Gaia

XSLaren edukia

Sorkuntza banatuko iturrien ereduztapen dinamikoa

Gaiari buruzko datu orokorrak

Modalitatea
Ikasgelakoa
Hizkuntza
Ingelesa

Irakasgaiaren azalpena eta testuingurua

Distributed generation, also called on-site generation or decentralized generation, is the term for generation of electricity from sources that are near the point of consumption, as opposed to centralized generation sources such as large utility-owned power plants. Common distributed generation systems (DGS) include: Solar photovoltaic panels, small wind turbines, natural gas or hydrogen-fired fuel cells, combined heat and power (CHP) systems, biomass combustion, internal combustion (IC) small systems, gas microturbines, micro hydropower and marine energy. Various technical and economic issues occur in the integration of these resources into a grid. Technical problems arise in the areas of power quality, voltage stability, harmonics, reliability, protection, and control. In order to face all these problems, good knowledge and modeling of DGSs for a subsequent management and control is a key matter. In this subject some of the most common DGSs will be studied in order to develop the models that will allow to study the performance of them under dynamic situations. In the event that the sanitary conditions prevent the realization of a teaching activity and / or face-to-face evaluation, a non-face-to-face modality will be activated of which the students will be informed promptly.

Irakasleak

IzenaErakundeaKategoriaDoktoreaIrakaskuntza-profilaArloaHelbide elektronikoa
ALBIZU FLOREZ, IGOREuskal Herriko UnibertsitateaUnibertsitateko Irakaslego TitularraDoktoreaElebidunaIngeniaritza Elektrikoaigor.albizu@ehu.eus
UGARTEMENDIA DE LA IGLESIA, JUAN JOSEEuskal Herriko UnibertsitateaUnibertsitate-Eskolako Irakaslego LankideaDoktoreaElebidunaIngeniaritza Elektrikoajuanjo.ugartemendia@ehu.eus

Gaitasunak

IzenaPisua
Ikasleek Smartgrid eta Sorkuntza Banaturari sorkuntzari loturiko teknika eta lan metodologien inguruko ezagutza eguneratua edukitzea,batez ere horiek kontrolatzearen ikuspegitik. 5.0 %
Smartgrid-en kontzeptuak eta zehaztapenak ezagutu eta aplikatzea, baita haien tipologiak, osatzen dituzten osagaiak eta oinarrizko dimentsionatzea ere. 5.0 %
Smartgrid-en osagai ezberdinen eredu dinamikoak ezartzea, batez ere, Sorkuntza Banatuko unitateak. 40.0 %
Smartgrid-en osagai desberdinentzako tokiko kontroleko legeak diseinatzea, batez ere banatutako sorkuntza unitateak. 5.0 %
Smartgrid-en osagai ezberdinen eredu eta kontrolatzaileak ebaluatzea eta balidatzea, simulazio eta saiakuntza esperimentalen bidez. Horretarako, tresna informatiko eta prototipo ezberdinak erabiliko dira. 30.0 %
Smartgrid-en alorrean lan egiten duten profesionalez eta aztertzaileez osatutako diziplina anitzeko talde eleanitzek, nazionalek zein nazioartekoek, egindako lanen gainean ikasleek komunikatzeko gaitasuna izatea. 10.0 %
Ikasleak masterraren gaiari buruzko dokumentu teknikoak, arauak eta artikulu zientifikoak ulertzeko eta aztertzeko gaituta egotea, baita Smartgrid-en alorreko garapen lanetan horiek aplikatzeko gai izatea ere. 5.0 %

Irakaskuntza motak

MotaIkasgelako orduakIkasgelaz kanpoko orduakOrduak guztira
Magistrala101525
Gelako p.101525
Ordenagailuko p.101525

Irakaskuntza motak

IzenaOrduakIkasgelako orduen ehunekoa
Ariketak25.040 %
Azalpenezko eskolak10.0100 %
Ikasketa sistematizatua15.00 %
Kasu praktikoen ebazpena20.047 %
Proiektuen azalpena1.0100 %
Txostenak eta azalpenak lantzea4.00 %

Ebaluazio-sistemak

IzenaGutxieneko ponderazioaGehieneko ponderazioa
Azalpenak0.0 % 20.0 %
Garatu beharreko galderak5.0 % 20.0 %
Idatzizko azterketa30.0 % 70.0 %
Lan praktikoak10.0 % 40.0 %

Ohiko deialdia: orientazioak eta uko egitea

CONTINUOUS EVALUATION SYSTEM: The evaluation is of ongoing type. It is why it is compulsory to be present in class. The subject is assessed from 3 different activities, according to this weighting: - Individual exercises and tasks during the course: 30% - Reports of applied laboratory practices: 20% - Final written exam: 50% During the course, students must do individual exercises, tasks and reports. This will allow a follow-up of the learning process of the students and a continuous evaluation. Students who do not submit the exercises, tasks and reports will be evaluated with a zero in these sections. The exam of the ordinary call will count for 50% of the final mark. In order for the average to be made with the remaining parts, it will be necessary to obtain a minimum of 4 in this exam. Failure to appear at the final assessment on the official date of the ordinary call will automatically result in the waiver of that call, which will lead to the grade of Not Presented. A minimum mark of 5 is required to pass the course. FINAL EVALUATION SYSTEM: According to article 8 of the Regulations, regulating the assessment of students in the official degrees, the students shall have the right to be evaluated by means of the FINAL EVALUATION SYSTEM, independently of the fact that has or has not participated in the CONTINUOUS EVALUATION SYSTEM. In order to do so, students must present the following information written to the teacher in charge of the subject the renunciation of the CONTINUOUS EVALUATION within a period of 9 weeks from the beginning of the term. In this case, the student will be assessed with a single final exam. This final exam will consist on an oral exam related to the skills that the students have to acquire in the subject. RENUNCIATION According to article 12 of the Regulations, regulating the assessment of students in the official degrees, in the case of CONTINUOUS EVALUATION, the student may renounce the call for proposals within a period which, as a minimum, will be up to one month before the end of the teaching period of the corresponding subject. This waiver must be submitted in writing to the teacher responsible for the subject. In the case of FINAL EVALUATION, a no presentation to the official examination will result in the automatic waiver of the corresponding call. Renunciation of the call will result in the qualification of not presented.

Ezohiko deialdia: orientazioak eta uko egitea

The criteria and weighting of this call will be the same as that of the ordinary call. RENUNCIATION A no presentation to the official examination will result in the automatic waiver of the corresponding call. Renunciation of the call will result in the qualification of not presented.

Irakasgai-zerrenda

Dynamic modeling, simulated and experimental testing of photovoltaic panels. Dynamic modeling, simulated and experimental testing of fuel cells. Dynamic modeling and simulated testing of micro-hydro power systems. Dynamic modeling, simulated and experimental testing of the diesel-alternator group. Dynamic modeling and simulated testing of marine energy systems.

Bibliografia

Nahitaez erabili beharreko materiala

Documentation uploaded to the web page of the subject. Accessible at https://egela1920.ehu.eus

Oinarrizko bibliografia

R.A. Messenger, A. Abtahi. Photovoltaic Systems Engineering CRC Press New York 2017. G. Petrone, C.A. Ramos-Paja, G. Spaguolo. Photovoltaic Systms Modeling. John Wiley 2017. J. Larminie, A. Dicks. Fuel Cell Systems Explained. John Wiley 2003. H. Nehrir, C. Wang. Modeling and Control of Fuel Cells: Distributed Generation Applications. John Wiley 2009. A. Pecher, J.P. Kofoed. Handbook of Ocean Wave Energy. Springer 2017 M. Folley. Numerical modeling of Wave Energy Converters. Elsevier 2016

Gehiago sakontzeko bibliografia

T. Markvart, L. Castañer. Practical handbook of photovoltaics: fundamentals and applications. Ed. Elsevier, Oxford: 2003. L. Castañer, S. Silvestre. Modelling Photovoltaic Systems using Pspice. Ed. John Wiley & sons, Ltd, Chichester: 2002. G. D.J. Harper. Fuel cell projects for the evil genius. Ed. Mc Graw Hill, New York: 2008. K. Z. Yao et. al. A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells, vol. 4, no. 1-2, pp. 3-29, Weinheim: 2004. RETScreen International (Clean energy decision support centre). Small hydro project analisys chapter. Minister od Natural Resources of Canada: 2001-2004. H. Fang et al. Basic Modeling and Simulation Tool for Analysis of Hydraulic Transients in Hydroelectric Power Plants. Trans. on energy Conversion, vol 23, no 3, pp. 834-841, 2008. C. Li, J. Zhou. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Conversion and Management, vol. 52, pp. 374-381, 2011. D. Andrews. National Grid's use of emergency diesel standby generators in dealing with grid intermittency, Open Iniversity Conference on Intermittency, 2006. Falnes J. A review of wave-energy extraction. Marine Structures, 2007 Cummins, WE. The Impulse Response Function and Ship Motions. Schiffstechnik, vol 9, pp. 101-109, 1962.

Aldizkariak

Renewable Energy (Elsevier) Applied Energy (Elsevier) Photovoltaics Bulletin (Elsevier) Fuel Cells Bulletin (Elsevier) IEEE Journal of Photovoltaics IET Renewable Power Generation IEEE Transactions on Energy Conversion IEEE Transactions on Industrial Electronics

Estekak

https://www.energy.gov/eere/fuelcells/fuel-cells https://www.nrel.gov/ https://www.renewableenergyworld.com/hydrogen/tech.html https://www.fuelcellenergy.com/ https://www.energy.gov/eere/solar/articles/solar-photovoltaic-system-design-basics https://www.renewableenergyworld.com/solar-energy/tech/solarpv.html https://energyeducation.ca/encyclopedia/Photovoltaic_system https://science.nasa.gov/researchers https://www.energy.gov/energysaver/buying-and-making-electricity/microhydropower-systems https://www.backwoodssolar.com/products/microhydro-power https://www.wbdg.org/resources/microturbines https://www.intechopen.com/books/progress-in-gas-turbine-performance/micro-gas-turbine-engine-a-review https://www.hydro.org/waterpower/marine-energy/ http://www.emec.org.uk/marine-energy/ https://www.modelica.org/ https://www.openmodelica.org/ https://www.scilab.org/

XSLaren edukia

Iradokizunak eta eskaerak