Materia

Contenido de XSL

Computación en ciencia e ingeniería: simulación numérica

Datos generales de la materia

Modalidad
Presencial
Idioma
Castellano

Descripción y contextualización de la asignatura

La simulación numérica de sistemas modelados por medio de ecuaciones diferenciales (tanto ordinarias como en derivadas parciales) es una herramienta sumamente útil en multitud de áreas de la ciencia y la ingeniería.

Cuando la experimentación directa con prototipos reales resulta demasiado cara o incluso imposible de realizar, la simulación numérica suele ser habitualmente la única alternativa. Para poder llevar a cabo tales simulaciones, es necesario hacer uso de algoritmos de resolución numérica de los problemas matemáticos que surge del modelizado de cada problema real, ya sea implementando dichos algoritmos o haciendo uso de software matemático-numérico que facilite la realización de los cálculos necesarios así como la visualización gráfica de los resultados.

Buena parte de los modelos matemáticos utilizados para simular la evolución a lo largo del tiempo de una serie de variables de un sistema se basan en ecuaciones diferenciales ordinarias, y más generalmente ecuaciones diferenciales de evolución temporal. En este curso nos centraremos principalmente en modelos matemáticos de ecuaciones diferenciales ordinaria.

Profesorado

NombreInstituciónCategoríaDoctor/aPerfil docenteÁreaEmail
ANTOÑANA OTAÑO, MIKELUniversidad del País Vasco/Euskal Herriko UnibertsitateaProfesorado Laboral Interino UniversidadDoctorBilingüeMatemática Aplicadamikel.antonana@ehu.eus
MURUA URIA, ANDERUniversidad del País Vasco/Euskal Herriko UnibertsitateaProfesorado PlenoDoctorBilingüeCiencia de la Computación e Inteligencia Artificialander.murua@ehu.eus

Tipos de docencia

TipoHoras presencialesHoras no presencialesHoras totales
Magistral304575
Seminario101525
P. Ordenador203050

Actividades formativas

DenominaciónHorasPorcentaje de presencialidad
Clases teóricas20.0100 %
Prácticas con ordenador, laboratorio, salidas de campo, visitas externas80.050 %
Trabajo individual y/o en grupo50.00 %

Sistemas de evaluación

DenominaciónPonderación mínimaPonderación máxima
Evaluación continua a través de la asistencia a clase0.0 % 10.0 %
Examen practico50.0 % 100.0 %
Prácticas de ordenador0.0 % 50.0 %

Convocatoria ordinaria: orientaciones y renuncia

El 90% de la calificación de la convocatoria ordinaria se basará en la evaluación de la entrega del trabajo realizado por ordenador cada semana (en un día de la semana prefijado) a modo de examen práctico. Dichos exámenes prácticos consistirán en la realización en el lenguaje julia, en el entorno jupyter, de las tareas indicadas en el enunciado. Cada enunciado se suministrará como un documento jupyter, que será el documento de partida para el documento que cada estudiante entregará al final de la sesión de examen práctico de cada semana. El resto de la calificación se basará en la evaluación continua de la participación activa del estudiante el resto de las sesiones de clases presenciales.

Convocatoria extraordinaria: orientaciones y renuncia

La calificación de la convocatoria extraordinaria se basará en la evaluación de un único examen pŕactico, con una duración máxima a determinar (entre tres y cuatro horas) realizado por ordenador presencialmente. Se tratará de un examen pŕactico del estilo de los realizados cada semana para la calificación de la convocatoria ordinaria, pero de mayor envergadura.

Temario

Tema 1 Algunos ejemplos de problemas de valor inicial modelados por ecuaciones diferenciales y métodos elementales de resolución numérica

Tema 2 Métodos de resolución numérica de ecuaciones diferenciales ordinarias

Tema 3 Aspectos computacionales de la resolución numérica de ecuaciones diferenciales ordinarias

Tema 4 Estabilidad, caos, y ajuste paramétrico

Bibliografía

Materiales de uso obligatorio

El material obligatorio para la asignatura se ubicará en la plataforma egela de docencia virtual que nos ofrece la Universidad: tutoriales, transparencias, enunciadosde ejercicios, resolución de ejercicios, enlaces, etc.

Bibliografía básica

- G. Wheatley, Análisis numérico con aplicaciones, Sexta edición, Prentice-Hall, 2000.

- J. H. Mathews, Numerical methods for mathematics, science, and engineering, Second Edition, Prentice-Hall, 1992.

- R. L. Burden & J. Douglas Faires, Analisis Numérico, Grupo Editorial Iberoamericano 1985.

Bibliografía de profundización

- U. M. Ascher, Numerical Methods for Evolutionary Differential Equations (Computational Science and Engeenering), SIAM 2008.

- M. A. McKibben, Discovering Evolution Equations with Applications: Volume 1-Deterministic Equatiations, Chapman & Hall/CRC Applied Mathematics & Nonlinear, 2010.

- E. Hairer, S. P. Nørset, G. Wanner: Solving ordinary di¿erential equations I. Non-sti¿ problems, Second Edition, Springer-Verlag (1993).

- E. Hairer, G. Wanner, Solving ordinary di¿erential equations II. Sti¿ and di¿erential-algebraic problems, Second Edition, Springer-Verlag (1996).

- J. D. Lambert, Numerical Methods for Ordinary Di¿erential Systems. The Initial Value Problem, John Wilaey & Sons, 1991.

Enlaces

https://julialang.org/

Contenido de XSL

Sugerencias y solicitudes