Materia

Contenido de XSL

Informática Industrial

Datos generales de la materia

Modalidad
Presencial
Idioma
Inglés

Descripción y contextualización de la asignatura

El tema de esta asignatura es la informática aplicada a la industria con especial enfoque en la ciencia de datos, la Nube y la programación. Esta asignatura se centra en los sistemas informáticos aplicados en sistemas industriales de control y/o monitorización. En concreto, se aplicará a las Smartgrids técnicas de programación, IoT y algunos recursos básicos de la Nube.

La asignatura se imparte sólamente en inglés, por lo que el resto de la guía no se ha traducido.

Profesorado

NombreInstituciónCategoríaDoctor/aPerfil docenteÁreaEmail
EZEIZA RAMOS, AITZOLUniversidad del País Vasco/Euskal Herriko UnibertsitateaProfesorado AgregadoDoctorBilingüeIngeniería de Sistemas y Automáticaaitzol.ezeiza@ehu.eus

Competencias

DenominaciónPeso
Que los estudiantes tengan conocimiento actualizado sobre las técnicas y metodologías de trabajo avanzadas relacionadas con el ámbito de las Smartgrids y la Generación Distribuida, en particular desde el punto de vista de su control.5.0 %
Aplicar herramientas informáticas y de telecomunicaciones como soporte para el control en Smartgrids y Generación Distribuida.95.0 %

Tipos de docencia

TipoHoras presencialesHoras no presencialesHoras totales
Magistral81220
P. de Aula6915
P. Laboratorio162440

Actividades formativas

DenominaciónHorasPorcentaje de presencialidad
Clases expositivas8.0100 %
Estudio sistematizado45.00 %
Prácticas con ordenador, laboratorio, salidas de campo, visitas externas16.0100 %
Seminarios - trabajo en grupo6.0100 %

Sistemas de evaluación

DenominaciónPonderación mínimaPonderación máxima
Elaboración y exposición de trabajos20.0 % 40.0 %
Realización de prácticas (ejercicios, casos o problemas)30.0 % 70.0 %

Resultados del aprendizaje de la asignatura

By the end of this course, the students should be able to:

-To program basic applications in MATLAB.

-To program basic notebooks in Python.

-To launch virtual instances in AWS.

-To program basic VIs with LabVIEW.

-To create an IoT-like system with myRIO.

Convocatoria ordinaria: orientaciones y renuncia

The subject is presential, so the student has to attend to the lessons to pass the subject. Anyway, given the current issues with COVID-19, there will be means to make possible to pass the course without presential activity. Indeed, many of the exercises we will do, be it presentially or remotely, are based on online platform for this purpose.

The learning methodology is based on hands-on, self-paced learning of interconnected techniques. The student must tick some boxes to pass the course, and the rest of the exercises will determine the final mark of the assessment.

The assessment items that are mandatory are the following:

1. MATLAB: the student must complete the MATLAB Onramp course

2. Python: the student must complete the Python basic course in Kaggle

3. AWS: the student must complete the aws.training basic course

4. LabVIEW: the student must pass the learn LabVIEW test

These four items are requirements to pass the course, that is, no student will pass the course without ticking all of these boxes. Obviously, they are fairly easy and fun, so there is no reason to skip them. If any student struggles to do any of the mandatory tasks, he or she should ask the teacher for an alternative way to assess that part of the course.

Each mandatory item has two exercises associated to it: one guided exercise the student will have to do in an online platform, and another one that will be more open. The open exercise should be an example application for Smartgrids or distributed generation. Each exercise will have a weight between 5% and 15% of the final mark of the subject. The range of the sum of the marks for all the exercises should be between 30% and 70% of the final mark.

Finally, the student will have to design a system using one or many of the techniques learned during the course. If possible, the student should try to implement part of the system. This final work will get a mark between 20% and 40% of the course, including the presentation that the student will have to give in the last session of the course, and the short report that would have to be submitted in a week's time after the last session.

Students who want to avoid the continuous assessment method or to do a no-show should follow current regulations. Do not hesitate to contact the teacher, of the course, if you have any question about the assessment.

Convocatoria extraordinaria: orientaciones y renuncia

The considerations of the regular call apply to the extraordinary call too. The only exception is that the presentation would be arranged directly with the teacher in the extraordinary call date range.

Temario

Introduction to Information Technology in the Industry

MATLAB basics

Data Science with Python and Jupyter notebooks

Losing one's fear to the Cloud (AWS)

Graphical programming fundamentals (LabVIEW) and IoT targets (myRIO)

Bibliografía

Materiales de uso obligatorio

Documentación disponible en eGela: https://eGela.ehu.eus/

Bibliografía básica

Documentación disponible en eGela: https://eGela.ehu.eus/

Bibliografía de profundización

- Ogata K. Problemas de Ingeniería de Control utilizando MATLAB, Prentice-Hall Iberia, 1999.

- Lutz M. Learning Python: Powerful Object-Oriented Programming. Ed. O'Reilly Media, 2013.

- Usmani Z. Kaggle for Beginners: with Kernel Code. Ed. Gufhtugu, 2017.

- NI myRIO Project Essentials Guide. Ed Doering. Ed. National Technology and Science Press.

- Introduction to data acquisition with LabView. Robert King. McGraw-Hill, New York, 2013.

- LabVIEW Data Acquisition Basics Manual. National Instruments. 1998.

- LabVIEW programming, data acquisition and analysis. J.Y. Beyon. Ed. Prentice Hall.

- Hands-on exercise manual for LabVIEW programming, data acquisition and analysis. J.Y. Beyon. Ed. Prentice Hall.

- Real-Time Systems. Jane W.S. Liu. Prentice Hall, 2000.

- Demystifying embedded systems middleware. Tammy Noergaard. Elsevier/Newnes, Oxford : 2011.

Revistas

Computers & Industrial Engineering
ISSN: 0360-8352
http://www.journals.elsevier.com/computers-and-industrial-engineering IEEE Transactions on Industrial Informatics ISSN 1551-3203 http://tii.ieee-ies.org/ IEEE Transactions on Smart Grid ISSN: 1949-3053 http://www.ieee-pes.org/ieee-transactions-on-smart-grid

Enlaces

https://informatics.industriainformatika.pw/ http://www.ni.com/en-us/innovations/energy/smart-grid.html https://es.mathworks.com/academia/tah-portal/universidad-del-pais-vasco-31427936.html https://www.kaggle.com/

Contenido de XSL

Sugerencias y solicitudes