Contenido de XSL

Scientific writing and presenting/Difusión en Ciencia: cómo escribir y presentar datos científicos

Datos generales de la materia


Descripción y contextualización de la asignatura

How to write a journal article: how to prepare, structure and write scientific articles; How to write reviews, letters of motivation; How to respond to reviewers; How to do an oral presentation of research; How to write grant/project proposals


NombreInstituciónCategoríaDoctor/aPerfil docenteÁreaEmail
COOKE , MARTINIkerbasque Fundazioa/Fundación
COSTELLO , BRENDANBasque Center on Cognition, Brain and Language (BCBL)
MARTIN , CLARAIkerbasque Fundazioa/Fundación IkerbasqueOtrosDoctorac


CE1. Capacidad para realizar una evaluación crítica de los informes experimentales.25.0 %
CE2. Capacidad para escribir un informe experimental25.0 %
CE3. Capacidad para responder a las críticas de los revisores de un informe experimental.25.0 %
CE3. Capacidad para realizar una exposición en público y responder a las preguntas.25.0 %

Tipos de docencia

TipoHoras presencialesHoras no presencialesHoras totales
P. de Aula101020
P. Ordenador102535

Sistemas de evaluación

DenominaciónPonderación mínimaPonderación máxima
Examen escrito50.0 % 50.0 %
Exposiciones50.0 % 50.0 %


The Scientific Basics course is divided into two sections.

The first section of the course focuses on communication skills. The aim is to improve students’ ability to obtain, organize, and critically evaluate information and to report it in a clear, concise manner in the standard mediums of the discipline: writing abstracts, articles (including cover and response letters), and peer reviews, and delivering poster or oral presentations at conferences. Students review various communication strategies and formats and work with different models of each type of text. Students complete various assignments including a simulation of the publication cycle (manuscript submission, review and resubmission) and in-class presentations, for which they receive feedback from the instructors and from other students.

The second section of the course will introduce the Python programming language and demonstrate its use in activities relevant for cognitive science and language e.g. corpus analysis, experimental data collection, postprocessing, analysis and display. This part of the course will introduce elements of the Python data science stack (e.g. Numpy, Scipy, Pandas, Matplotlib, Seaborn) and describe other useful Python libraries. The entire course will be run hands-on using Jupyter notebooks

Contenido de XSL

Sugerencias y solicitudes