Breadcrumb

Asset Publisher

Host Research Group

ES26_Nanophysics Laboratory_Enrique Ortega Conejero

Enrique Ortega

658723930

Enrique.ortega@ehu.es

https:/ /cfm.ehu.es/nanophysicslab/

Group description

The NanoPhysics Lab (NPL)  group studies structural, electronic, magnetic and chemical properties of in situ and ex situ grown nanostructures,in the context of experimental surface science. NPL aims at exploring relevant but yet widely unknown phenomena taking place at the surface of solid materials, such as the atomic level control of on surface chemical reactions and catalysis, the bottom up fabrication of 1D or 2D functional materials, and also the growth of novel layered materials with potential application in state of the art technology devices.

The NPL initiated its activities in 2001, and has steadily grown in terms of equipment and personnel ever since. At present, NPL holds some of the most complete and modern set of highly sensitive surface science  techniques , combined with tools for the synthesis of materials and nanostructures, from layer-by-layer growth to device fabrication. Thus, NPL laboratory has several multi-technique ultra-vacuum equipment distributed in five different laboratory rooms.

At NPL we apply the synthesis of atomically perfect materials to practical problems of technological and industrial interest, aligned with three current societal challenges: Quantum Technology.

 

Of particular importance in the context of Quantum Technologies and Sensorics is, on the one hand, the molecular beam epitaxy with atomic precision of ultrathin magnetic/superconductor metal bilayers, trilayers and multilayers, as well as atom-thick Transition Metal Dihalides. On the other hand, a variety of instruments that achieve atomic-sensitivity work at ultra-low temperatures and ultra-high-vacuum, such as the 300mK Scanning Tunneling Microscopy. In the context of Green Chemistry, we use surface-sensitive techniques that operate from ultra-high-vacuum to ambient conditions, such as photoemission, and develop new integrated setups to characterize electrochemical reactions operando.

The group gathers permanent and non-permanent members of all renowned research institutions in San Sebastian, such as the Consejo Superior de Investigaciones Científicas (CSIC), the University of the Basque Country (UPV/EHU), the Donostia International Physics Center (DIPC) and the Ikerbasque Foundation.

Keywords

  • Quantum Technology
  • Superconductors
  • Magnetism
  • Sensors
  • Catalysis
  • Nanoscale chemistry

Team Description

  • Enrique Ortega (Principal Investigator(UPV/EHU))

    ORCID: 0000-0002-6643-806X

  • Celia Rogero (Principal Investigator(CSIC))

    ORCID: 0000-0002-2812-8853

  • Max Ilyn (Research Associate)

    ORCID: 0000-0002-4052-7275

  • Frederik Schiller (CSIC Researcher)

    ORCID: 0000-0003-1727-3542

  • Martina Corso (CSIC Researcher)

    ORCID: 0000-0002-8592-1284

  • Sara Barja (Ramon y Cajal Researcher)

    ORCID: 0000-0002-4257-2651

  • MAIDER ORMAZA (UPV/EHU RESEARCHER)

    ORCID: 0000-0002-7278-5308

  • Vitaly Golovach (Ikerbasque Researcher)

    ORCID: 0000-0001-7457-171X

  • Dimas G. de Oteyza (CSIC Researcher)

    ORCID: 0000-0001-8060-6819

Projects

  • "SuperTED" Thermoelectric detector based on superconductor- ferromagnet heterostructures

    Pl: Celia Rogero

    Funding Agency*: Horizon 2020 research and innovation programme (grant agreement No 800923) https://superted-project.eu/

    Ongoing: yes

  • "FunMolsys" Transferencia de sistemas moleculares funcionales a superficies no metálicas

    Pl: Martina Corso

    Funding Agency*: Retos Investigación: Proyectos l+D+i 2019 (PID2019- l07338RB-C63)

    Ongoing: yes

  • ECOCAT Estudio de las relaciones estructura-función en catalizador modelo para la generación limpia de productos químicos de alto valor añadido

    Pl: Sara Barja

    Funding Agency*: Retos Investigación: Proyectos l+D+i 2020(2021/06/30 - 2024/05/31)

    Ongoing: yes

  • SPIRIT Spintronics and spin-orbitronics in hybrid nanostructures: : from classical to quantum technologies

    Pl: Sebastian Bergeret, Vitaly Golovach

    Funding Agency*: Retos Investigación: Proyectos I+D+i 2020 Proyecto PID2020-114252GB-I00 de investigación financiado por MCIN/ AEI /10.13039/501100011033 (2021/06/30 – 2024/05/31 )

    Ongoing: yes

  • PLANTA DE RECUPERACIÓN L-HE INSTALACIÓN DE UNA PLANTA DE RECUPERACIÓN Y SUMINISTRO DE HELIO LÍQUIDO PARA SISTEMAS EXPERIMENTALES CRIOGÉNICOS

    Pl: Martina Corso

    Funding Agency*: Ayudas para la adquisición de equipamiento científico técnico. Ayuda EQC2019-005735-P financiada por MCIN/AEI /10.13039/501100011033 y por FEDER Una manera de hacer Europa

    Ongoing: yes

* INT - International EU - European NAT - National RE - Regional

Publications

  • Juan M Gomez-Perez, Xian- Peng Zhang, Francesco Calavalle, Maxim Ilyn, Carmen González-Orellana, Marco Gobbi, Celia Rogero, Andrey Chuvilin, Vitaly N Golovach, Luis E Hueso, F Sebastian Bergeret, Fèlix Casanova, = Strong interfacial exchange field in a heavy metal/ferromagnetic insulator system determined by spin Hall magnetoresistance, Nano Letters 20, 6815-6823, 2020

  • E. Strambini, M. Spies, N. Ligato, S. Ilic, M. Rouco, C. G. Orellana, M. Ilyn, C. Rogero, F. S. Bergeret, J. S. Moodera, P. Virtanen, T. T. Heikkilä, F. Giazotto., = Superconducting spintronic tunnel diode, Nat. Comm. 13, 2431, 2020

  • Iván Rivilla, Borja Aparicio, Juan M. Bueno, David Casanova, Claire Tonnelé, Zoraida Freixa, Pablo Herrero, Celia Rogero, José I. Miranda, Rosa M. Martínez-Ojeda, Francesc Monrabal, Beñat Olave, Thomas Schäfer, Pablo Artal, David Nygren, Fernando P. Cossío, Juan J. Gómez- Cadenas, = Fluorescent bicolour sensor for low- background neutrinoless double ß decay experiments, Nature 583, 48–54, 2020

  • James Lawrence, Alejandro Berdonces-Layunta, Shayan Edalatmanesh, Jesús Castro-Esteban, Tao Wang, Alejandro Jimenez-Martin, Bruno de la Torre, Rodrigo Castrillo-Bodero, Paula Angulo-Portugal, Mohammed S. G. Mohammed, Adam Matěj, Manuel Vilas-Varela, Frederik Schiller, Martina Corso, Pavel Jelinek, Diego Peña & Dimas G. de Oteyza, = Circumventing the stability problems of graphene nanoribbon zigzag edges, Nat. Chem. (2022)., 2022

  • Fernando Garcia-Martinez, Carlos Garcia- Fernandez, Juan Pablo Simonovis, Adrian Hunt, Andrew Walter, Iradwikanari Waluyo, Florian Bertram, Lindsay Merte, Mikhail Shipilin, Sebastian Pfaff, Sara Blomberg, Johan Zetterberg, Johan Gustafson, Edvin Lundgren, Daniel Sanchez- Portal, Frederik Schiller, Enrique Ortega,, = Catalytic oxidation of CO on a curved Pt(111) surface: simultaneous ignition at all facets through a transient CO-O complex., Angewandte Chemie Int. Ed. 59, 20037 – 20043, 2020

Research Lines

ADVANCED MATERIALS AND PROCESSES

Materials for Quantum Technologies

  • Superconducting qubits is one of the leading technologies
  • chosen by IBM, Google and many other companies to build
  • various devices for quantum information processing. Our group uses experience in the development of the superconducting sensors [1] to join the activity in the field of improvement of the superconducting qubits via introducing of new materials [2] and in the field of building hybrid quantum devices based on the superconducting qubits [3]. The work is done in collaboration with the groups of S. Bergeret (CSIC-UPV/EHU), T. Heikkilay I. Maasilta (Jyväskylä), F. Giazotto (CNR-Pisa).
  1. https://superted-project.eu/
  2. N. P. de Leon et al., Science 372, eabb2823 (2021). DOI: 10.1126/science.abb2823
  3. A. A. Clerc Nature Physics, 16 (2020), 257 https://doi.org/10.1038/s41567-020-0797-9

Sensorics and Spintronics

  • Surface Science synthesis techniques are nowadays fundamental in the process of devices miniaturization, which required structural perfection down to the atomic level. Modern technology, such as sensorics, plasmonics and spintronics, are implementing surface science techniques in order to develop new devices susceptible of being used in the near future. In this sense we are strongly working on the design and fabrication of the active part of technology devices, controlling the growth and the structure with atomic precision. In particular, thanks to the invaluable experience of Nanophysics Lab in the structural and chemical analysis of sample devices using Surface Science techniques, we are at present involved in the development of: I) Novel superconductor-based radiation sensor; II) ultra-low background fluorescence chemo-sensor for understanding the nature of fundamental particles (to demonstrate whether the neutrino is their own antiparticle); III) plasmonic sensor; IV) chemo-sensor for detection of gases.

INTELLIGENT, FLEXIBLE & EFFICIENT PRODUCTION SYSTEMS

2D Magnetic semiconductor

New generation of semiconducting devices for upcoming Digital Transformation requires low dimensional, multifunctional, hybrid materials with easy manufacturing solutions. We have recently demonstrated the potential capability of a new group of two-dimensional materials, the Magnetic Semiconductor Transition Metal di-Halides (TMH2), of being integrated into silicon chips. The novelty of this materials family resides in their easy epitaxial growth over multiple substrates, which responds to industrial demands for functional semiconducting materials, and makes them very appealing for being quickly incorporated in current industrial processes. TMH2 are two-dimensional magnetic semiconductor materials with tunable magnetism, electronic and optical functionality. Through multidisciplinary development of growth and processing strategies, we will bring high quality 2D layers into integrated circuits. Our vision is the development of a new generation of materials integrated in conventional industry that have a clear impact in the emerging era of the Internet of Things as well as with Quantum Information Processing.