About QUINST

Quantum mechanics is at the heart of our technology and economy - the laser and the transistor are quantum devices - but its full potential is far from being realized. Recent technological advances in optics, nanoscience and engineering allow experimentalists to create artificial structures or put microscopic and mesoscopic systems under new manipulable conditions in which quantum phenomena play a fundamental role.

Quantum technologies exploit these effects with practical purposes. The objective of Quantum Science is to discover, study, and control quantum efects at a fundamental level. These are two sides of a virtuous circle: new technologies lead to the discovery and study of new phenomena that will lead to new technologies.

Our group's aim is  to control and understand quantum phenomena in a multidisciplinary intersection of  Quantum Information, Quantum optics and cold atoms, Quantum Control, Spintronics, Quantum metrology, Atom interferometry, Superconducting qubits and Circuit QED and Foundations of Quantum Mechanics.

 

 

Latest events

null

Lukas Knips (Max Planck Institute for Quantum Optics, Munich, Germany) (Seminar)

When end where

11/06/2016

Description

Speaker:  Lukas Knips (Max Planck Institute for Quantum Optics, Munich, Germany)

Date: 18 Nov, Wednesday

Time: 12:00

Place: Seminar Room, Dept. of Theoretical Physics, Corridor 4.-2.

Title: Statistical Effects on Eigenvalues in Quantum State Tomography

Abstract: The statistical nature of projective measurements suffices to explain the occurrence of unphysical estimates in quantum state tomography. In this talk, I am going to show that multinomial or Poissonian noise results in eigenvalue distributions converging to the Wigner semicircle distribution for already a modest number of qubits. This enables to specify the number of measurements necessary to avoid unphysical solutions as well as a new approach to convert unphysical estimates into physical ones.

Contact: Geza Toth