntary lacks of reference stem from my 
own, vast, ignorance.
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Note that a “semantic” way to generate the Fibonacci series (starting 
with 0) is by adding the actual arithmetical value of the numbers in each line 
(that is: 0, 1, 1, 2, 3…).12

The Lucas series, too, can be derived in L-systems by making two as-
sumptions: a) the grammar allows for a trifurcation, but b) one of the trifur-
cated symbols is a “stump” —that is, it is terminal (technically, the symbol 
can be treated as a constant in the system):

(3) 0 → 1, 1 → 1, 0, k, where k is a constant.

Given such a system, again applied in the Lindenmayer fashion, we ob-
tain:
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The next derivational lines yield 11, 18, 29, ... symbols, etc. In a direct 
sense (2) and (4) resemble one another, as “aggregative” systems emerg-
ing by adding two successive numbers in the earlier generation of the series, 
or through two rewrite symbols: a binary skeleton, since the one element 

1 Readers can check that the next derivational line in (2) will yield 8 symbols, the next 13, 
etc. In turn adding the values of numbers in the next line will yield 8, 13 in the next and so on. 
The ratio between successive numbers in the series approximates the golden section – the irra-
tional 1.6180339… or 0.6180555…, solutions to the equation x2 – x – 1 = 0.
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that makes (4) ternary dies out from inception. Note that, by the “semantic 
method”, adding the arithmetical value of the symbols in (4) we obtain the 
Fibonacci sequence if the constant’s value is either ignored or assumed to be 
of value zero in arithmetical terms — which shows how related the Fibon-
acci and Lucas series are.23

Moreover, there are “higher level” regularities in both (2) and (4) that 
fall into a “Fibonacci character”:

(5) a.  b.

In a basic Fibonacci tree ‘0’ always presents a ‘1’ to its left, and imme-
diately below every ‘0’ there is a ‘1’. If the grammar in use was a standard 
Chomsky-style rewrite grammar these regularities need not iterate. But in L-
systems the requirement that all rewritable symbols be rewritten ends up cre-
ating, in effect, a “higher level” object. For (5a) this is represented as in (5b). 
The “higher” representation could also be generated by the type of L-gram-
mar seen in (1) (ignoring the “start” symbol):

(6) 1 → 1–0, 1–0 → 1–0 1

Structurally, the difference between (6) and (1) is merely semantic. In (1) 
there is a “weak” symbol (namely, ‘0’) that rewrites as a “strong” symbol; 
and a “strong” symbol that bifurcates into each of those symbols. The same 
is true for (6), except this time the weak symbol is ‘1’ and the strong symbol 
is a compilation into a single rewrite atom of the string 1–0. Let’s call such 
compilations “atomizations”:

2 Another way to show the relationship between these two series is through the rules in (i):
(i) 1 → 3, 3 → 3 1
Readers can check that the syntactic result of a system of this sort still yields the Fibonacci 

series (counting symbols), while the semantic result yields the Lucas series (adding values). 
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(7) Atomization
 Any string of sister symbols can be atomized into a single constitu-

ent symbol.

The objects in (5b) and (5a) are structurally identical, the latter also fall-
ing into a Fibonacci pattern — so the fundamental structure of objects gener-
ated by the L-grammar in (1) is “self-similar”.

Note that the comparison just discussed works only if we “ignore” the 
start symbol, ‘0’. Let us call the process of ignoring such non-branching 
symbols, under conditions that we need to explore, a derivational “pruning”:

(8) Pruning
 A non-branching symbol can be ignored in certain designated con-

texts.

Similar issues arise in objects of the sort generated by (3): Not surpris-
ingly, the object in (9b) is identical to the object in (5a) if we ignore the k 
constants —but even the array of constants in (9b) falls into the Fibonacci 
pattern.

(9) a.  b.

1. Transforming the Fibonacci object into a Lucas object

Let’s now explore these relations in a more systematic way, making use 
of the “atomization” (7) and “pruning” (8) tools just discussed, in the follow-
ing guise:

(10) Conditions transforming Fibonacci into Lucas L-structures
 a.  Atomize all the ‘1’s and their constituent structure in any imme-

diate domination path, except those involving condition (b).
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 b.  Prun any ‘0’ in the immediate context of (i.e. adjacent or imme-
diately dominating) an atomized ‘1’.

The atomization process on the sort of structure in (5a), together with 
a correlating pruning process, results in the graph in (11). The intended ef-
fect of the conditions in (10) is to atomize as much structure as possible, 
while leaving the syntactic context of the atom “live”. This syntactic context 
is the atom’s sister (immediately adjacent) and the atom’s mother (immedi-
ately dominating) constituent. Pruning happens in that context. (Note that, by 
this method, some immediately dominating structures are pruned twice, inas-
much as they happen to be adjacent to an atom and immediately dominating 
another atom.) Graph (10a) identifies atoms in a circle and structures to un-
dergo a pruning collapse in a square. Graph (10b) is a cleaned up version.

(11) a.

b.

Note that the number of new atoms that result per derivational line be-
yond the initial step is: 0, 0, 1, 0, 1, 1, 1, 2, 2… The number of such atoms 
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in the next line is 3, then 4, then 5, 7, 9, 12… This is the Padovan series 
(and see fn. 1).3 The compactness of the object is shown by the fact that the 
number of “non-atoms” in each derivational line is: 1, 1, 2, 2, 3, 4, 5, 7, 9, 
12…, again the Padovan series — albeit five steps into its generation. Also, 
each derivational line after the root of the object contains 0, 1, 1, 1, 2, 2, 3, 4, 
5… pruned elements, again the Padovan sequence, ignoring the seed.4

Through the adjustments in the structure in (11), pruned elements and 
new edges connect the remaining symbols. As we scan the resulting ob-
ject top-down (which wavy lines emphasize in the clarifying graph in (12)), 
again ignoring the very top element, the ensuing number of symbols is 1, 3, 
4, 7… The Lucas series.

(12)

So the conditions in (10) show a curious structural reduction: computa-
tionally, the Fibonacci object properly contains the Padovan and Lucas ob-
jects. In particular, when imposing certain atomization conditions coupled 
with related conditions of pruning, the Fibonacci tree reverts to a Lucas 
structure, as (13) highlights.5

3 Ratios between this sequence’s terms approximates the plastic number 1.3247179…, the 
unique real solution to x3 – x – 1 = 0. Each number in this sequence is obtained by skipping the 
previous one and adding the two before that, starting at ‘0, 0, 1’, which generates 0, to be skipped 
while we add 1 to 0, to generate 1, to be skipped, etc. Hans van der Laan used this as a base for 
the proportion of his architectural constructions, after having performed experiments to discover 
the limits of humans’ ability to perceive relationships between objects.

4 The Padovan series can also be expressed in Lindenmayer fashion by applying the rules 
in (i):

(i) 1 → 2, 2 → 3, 3 → 1 2
5 In (13) we ignore inner elements in the atomized structures and emphasize portions con-

taining doubly pruned structures and associated atomized structures. The (…3…) in the lower 
part of the graph shows elements from the next derivational line, which the relevant “cut” needs 
to consider to properly aggregate.

0 Omenaldi Sarasola.indd   6700 Omenaldi Sarasola.indd   670 27/1/15   08:29:0427/1/15   08:29:04



 «NATURAL» GRAMMARS AND NATURAL LANGUAGE 671

(13)

Needless to say, the formal observations just reviewed are tightly con-
nected to the assumptions made. With a different sort of atomization, differ-
ent results ensue. Obviously, atomizing the entire structure trivializes it, but 
even atomizing with room for just a single dependent simplifies matters: the 
aggregative nature of the structure reduces to a periodic one: 1, 2, 1, 2, 1, 2, 
1, 2... Atomizing a smaller structure than what we see in (11), leaving three 
(not two) branches “live” yields the series of atoms 1, 0, 1, 1, 2, 2, 4, 5, 8, 
11…, which are sometimes referred to as “poor Phidias numbers”. This se-
ries converges to 1.4655712 (a cubic Pisot number).6 It is likely the case that 
other atomizations yield interesting results too.

2. Grammatical Considerations

“Waves” of structure of the sort seen in (13), including an atomic ele-
ment and two immediately related symbols, are arguably relevant to natural 
language syntax. Atomic elements as in the previous section are customarily 
called “heads”;7 a sister to a head is called a “complement”,8 while a further 
phrasal dependent of a head is called a “specifier”. The basic “molecule” of 
language exhibits the form in (14):

6 A central characteristic of Pisot numbers is that their powers approach integers at an expo-
nential rate. For instance, the number in the text approximates 2. The plastic number is also a Pi-
sot number, the minimal one.

7 In (12)/(13) always ‘1’s exhaustively dominating other ‘1’s.
8 In (12)/(13) complements and specifiers stem from a ‘0’. The difference between them in 

these graphs is that complements involve double pruning. 
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(14) a. Neronis incendium Romae
  Nero-GEN burning Rome-GEN
  “Nero’s burning of Rome”

b. NP
                                         /       \
SPECIFIER Neronis         N’

                   /      \
[incendium]N Romae

COMPLEMENTHEAD

Visually this Latin example presents the mirror image of the sorts of 
structures in (12)/(13), but we are abstracting away from linear ordering con-
siderations in this exercise.9 The complement/specifier asymmetry can be il-
lustrated as follows:

(15) a.  Nero’s city burning is legendary. [Intended: Nero’s burning of a 
city]

 b.  *Rome(‘s) man burning is legendary. [Intended: a man’s burn-
ing of Rome]

(15a) is one among many processes demonstrating the tight connection 
between a head like burning and its complement (in this instance, city). An 
expression like city burning ensues from a more basic structure akin to burn-
ing of a city. Mutatis mutandis, we could ask whether something like a man’s 
burning (of Rome) couldn’t underlie the expression man burning presented in 
(15b). But in such an instance the only meaning available involves the man 
as the target (not the agent) of the burning.

Head-complement relations in the most general sense define so-called 
computational phases (Chomsky 2001). The most important property of 
phases is that, for the purposes of the derivational system, they transfer to se-
mantic interpretation at specific points in the derivation. What this means is 
that, although their component parts are live for interpretation, syntactically 
they are inert, thereby yielding a variety of specifically linguistic proper-
ties.10 The scaffolding of computational phases is destroyed after the transfer. 
The pruning at the phase level in (12)/(13) (highlighted by the curves) may 

9 As is well known, Latin allows all other permutations of these particular phrases, although 
the one in (14) is arguably the default one. In many other languages, of course, other such order-
ings are the most natural (e.g. the English Nero’s destruction of Rome or the Spanish la destruc-
ción de Roma de Nerón).

10 For example, binding conditions (licensing reflexives or forcing the obviation of co-ref-
erent pronouns) take places within phases, as does the phenomenon of “successive cyclicity” in 
long-distance Wh-displacement. 
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be interpreted in just this way: the constituents within the phase attach di-
rectly (by the tripartite connections) to the immediately dominating element, 
higher up in the structure — their previously existing syntactic structure is 
no longer present after phase-transfer.

It should be emphasized, perhaps obviously, that not all syntactic struc-
tures in human language need to have the maximal structure represented in 
(12)/(13).11 This is a point emphasized by Medeiros (2008), when studying 
conditions for syntactic structures that, he argues convincingly, present Fi-
bonacci signatures. They do at the limit, when maximally expanding nodes. 
Observe (16). If we expand every expandable branch in this basic X’-struc-
ture, the Fibonacci pattern is clear (for maximal projections XP, intermediate 
projections X’, and heads X0):

(16) XP X’ X0

3. Conclusions

This paper has argued that a relatively simple way exists to abstract Lu-
cas structures from within Fibonacci structures. This was done, first, by “at-
omizing” all the ‘1’s and their constituent structure in any uniform immedi-
ate domination path —except the top two ‘1s’— which yields the Padovan 
series. In addition the “immediate context” of atomized structures (i.e. any 
‘0’ adjacent to an atomized ‘1’ and any ‘1’ immediately dominating the at-
omized structure) was pruned, which results in the Lucas series. It seems 
curious that those conditions should define a “topological space” with syn-
tactic significance: what constitutes a “head”, what constitutes a “comple-
ment”, what constitutes a “phase”. The question to explore is why conditions 
on atomization and pruning, at the specific level studied here (i.e. yielding 

11 Although structures with this amount of complexity are not hard to parse: [[Conditions 
that provoke [governments to tell lies]] [(normally) entail [[situations triggering mistrust] (at 
least partly) [affecting [citizens embracing democracy]]]]].
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heads, complements, corresponding phases), bridge two basic mathematical 
structures, with an overwhelming attestation in nature. Jean (1994), report-
ing on tens of thousands of observations of hundreds of plant species, shows 
how Fibonacci patterns emerge in 92 % of instances, while Lucas cases are 
the next most common (2 % of the observations). Padovan objects (“mediat-
ing” Fibonacci and Lucas objects as computationally organized by L-gram-
mars) are also independently studied, at least in aesthetics (see fn. 3). Aside 
from proving these conjectures and attesting other natural connections be-
yond botany (well known from a vast literature), the real question to explore 
is why any of these structural factors should matter to language or cognition 
more generally.
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