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Problem sets

Choose 4 problems from each problem set below, solve and turn them in on the
final exam day. Please, write and staple together the 4 problems of each problem
set one after the other by problem sets, with your name, surnames and problem set
number in the first page of each group.

Everybody must turn in its hand or Latex written solutions to the later problems
on the final exam day. Finally, it is mandatory for everybody to turn in the solution
to problem 6.3.7 within your choices of problems from the 6th problem set.

Chapter 1: 1.1.8, 1.1.9, 1.3.2, 1.3.3

Chapter 2: 2.1.9, 2.1.12, 2.1.13, 2.2.1, 2.2.2, 2.2.3, 2.3.5, 2.3.6, 2.3.7, 2.3.8

Chapter 3: 3.6.9

Chapter 4: 4.1.1, 4.1.2, 4.2.1, 4.1.4, 4.1.7, 4.2.3, 4.2.4, 4.2.6, 4.2.7

Chapter 5: 5.1.3, 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.2.6, 5.2.7, 5.3.1, 5.3.3, 5.3.11,
5.3.12, 5.3.13, 5.3.14, 5.4.1, 5.4.4, 5.4.6, 5.4.8, 5.4.9, 5.4.10, 5.5.2

Chapter 6: 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 6.3.7, 6.3.8
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Problems added to the problem sets you will not find in the book

4.2.6 Let H be a Hilbert space and F be the set of all the orthonormal families in
H. Show that the inclusion is an order relation in F . From Zorn’s Lemma show
that H has a complete orthonormal basis {ei}i∈I for some set of indices I. Then,
derive that H is linearly isometric to l2(I) = L2(I,P(I), dc).

4.2.7 Let H be a Hilbert space. Prove that H is separable if and only if H has a
countable orthonormal basis.

5.4.8 Prove the properties stated about the adjoint operator T ∗ of an operator T
in B(H) in p. 22 and in Theorem 5.17, p. 23 of Lecture Notes.pdf. This version of
Theorem 5.17 replaces the corresponding one in the book.

5.4.9 Prove the properties stated in the two Examples in p. 23 of Lecture Notes.pdf.
When are those operators self-adjoint? Are they compact operators?

5.4.10 Prove that in a non separable Hilbert space all T in B(H) has a nontrivial
invariant subspace.

6.3.3 Let X be a normed space and x ∈ X. Show that

‖x‖ = sup {|Λ(x)| : Λ ∈ X∗, ‖Λ‖ ≤ 1} = max {|Λ(x)| : Λ ∈ X∗, ‖Λ‖ ≤ 1}.

6.3.4 Prove that the dual of lp is lp
′
, when 1 ≤ p <∞.

6.3.5 Show that the spaces

c0 = {x ∈ l∞ : lim
n→∞

xn = 0} and c = {x ∈ l∞ : ∃ lim
n→∞

xn ∈ C}

are closed in l∞. Give examples of Schauder basis for the spaces lp, 1 ≤ p <∞, c0
and c.

6.3.6 Prove that every normed space with a Schauder basis is separable. Can l∞

have a Schauder basis?

6.3.7 Prove using diagonalization that any separable Hilbert space is weakly com-
pact; i.e. any bounded sequence {xn} in H has a subsequence {xnk

}, which con-
verges weakly to some x in H. Finally, show that the same result holds for any
Hilbert space (See theorem 5.12 in D. Gilbarg, N.S. Trudinger. Elliptic Partial
Differential Equations of Second Order but be careful because the proof there is
not completely correct)

6.3.8 Let X be a complex Banach space and F a closed subspace of X. Prove that
the quotient space

X/F = {x+ F : x ∈ X}
is a complex vector space. Define

‖x+ F‖ = d(x, F ) = inf
y∈F
‖x− y‖

and show that it defines a norm in X/F . Show that the mapping π : X −→ X/F ,
with π(x) = x + F , when x ∈ X, is a linear bounded mapping from X onto X/F .
Finally, show that X/F is a Banach space (Hint: use the characterization of complete
normed spaces in terms of absolutely convergent series)
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Duals of Lp spaces for 1 ≤ p <∞

1. Read the definition of (X,M, µ) in p. 97 of H. Brezis. Functional Analysis,
Sobolev Spaces and Partial Differential Equations.pdf.

2. Read theorem 4.11 in p. 105 of H. Brezis. Functional Analysis, Sobolev
Spaces and Partial Differential Equations.pdf; the Riesz representation theorem for
the dual of Lp(X,M, µ): when 1 < p <∞ and µ is a σ-finite measure

Lp(X,M, µ)∗ ∼= Lp
′
(X,M, µ),

where 1
p + 1

p′ = 1.

3. Read theorem 4.14 in p. 107 of H. Brezis. Functional Analysis, Sobolev
Spaces and Partial Differential Equations.pdf: the Riesz representation theorem
for the dual of L1(X,M, µ), with µ a σ-finite measure.

4. Read also theorem 6.16 in p. 140 of W. Rudin. Real and Complex Analysis.
There, X is a measure space (X,M, µ) with a σ-finite measure µ over the σ-algebra
M.

Duals of l∞ and L∞

1. We have shown that
(
l1
)∗

= l∞. To verify that l1 ( (l∞)
∗

extend by Hahn-
Banach to l∞ the linear functional f : c −→ C, with f(x) = limn→∞ xn, when

x ∈ c. Then, show that f 6= fy, for all y ∈ l1, where fy(x) =
∑+∞
n=1 xnyn.

2. Read Remark 7 in p. 110 of H. Brezis. Functional Analysis, Sobolev Spaces
and Partial Differential Equations.pdf. It should convince you that one cannot
understand a first description of the dual of L∞(X,M, µ), without knowing more
Functional Analysis and Abstract Topology.

2. We have seen that l1 ( l∗∞. Generally, L1(X,M, µ) ( L∞(X,M, µ)∗. When
X = K in Rn and 0 ∈ K, extend by Hahn-Banack to L∞(K) the bounded linear
functional Λ : C(K) −→ C, with Λ(ϕ) = ϕ(0), when ϕ ∈ C(K). One can verify
that Λ 6= Λg, for all g ∈ L1(K), where Λg(f) =

∫
K
f(x)g(x) dx.

3. In pp. 21-23 of S. Semmes. An introduction to some aspects of functional
analysis.pdf there is a reasonable description of the dual of L∞(X,M, µ).

Duals of C0(X) and C(X), when X = Ω o K

1. We follow the notation in W. Rudin. Real and Complex Analysis.pdf, where
X stands for a Hausdorff locally compact space; as X = K, a compact set in Rn o
X = Ω an open set in Rn.
Cb(X) denotes the space of complex-valued bounded continuous functions over

X with the sup norm; i.e.
‖f‖∞ = sup

x∈X
|f(x)|.

Cb(X) is a Banach space, as C(K).

2. Read the definition 2.9 for Cc(X) in p. 51 of W. Rudin. Real and Complex
Analysis.pdf.
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3. Read the definition 3.16 of C0(X) and theorem 3.17 in p. 83 of W. Rudin.
Real and Complex Analysis.pdf. Observe that for X = K, Cc(K) = C0(K) =
C(K) = Cb(K).

4. Read the definitions in pp. 129 and 130 of W. Rudin. Real and Complex
Analysis.pdf (the introduction of chapter 6), theorem 6.2 in p. 130, theorem 6.4 in
p. 131, the definitions 6.5 and 6.6 in p. 132, the theorems 6.12 in p. 137 and 6.13
in p. 138.

5. Finally, read the definitions in 6.18 and theorem 6.19 in pp. 142 and 143.

6. I recommend to read the later definitions and theorems so that you can
understand the statement of the Riesz representation theorem below (another ver-
sion. . . ):

Theorem 1 (Riesz representation theorem). Let X = Ω or X = K en Rn. Then,
the dual of C0(X) is M(X), where M(X) is the space of all complex-valued mea-
sures µ : BX −→ C, with norm ‖µ‖ = |µ|(X), where |µ| is the total variation of µ
and BX the σ-algebra of all Borel sets in X. In particular, the mapping

M(X) −→ C0(X)∗, µ Λµ,

with

Λµ(f) =

∫
X

f(x) dµ(x), when f ∈ C0(X),

is a linear one-to-one isometry from M(X) onto C0(X)∗.

Examples of non separable normed spaces

We have shown that l∞ and L∞(0, 1) are non separable. Generally, neither
L∞(K) or L∞(Ω) are separable. The later can be verified with similar reasonings.
On the contrary, lp, Lp(0, 1), Lp(K) and Lp(Ω), 1 ≤ p < +∞, are all separable.
l∞ and L∞(0, 1) are non separable because the families

{x ∈ l∞ : xn = 0 o 1, for all n ≥ 1} ⊂ l∞ and {χ(0,a) : 0 < a < 1} ⊂ L∞(0, 1),

have both cardinal c and the distance between two distinct elements within each
family in l∞ and L∞(0, 1) is always greater or equal than 1.

Other non separable Banach space is Cα([0, 1]), 0 < α ≤ 1, the space of Hölder
continuous functions with exponent α in [0, 1], with norm

‖f‖ = ‖f‖L∞([0,1]) + sup
t6=s

|f(t)− f(s)|
|t− s|α

.

The family of functions {fa : 0 < a ≤ 1} ⊂ Cα([0, 1]) with

fa(x) = max {0, x− a}α,

has cardinal number c and ‖fa − fb‖ ≥ 1, when a 6= b, because in such case

| (fa − fb) (b)− (fa − fb) (a)|
|b− a|α

= 1,

when a < b.
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Other interesting results on Functional Analysis we sketched out during
the lectures:

Reflexive spaces

When (X, ‖ · ‖) is a norm space, the mapping

(0.1) i : X −→ X∗∗/x ix, with ix(Λ) = Λ(x), for Λ ∈ X∗,
is linear and continuos. The Hahn-Banach theorem shows that it is a one-to-one
isometry from X onto its image inside X∗∗ i.e.

(0.2) ‖x‖X = ‖ix‖X∗∗ , for all x ∈ X.
To verify (0.2), recall that

‖ix‖X∗∗ = sup {|ix(Λ)| : Λ ∈ X∗, ‖Λ‖ ≤ 1}
= sup {|Λ(x)| : Λ ∈ X∗, ‖Λ‖ ≤ 1}.

Definition 1. A Banach space X is called reflexive when the mapping i in (0.1)
is onto; i.e., it is a linear one-to-one and onto isometry between X and X∗∗.

Let H be a Hilbert space. By the Riesz-Fréchet representation theorem, the
mapping ψ : H −→ H∗, y  ψy, with ψy(x) = 〈x, y〉, when x ∈ H, is a linear
conjugate one-to-one and onto mapping . One can then endow H∗ with a Hilbert
space structure by defining in H∗ ×H∗, the dot product

(0.3) 〈ψy1 , ψy2〉H∗ = 〈y2, y1〉, when ψy1 , ψy2 ∈ H∗.
Observe that this product yields the original norm in H∗; i.e.

‖ψy‖ =
√
〈ψy, ψy〉H∗ , when ψy ∈ H∗ .

Analogously, ϕ : H∗ −→ H∗∗, with Λ ϕΛ, where

ϕΛ(ψx) = 〈ψx,Λ〉H∗ , when ψx ∈ H∗,
is a linear conjugate one-to-one and onto mapping. It is easy to verify that i in (0.1)
with X = H is the same a ϕ ◦ ψ. Finally, the composition of two linear conjugate
one-to-one and onto isometries is a linear one-to-one and onto isometry. The later
shows that all Hilbert spaces are all reflexive.

Other examples of reflexive Banach spaces are Lp(X,M, µ), when 1 < p < ∞
and (X,M, µ) is a measure space with a σ-finite measure. This follows from the
Riesz representation theorem for the dual of Lp(X,M, µ); i.e.

Lp(X,M, µ)∗ ∼= Lp
′
(X,M, µ),

the fact that the mapping

Γ : Lp
′
(X,M, µ) −→ Lp(X,M, µ)∗, with g  Γg,

where

Γg(f) =

∫
X

fg dµ,

is a linear conjugate one-to-one and onto mapping and from similar reasonings to
the ones above: use twice the Riesz representation theorem.

The lp spaces, 1 < p <∞ are also reflexive. To check it use the same ideas and
the fact that (lp)

∗ ≈ lp′ , when 1 ≤ p <∞.
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On the contrary, l1 and L1(Ω) are not reflexive because its duals are l∞ and
L∞(Ω) respectively, while the duals of the later are larger than l1 and L1(Ω); i.e.,
the imbeddings i in (0.1) are not onto, when X is either l1 o L1(Ω).

Another example of a non-reflexive Banach space is Cα([0, 1]), when 0 < α ≤ 1.

Definition 2. A sequence {xn} in a Hilbert space X converges weakly to x ∈ X,
when limn→+∞ Λ(xn) = Λ(x), for all Λ in X∗.

Definition 3. A sequence {Λn} in X∗ converges weak-∗ to Λ ∈ X∗, when

lim
n→+∞

Λn(x) = Λ(x), for all x ∈ X∗.

The later convergences are weaker than the corresponding norm convergences;
i.e., if {xn} ({Λn}) converges in norm to x (Λ) in X (X∗), then {xn} ({Λn})
converges weakly (weak-∗) to x (Λ) in X (X∗).

The reciprocal is false: by the Riemann-Lebesgue lemma, the sequence {einx}
converges weakly to zero in Lp([−π, π]), when 1 ≤ p <∞; it also converges weak-∗
to zero in M([−π, π]) = C([−π, π])∗ and in L∞(−π, π) = L1(−π, π)∗, but it does
not converge to zero in these spaces. Observe that

‖einx‖Lp(−π,π) = (2π)
1
p , when 1 ≤ p ≤ ∞

and that the total variation of einx dx in [−π, π] is Lebesgue measure, whose total
variation norm is 2π in M([−π, π]).

Theorem 2 (Banach-Alaoglu theorem for reflexive spaces). Let X be a reflexive
norm space. Then, every bounded sequence {xn} in X has a subsequence {xnk

},
n1 < n2 < · · · < nk < . . . , converging weakly to some x in X; i.e.,

lim
k→+∞

Λ(xnk
) = Λ(x), for all Λ ∈ X∗.

Theorem 3 (Banach-Alaoglu theorem). Let X be a Banach space. Then, every
bounded sequence {Λn} in X∗ has a subsequence {Λnk

}, n1 < n2 < · · · < nk < . . . ,
converging weak-∗ to some Λ in X∗; i.e.,

lim
k→+∞

Λnk
(x) = Λ(x), for all x ∈ X.

Theorem 3 implies theorem 2 because reflexive spaces X are linearly isometric
to X∗∗; i.e., essentially equal to X∗∗.

In particular, Hilbert spaces H are reflexive and when {xn} is a bounded se-
quence in H, there are n1 < n2 < · · · < nk . . . and x in H, such that the subse-
quence {xnk

} verifies

lim
k→+∞

〈xnk
, y〉 = 〈x, y〉, for all y ∈ H.

The last two theorems and the last example show that the best posible replace-
ment of the Heine-Borel property for finite dimensional normed spaces within the
context of infinite dimensional Banach spaces are theorems 2 and 3; i.e.: when X
is infinite dimensional, theorems 2 and 3 provide the best that one can say about
the possible convergence of subsequences of a bounded sequences in X∗!

Moreover, most norm spaces are duals or are contained in the dual of some Banach
space. For instance, Lp(Ω)∗ ∼= Lp

′
(Ω), when 1 ≤ p < ∞ and L1(K) & M(K) =

C(K)∗, by the Riesz representation theorem 1.
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You can find information about the Banach-Alaoglu theorem in §3.15, p. 85 of
W. Rudin. Functional Analysis.pdf.

An important characterization of reflexive spaces is the following:

Theorem 4 (Kakutani theorem). A Banach space X is reflexive if and only if the
closed unit ball BX is compact in X for the weak topology in X.

There is a proof of this result in p. 76 of H. Brezis. Functional Analysis, Sobolev
Spaces and Partial Differential Equations.pdf
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