Compton efektua

Elektroi askeak dauden eskualde batean erradiazio elektromagnetikoak erasotzen badu, erradiazioaren espektroa behatzean, erradiazio erasotzaileaz gain maiztasun txikiago bateko beste erradiazio bat aurkitzen da. Erradiazio dispertsatu honen uhin-luzera dispertsio-norabidearen menpekoa da.

Izan bitez l, uhin-erasotzailearen uhin-luzera, eta l’, erradiazio dispertsatuaren uhin-luzera. Compton-ek aurkitu zuenez, q dispertsioaren angeluak uhin-luzeren arteko diferentzia determinatzen du. Erlazio hau betetzen da:

l'-l = lc(1-cosq)=(h/mec)(1-cosq)

hemen h Planck-en konstantea da, me elektroiaren masa da eta c argiaren abiadura espazio hutsean da.

Simulazioan, detektagailua INa-zko kristala da eta Cs-137 isotopoak gamma-izpien iturria sortzen du. Metal-zati batek (adibidez, burdinazko hagatxo batek) elektroi askeak ematen ditu.

Argibideak

  1. Sakatu Nuevo botoia.

  2. Graduatutako eskalan, aldatu q  angelua; horretarako sagu-erakusleaz, eragin detektagailuari (laukizuzentxo grisari).

  3. Behatu erradiazio dispertsatuaren uhin-luzeraren neurketa.

Applet-aren beheko ezkerraldean, uhin-luzeraren menpe, detektagailuak neurtzen duen gamma-erradiazioaren intentsitatea  irudikatzen da. Gamma-izpien iturriak emititzen dituen uhin elektromagnetikoen uhin-luzerak 0.01878 Å-tan daude zentratuta. Gailurraren forma kurba gaussiar batez irudikatu da (urdinez). Detektagailuak erregistratzen duen erradiazioa baita uhin-luzera dispertsatuan zentratutako gaussiar batez (gorriz) ere irudikatu da.

Applet-aren beheko eskuinaldean, angstrong-etan (1Å=10-10 m), erradiazio erasotzailearen zein dispertsatuaren uhin-luzeren balioak adierazten dira. Goiko eskuinaldean, (urdinezko) fotoi baten eta pausagunean dagoen (beltzezko) elektroi baten arteko talka elastikoaren animazioa ikusten da. Grafikoki, dispertsio-angelua handiagotzen den heinean, behatu (gorrizko) erradiazio dispertsatuaren uhin-luzeraren aldaketa. Gainera, ikusi elektroiak atzera egiten duela.

Erradiazio dispertsatuaren eta erasotzailearen uhin-luzeren arteko diferentzia neurtuz, lc konstantea kalkula daiteke. Konstante honen baliotik abiatuz,  eta  c=3·108 m/s eta me=9.1·10-31 kg oinarrizko konstanteen balioak ezagutuz,  Planck-en konstantearen balioa kalkula daiteke, bere balioa 6.63·10-34 Js-ren hurbilekoa dela konprobatuz..

 

 

Curso de Física/Fisika Ikastaroa. © Copyright 2003. Todos los derechos reservados/Eskubide guztiak erreserbaturik. Contacto/Harremanak: fisica@lg.ehu.es