LCT at the Charles University in Prague (Czech Republic)
General details of the subject
- Mode
- Face-to-face degree course
- Language
- English
Description and contextualization of the subject
El estudiante realiza un primer curso completo en la misma.Competencies
Name | Weight |
---|
Conocimiento de las tecnologías del lenguaje sobre la base de los algoritmos de aprendizaje automático y aprendizaje profundo. | 100.0
%
|
Study types
Type | Face-to-face hours | Non face-to-face hours | Total hours |
---|
Lecture-based | 200 | 300 | 500 |
Applied computer-based groups | 400 | 600 | 1000 |
Training activities
Name | Hours | Percentage of classroom teaching |
---|
Analysing and discussing papers | 250.0 | 80
%
|
Lectures | 500.0 | 40
%
|
Prácticas con ordenador, laboratorio, salidas de campo, visitas externas | 500.0 | 60
%
|
Seminars | 250.0 | 80
%
|
Assessment systems
Name | Minimum weighting | Maximum weighting |
---|
Drawing up reports and presentations | 25.0
%
| 25.0
%
|
Practical tasks | 25.0
%
| 25.0
%
|
Written examination | 50.0
%
| 50.0
%
|
Learning outcomes of the subject
* Tener conocimiento y manejo de algoritmos de aprendizaje automático* Tener criterios para diseñar experimentos para procesamiento del lenguaje * Tener conocimiento sobre estadística inferencial con el foco en los métodos usados habitualmente en el área de la lingüística experimental * Tener conocimientos de las técnicas principales de traducción automática en PLN, especialmente de las técnicas basadas en aprendizaje profundo.Temary
* Foundational : Statistical methods; symbolic methods; cognition; corpus; text and speech; foundations of linguistics. * Computational Syntax and Morphology : Finite state techniques; probabilistic approaches; formal grammars; tagging, chunking; parsing. * Computational Semantics, Pragmatics and Discourse: Syntax-semantics interface; semantic construction; dialogue; ontologies; formal semantics. * Data Structures, Data Organization and Processing : Algebraic data-types; relational databases; semi-structured data and XML; information retrieval; digital libraries. * Logic, Computability and Complexity: Logic and inference; automata theory; computability theory; complexity theory; discrete mathematics. * Formal Languages and Algorithms: Formal grammars and languages hierarchy; parsing and compiler design; search techniques and constraint resolution; automated learning. * Advanced Language Technologies: Machine translation; information and knowledge representation; information retrieval; question answering; speech recognition and generation; models of human language processing and understanding; psycholinguistics. *Advanced Computer Science: Artificial intelligence; knowledge representation; automated reasoning; semantic web; intelligent and multi-modal interfaces; cognitive modelling; computational psychology; neural networks; machine learning.