Original

Letter Knowledge and Learning Sequence of Graphemes in Spanish: Precursors of Early Reading

Ana María De la Callea,*, Fernando Guzmán-Simónb, and Eduardo García-Jiménezc

a Departamento de Psicología Evolutiva, Facultad de Ciencias de la Educación, Universidad de Cádiz, Cádiz, Spain
b Departamento de Didáctica de la Lengua y Literatura y Filologías Integradas, Facultad de Ciencias de la Educación, Universidad de Sevilla, Sevilla, Spain
c Departamento de Métodos de Investigación y Diagnóstico en Educación, Facultad de Ciencias de la Educación, Universidad de Sevilla, Sevilla, Spain

\section*{Abstract}

The current article addresses a research on the predictive value of knowing the letters within the initial reading performance. Recent studies have shown a strong link between the knowledge of letters at early ages and the decoding processes. Our study deepens into the learning process of the Spanish alphabet code, focused on the graphemes, and analyzes the predictive power of knowing letters for the decoding abilities in initial reading. To this end, the research relies on a longitudinal prospective methodology and makes use of standardised instruments (PROLEC-R and BIL) applied to 362 students aged 4 and 5. The data obtained are analysed through multiple regression, using structural equation models. Our research outlines the relevance of learning the sequence of graphemes from early ages, differentiating the sequence of learning in Spanish with respect to English language. In Spanish, the learning sequence of the graphemes is independent of the learning sequence of phonemes. Moreover, this article emphasizes the importance of a learning sequence of these letters, in order to foresee the development of the decoding abilities. This study concludes that the early educational practices that take into account the letters name and phoneme, as well as the concrete sequence in graphemes learning, optimise the reading performance of Spanish speaking children.

© 2017 Universidad de País Vasco. Published by Elsevier España, S.L.U. All rights reserved.

El conocimiento de las grafías y la secuencia de aprendizaje de los grafemas en español: Precursores de la lectura temprana

\section*{Resumen}

Este artículo aborda una investigación sobre el valor predictivo del conocimiento de las grafías para el rendimiento lector. Los estudios precedentes han mostrado una fuerte relación entre el conocimiento de las grafías en edades tempranas y los procesos de decodificación. Nuestro estudio indaga sobre el proceso de aprendizaje del código alfabético español centrado en los grafemas y analiza el poder predictivo del conocimiento de las grafías para las habilidades de decodificación en la lectura inicial. Para ello, se apoya en una metodología longitudinal prospectiva y en el uso de instrumentos estandarizados (PROLEC-R y BIL) aplicado a 362 alumnos y alumnas de 4 y 5 años. Los datos obtenidos se analizan mediante regresión múltiple, utilizando modelos de ecuaciones estructurales. Nuestra investigación subraya la relevancia de la secuencia de aprendizaje de los grafemas en edades tempranas, diferenciándose la secuencia de aprendizaje en español con respecto a la lengua inglesa. En español, la secuencia de aprendizaje de los grafemas es independiente de la secuencia de aprendizaje de los fonemas. Asimismo, este artículo subraya la importancia de una secuencia de aprendizaje de estas grafías para predecir el desarrollo de las habilidades de decodificación. Este estudio concluye que las prácticas educativas tempranas que consideran el nombre y fonema de las grafías y la secuencia determinada en el aprendizaje de los grafemas optimizan el rendimiento lector de los niños y niñas de lengua española.

© 2017 Universidad de País Vasco. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

\section*{Palabras clave:}
Grafías
Precursores
Lectura temprana
Rendimiento lector
Modelo de ecuaciones estructurales
Introduction

Letter knowledge is important for learning the alphabet and implies the discovery of the rules relating phonemes to graphemes. Letters represent the minimal units of sound of a language (phonemes) with orthographic signs termed graphemes (Perry, Ziegler, & Zorzi, 2013). Graphemes are symbols perceptually determined by orientation and shape, which enables the reader to visually discriminate them (Lorenzo, 2001). Therefore, attentional skills are predominant in letter knowledge (Helal & Weil-Barais, 2015).

The mastery of grapheme/phoneme correspondences is key to reading achievement. The explicit instruction of grapheme/phoneme correspondences supports the acquisition of the alphabetic principle (Earle & Sayeski, 2017; Schaars, Segers, & Verhoeven, 2017). The systematic use of such correspondences after acquiring the alphabetic principle improves decoding skills. Therefore, letter knowledge is one of the cognitive skills that best predict future reading performance (Hammill, 2004; Huang, Tortorelli, & Invernizzi, 2014; Storch & Whitehurst, 2002).

The precursor nature of letter-name and letter-sound knowledge in early educational stages is regarded as an indicator of reading performance in many studies. Muter, Hulme, Snowling, and Stevenson (2004) evaluated letter knowledge at 4 and 5 years of age in 90 English subjects and its relation to decoding skills for 2 years. The research determined 63% of the variance of decoding skills 1 year after the acquisition of letter-name and letter-sound knowledge. Similarly, Evans, Bell, Shaw, Moretti, and Page (2006) evaluated letter-name and letter-sound knowledge in 149 English-speaking Canadian subjects at 5 years of age and, ten months later, decoding skills. In this case, lower-case letter-name knowledge explained 51% of the variance of reading performance of 1st-year students. Recently, Onochie-Quintanilla, Defior, and Simpson (2017) evaluated letter-name and letter-sound knowledge of 27 upper- and lower-case letters (and the diletters “ch” and “ll”) in 100 Spanish early childhood education students (average age: 5.6 years) and word-reading accuracy in 1st-year primary education students. Their results reveal a lack of predictive value of letter knowledge for subsequent (i.e., months later) word reading.

The cited studies highlight the importance of research on grapheme/phoneme correspondence and its predictive value for later reading development. The findings of Caravolas, Lervág, Defior, Seidlová Málková, and Hulme (2013); Fricke, Szczerbinski, Fox-Boyer, and Stackhouse (2016); Snel, Aarnoutse, Tervel, van Leeuwe, and van der Veld (2016) suggest letter knowledge as an early precursor of reading common to different orthographic systems (English, Spanish, Chinese, German, and Dutch). However, our research considers that grapheme/phoneme correspondences vary according to the alphabetic code because the level of transparency of a language influences alphabet learning (Ziegler et al., 2010). In particular, our research focuses on the predictive value of single-letter knowledge for early reading development in the Spanish alphabet.

Learning sequence of graphemes

A number of studies that address the learning of the English alphabet have developed a learning sequence of letters. The relationship between each single letter and its grapheme facilitates evaluating the knowledge of their associated graphemes by studying single-letter knowledge at early reading stages. Thus, the previously mentioned studies show that the order of letters in the English alphabet and phonological development affects the learning sequence of graphemes (Jones, Clark, & Reutzel, 2013; Justice, Pence, Bowles, & Wiggins, 2006; Treiman, Kessler, & Pollo, 2006).

In particular, Justice et al. (2006) analysed knowledge of the 26 letters of the English alphabet in children between 3 and 5 years of age. Their findings reveal the grapheme learning sequence of the English alphabet based on a frequency analysis of letter-name knowledge. This sequence was determined through graphemes recognised by 50% of the subjects. Justice et al. (2006) also considered the relationship between the learning sequence of graphemes determined in their results and the learning sequence of phonemes determined by Sander (1972). The conclusions of Justice et al. (2006) emphasise the relationship between phonological and graphemic representations. Native English-speaking children first learn graphemes whose corresponding phonemes are acquired earlier in phonological development. The authors term this finding “the hypothesis of the order of consonants”.

Learning sequence of phonemes

Studies on the learning of phonemes drew increasing research attention at the end of the 20th century. These studies analysed the phonetic features of phonemes (such as sonority and the point and mode of articulation) and age in relation to phoneme acquisition, primarily in English (Sander, 1972; Smit, Hand, Freilinger, Berntithal, & Bird, 1990).

Studies by Bosch (2004), Camargo (2006), and Vivar and León (2009) investigated Spanish phonological development. These studies adopted different methods with respect to the subject age ranges they considered and different criteria to determine the learning sequences of phonemes. Regarding the sample, Bosch (1983, 2004) and Vivar and León (2009) analysed the phonological repertoire from 3 years of age, whereas Camargo (2006) examined phonological development from the first months of life. Bosch (1983, 2004) and Vivar and León (2009) also studied the learning of phonemes up to 6 years. However, Camargo (2006) established the last phase in the learning of phonemes from 3 years of age. Regarding their results, the research by Bosch (1983, 2004) describes the acquisition of phonemic inventory between 3 and 7 years of age, classifying phonemes according to success rates in average-age groups (3 years, 4 years, 5 years, 6 years, and 7 years). Camargo (2006) classifies phoneme learning into 4 groups between 0 and 3 years. Finally, Vivar and León (2009) determine 5 groups in phoneme learning that range from 3 years to 5 years and 11 months.

The groups delimited by the different models implicitly define the learning sequence of phonemes, and the data analysis by these authors suggests discrepancies in data collection. More specifically, Bosch (1983, 2004) considered the position of phonemes within syllables in direct, inverse, or mixed position. In contrast, Camargo (2006) studied the position of phonemes within words (initial, middle, or final). Vivar and León (2009) excluded these criteria in their analysis.

Table 1 compares the phoneme learning sequences proposed by the previously mentioned authors. Phonemes are allocated to different groups when they are learned in any syllable or word position. Thus, the clusters of the cited models are comparable because there is a tendency to learn certain phonemes before others. However, the phoneme learning sequences in the different studies are not identical.

Our research on the Spanish alphabet

Our study analyses the relationships between single-letter names, phonemes, and their associated graphemes in the process of learning the Spanish alphabet. In addition, we investigate single-letter knowledge as a precursor of reading performance. Based on the
Table 1
Comparison of the learning of phonemes in Spanish according to the models of Bosch (1983, 2004), Camargo (2006), and Vivar and León (2009)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>{m, n, p, b, l, r, l, s, k}</td>
<td>{p, b, l, m, t, k, g, ll, k}</td>
<td>{p, m, t}</td>
</tr>
<tr>
<td>Group 2</td>
<td>{l, d, y}</td>
<td>{l, d, x, s, t, l, k}</td>
<td>{l, s}</td>
</tr>
<tr>
<td>Group 3</td>
<td>{s}</td>
<td>{l, r}</td>
<td>{l, k}</td>
</tr>
<tr>
<td>Group 4</td>
<td>{s, s}</td>
<td>–</td>
<td>{l, k}</td>
</tr>
<tr>
<td>Group 5</td>
<td>–</td>
<td>–</td>
<td>{l, k}</td>
</tr>
<tr>
<td>Group 6</td>
<td>–</td>
<td>–</td>
<td>{l, k}</td>
</tr>
</tbody>
</table>

Table 2
Cohorts of the sample

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Early childhood education at age 4 (4:0–5:4)</th>
<th>Early childhood education at age 5 (5:0–6:4)</th>
<th>1st Grade (6:0–6:10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>180 (t₁)</td>
<td>180 (t₁)</td>
<td>182 (t₂)</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>180 (t₁)</td>
<td>182 (t₁)</td>
<td>182 (t₂)</td>
</tr>
</tbody>
</table>

Literature and our understanding of the issue, we seek to answer the following questions:

1. Is it possible to define a learning sequence of the Spanish alphabet focused on graphemes?
2. Is there a relationship between the grapheme learning sequence and the phoneme learning sequence in Spanish?
3. What predictive value does letter knowledge have for early reading performance?

To answer these questions, our study examines the single-letter knowledge (i.e., associated with a single grapheme) of children 4 and 5 years of age and its predictive value for decoding skills in early reading achievement. First, it is necessary to specify the grapheme learning sequence in Spanish based on letter knowledge. Subsequently, the phoneme learning sequences proposed by Bosch (1983, 2004), Camargo (2006), and Vivar and León (2009) are compared with the grapheme learning sequence determined in our study. Finally, the predictive value of letter knowledge is analysed as criterion variable for decoding skills (i.e., a dependent variable).

Our research focuses on the process of learning graphemes, the relation of that knowledge to later reading performance, and on clarifying how the Spanish alphabet is learned. The distinctive character of this research compared to the studies of Evans et al. (2006), Muter et al. (2004), and Onochie-Quintanilla et al. (2017) lies in its delimitation of the learning sequence of graphemes in Spanish and its comparison with phonological development.

Method

Participants

The study involved 362 students enrolled in three schools in the province of Cádiz. These schools were selected because they have the same socio-economic indicator (SEI) and similar characteristics. That is, they are public schools of childhood and primary education under the same regulations with experienced teaching staffs. Special educational needs were considered exclusion criteria for participation in the study. In addition, student selection required the informed consent of the students’ parents. This study follows the regulations for social sciences of the Research Ethical Committees at the universities of Cádiz and Seville.

The participants were grouped into cohorts. Each cohort was individually evaluated at two different time points (t₁ and t₂). The first cohort consisted of 180 early childhood education students who were 4 years of age (mean age = 4.7; 45.6% female), and the second cohort consisted of 182 early childhood education students who were 5 years of age (mean age = 5.7; 48.6% girls) (Table 2).

Regarding the assessment timeline, t₁ corresponds to the second trimester of the school year, when letter knowledge was measured, and t₂ corresponds to the beginning of the first trimester of the following school year (6 months after t₁), when decoding skills were measured.

Instruments

At the first time point (t₁), letter knowledge subtests of two instruments were administered.

1. Letter knowledge subtest of the Start Reading Battery (BIL 3–6) (Sellés, Martínez, & Vidal-Abarca, 2010). The authors determined a Cronbach’s alpha coefficient of .97 for this subtest, which tests knowledge of the five lower-case vowels. In the current study, Cronbach’s alpha (α) is .77. McDonald’s omega (Ω) is .83, and the average variance extracted (AVE) is .50.

2. Letter recognition subtest of the Reading Processes Assessment Battery (PROLEC-R) (Cuetos, Rodríguez, Ruano, & Arribas, 2007). For this subtest, the authors found a Cronbach’s alpha of .49, which was exceeded in our measurements (α = .76). This sub-test measures knowledge of 20 lower-case letters. However, our study considers the correctness of the consonants (maximum score = 19). The value of Ω in our study is .92, while the AVE is .41.

At the second time point (t₂), the word-reading subtest (s₁) and pseudoword-reading subtest (s₂) of PROLEC-R were administered. The authors determined a Cronbach’s alpha of .74 for s₁ and .68 for s₂. These subtests consist of reading 40 words and 40 pseudowords, both lower case. Factor analysis of the total scores of these sub-tests using the main components extraction method determined the reading accuracy index (one component; s₁ = .994 and s₂ = .994). The Cronbach’s alpha in our measurements for reading accuracy is .93. The value of Ω is .99, while the AVE is .98.

Procedure

Assessments were performed by one researcher in a private space under appropriate environmental conditions. Because all participants were individually assessed in two different sessions (session t₁ and session t₂), the assessments were performed over several months. Session t₁ measured the knowledge of 24 of the 30 letters of the Spanish alphabet, corresponding to single letters associated with a single grapheme (except “h”, “k”, and “w”). We chose to assess lower-case letter recognition because these letters
appear more frequently in texts (Jones & Mewhort, 2004). BIL and PROLEC-R batteries facilitate using a larger number of evaluated items with respect to single vowels and consonant letters of the Spanish alphabet. The response was considered correct in letter recognition if the child identified the letter name or phoneme, or the phoneme only in the syllable phonological structure. The last criterion was considered because phoneme identification in syllable structure is easier to discriminate and produce at these ages by Spanish subjects (Defior & Serrano, 2014). Session t2 measured lower-case word and pseudoword decoding skills by PROLEC-R. The selection of the same instrument reduces the effects of calligraphy in the recognition of the perceptual characteristics of graphemes.

Data analysis

To answer the research questions, different types of analysis were developed using SPSS Amos version 23. Inferential data analysis required non-parametric tests because not all assumptions of normality were met. First, two-stage cluster analysis was performed by dichotomising the data (1 = error, 2 = success). From this analysis, possible significant differences between age groups were established by classifying the subjects based on the results obtained for the recognition of each letter. Second, the letters that differentiated the subjects according to age were delimited by discriminant analysis supported by the stepwise inclusion method.

To determine letter knowledge accuracy and the sequence in which the associated graphemes are learned, frequency analysis was performed for the group of 4-year-olds, the group of 5-year-olds, and for both groups together. Then, letters were grouped according to frequency intervals (quintiles), which enabled the sequence of grapheme knowledge accuracy to be determined. Graphemes were considered to be known by the age groups when recognised by 50% of the member children (Justice et al., 2006). To confirm the grapheme learning sequence, derived from frequency analysis, a hierarchical cluster was created using Ward’s method and the squared Euclidean distance. Next, a comparison between the grapheme learning sequence and the phoneme learning sequence was performed based on the Bosch (1983, 2004), Camargo (2006), and Vivar and León (2009) models. Finally, we analysed the relationship between letter knowledge in early childhood and decoding skills in early reading achievement using structural equation modelling.

Results

Alphabet learning focused on graphemes

Two-stage cluster analysis identified two different sequences in letter knowledge according to age group. Letter knowledge—assessed with 24 single letters—correctly classified 80.4% of the sample under the criterion of error or success according to age group (Table 3). Cluster 1 included the sequence of the 4-year-old students (70.9%), and cluster 2 included that of the 5-year-old students (90%).

Discriminant analysis enabled letter classification according to the age group of the participants. Canonical discriminant functions exhibited the following values: eigenvalue = 1.323, canonical correlation coefficient = .755, Wilks’s lambda = .430 (p = .001). The value of the discriminant function was 1147 for the 4-year olds and the opposite for the 5-year olds (−1147). Figure 1 shows the structure matrix values, which indicate the weight of each grapheme when age acts as a discriminant function in letter knowledge. According to age group, the graphemes that best discriminate subjects are those associated with ten letters: “t”, “n”, “d”, “m”, “h”, “r”, “a”, “y”, “u”, and “j”).

Subsequently, we analysed the extent to which letter knowledge reflects the grapheme learning sequence in the children of an age group. Table 4 shows the frequency distribution of letter knowledge with five groups in grapheme learning. Because the differences between the highest frequencies of graphemes in different quintiles were greater than the group interval (20%), the assignment of graphemes to each group is justified. Children of different age groups displayed at least consolidated learning of recognised graphemes in the first two groups (≥50%).

The frequency distribution results were confirmed from the results of the hierarchical cluster analysis. The dendogram shows letter knowledge at 4 and 5 years of age, and the graphemes are classified into 4 main groups according to distance (Figure 2).

Table 5 shows that the distance analysis of letter pairs identifies the learning sequence of graphemes in four groups. Grapheme grouping by distance analysis maintains the sequence determined by the frequency analysis but exhibits better accuracy by grouping the graphemes in four rather than five groups. Thus, distance analysis definitively classified the graphemes into four groups.

Letter knowledge and decoding skills

First-year primary education students (i.e., 5-year-old early childhood education students at t₁) had greater decoding skills than the 4-year-old students (4-year-old early childhood education students at t₁). The average of words and pseudowords correctly read by the 5-year-old students was 3 of 80 words, while the first-year primary education students read 50 of 80 words. Decoding skills increased significantly with age (Table 6).

Word and pseudoword decoding skills in 5-year-old early childhood education students and first-year primary education students were determined by prior letter knowledge (6 months earlier). Structural equation modelling was used to determine the relationship between letter knowledge at 4 and 5 years of age and decoding skills in early reading achievement. A first model considered the predictive value of all letters for reading accuracy at 5 and 6 years
and achieved unacceptable goodness of fit values: $\chi^2 = 826.291$, $df = 275$, $p = .000$, NFI = .797, TLI = .826, CFI = .853, and RMSEA = .075 (Figure 3).

Figure 4 shows a second model that considered letters with the highest predictive value for decoding. These letters have associated graphemes that are learned in intermediate groups in the learning sequence, delimited according to frequency analysis at 4 and 5 years. Letters with the highest predictive value (except “t” and “m”) were recognised by 40–60% of the participants (Table 4). In this case, good model fit was achieved: $\chi^2 = 36.223$, $df = 26$, $p = .088$, NFI = .979, TLI = .992, CFI = .994, and RMSEA = .033.

Discussion

Learning sequence of graphemes

Our research studies the learning sequence of the Spanish alphabet focused on graphemes. Single-letter knowledge differ-
Table 6
Average results for decoding skills

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD) Early childhood education at age 5 (5:0–6:4)</th>
<th>Mean (SD) Early childhood education at age 5 and 1st Grade (5:0–6:10)</th>
<th>1st Grade (6:0–6:10)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words reading</td>
<td>1.69 (6.62)</td>
<td>13.97 (16.13)</td>
<td>26.33 (13.15)</td>
<td>0–40</td>
</tr>
<tr>
<td>Pseudowords reading</td>
<td>1.30 (5.45)</td>
<td>12.53 (14.70)</td>
<td>28.81 (12.23)</td>
<td>0–40</td>
</tr>
<tr>
<td>Total</td>
<td>2.99 (11.85)</td>
<td>26.50 (30.64)</td>
<td>50.14 (25.04)</td>
<td>0–80</td>
</tr>
</tbody>
</table>

Figure 3. Letter knowledge predictive model for decoding skills.

ences, according to age, suggest different levels of development in learning graphemes. At 4 years, the children exhibited consolidated learning of at least all vowels and five consonants ("s", "z", "c", "p", and "x"). One year later, the 5-year-old children consolidated eight more consonants ("t", "m", "n", "d", "b", "r", "v", and "y"). Letter knowledge delimited grapheme learning in four groups (Table 5). Vowels were among the first-learned graphemes, while the graphemes "q", "i", "g", and "b" were later-learned graphemes. The graphemes "g" and "q" correspond to letters less recognised by their name and sound at 5 years of age in Evans et al. (2006).

The grapheme learning sequence in our research differs from that of studies that consider the order of letters in the alphabetic chain and phonological development to be relevant. The divergences found in the grapheme learning sequence may be caused by the different levels of orthographic transparency among the studied languages (Defior & Serrano, 2014; Ziegler et al., 2010). The studies of Jones et al. (2013), Justice et al. (2006), and
Treiman et al. (2006) consider the order of letters in the alphabetic chain in English to be relevant. However, our results with Spanish subjects are the opposite. The exposure of English-speaking students to the teaching of the alphabet could be greater than that of Spanish students. Alternatively, the exposure to the teaching of the alphabet might not affect the learning sequence of graphemes to the same extent as in English. This last explanation is consistent with the conclusions of Treiman et al. (2006), who noted differences in alphabet knowledge between English and Portuguese children and concluded that American subjects made fewer errors than Portuguese subjects in recognising the first letters of the alphabet. Our study on the Spanish language contradicts research findings by Justice et al. (2006), where grapheme learning is found to be related to phonological development in English. While Justice et al. state that English-speaking children first learn those graphemes whose corresponding phonemes are acquired earlier in the phonological repertoire, our study argues that Spanish-speaking children do not learn graphemes in correspondence to their phonemic development.

Learning sequence of graphemes versus learning sequence of phonemes

This study examined the learning sequence of graphemes in Spanish speakers between 4 and 6 years of age and established its independent character with respect to phonological development. Table 7 compares the learning sequences of graphemes and phonemes according to our results with the models of Bosch (1983, 2004), Camargo (2006), and Vivar and León (2009). For example, the grapheme “s” is learned first. However, according to Bosch (1983, 2004) and Camargo (2006), and Vivar and León (2009), the phoneme /s/ is acquired later by the child. In addition, the grapheme “b” is the last to be learned, although the phoneme /b/ is assimilated early (Bosch, 1983, 2004; Vivar & León, 2009).

The learning sequence of graphemes differs from the learning sequence of phonemes in the models of Bosch (1983, 2004), Camargo (2006), and Vivar and León (2009). The age of the participants enables us to compare our grapheme learning sequence with the phonological repertoire of children between 3 and 6 years of age (Vivar & León, 2009) and to state that the grapheme learning sequence in Spanish is not based on phonological development.

Letter knowledge and decoding skills

Letter knowledge in early childhood influences later reading performance, as verified in our predictive model (Figure 3). Our study confirms that letter-name and letter-phoneme knowledge is a good precursor of reading performance in early reading achievement, which is also confirmed by Evans et al. (2006) and Muter et al. (2004). The results of our analysis of the Spanish language enable us to establish a causal relationship between letter knowledge in early childhood and the development of decoding skills in early reading achievement. Knowledge of the graphemes “t”, “t”, “n”, “r”, “j”, “ñ”, “d”, and “m” at 4 and 5 years explains 83% of the variance of decoding skills 6 months later. The results of our study reveal that these

<table>
<thead>
<tr>
<th>Table 7</th>
<th>Comparison between learning sequence development of graphemes and phonemes according to our results and the models of Bosch (1983, 2004), Camargo (2006), and Vivar and León (2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence development of graphemes</td>
<td>Sequence development of phonemes</td>
</tr>
<tr>
<td>Group 1</td>
<td>“s”, “p”</td>
</tr>
<tr>
<td>Group 2</td>
<td>“c”, “x”, “m”, “y”, “s”</td>
</tr>
<tr>
<td>Group 3</td>
<td>“t”, “j”, “m”, “b”</td>
</tr>
<tr>
<td>Group 4</td>
<td>“q”, “t”, “g”, “b”</td>
</tr>
<tr>
<td>Group 5</td>
<td>–</td>
</tr>
<tr>
<td>Group 6</td>
<td>–</td>
</tr>
</tbody>
</table>
graphemes have the highest predictive value and (except “I” and “n”) are learned by 40–60% of the subjects. This result is consistent with the criterion (50%) established by Justice et al. (2006) to delimit the grapheme learning sequence. The correlation between errors in the knowledge of the letters “I” and “J” suggest they are related by an underlying factor. One possible explanation is that these letters are more difficult to discriminate orthographically. Huang and Invernizzi (2012) showed that the letters “b”, “d”, “p”, and “q” are 8% more likely to be incorrectly named than less visually confusing letters.

The predictive value of decoding skills for reading achievement lies not only in letter knowledge but also in learning a given sequence of graphemes. The studies of Evans et al. (2006) and Muter et al. (2004) consider the predictive value of the 26 letters of the English alphabet for later decoding skills. Knowledge of all letters explained 51% and 63% of the variance of decoding skills. In addition, the study of Onocio-Quintanilla et al. (2017) does not consider the predictive value of the 27 single letters and two diliters of the Spanish alphabet for the variance of later decoding skills. However, our study considers the predictive value of several letters and can explain a greater amount of variance (83%). Letter knowledge is a better precursor when letters are considered according to the learning sequence of graphemes, that is, by considering graphemes that have been learned in approximately half of the cases.

Our study confirms that decoding skills improve when subjects acquire the alphabetic principle (Huang et al., 2014). Similarly, these findings reaffirm that the lack of letter knowledge, which must be acquired in correspondence with the developmental stage of the subject, is a risk factor for reading achievement (Hammill, 2004; Storch & Whitehurst, 2002). According to this study, Spanish-speaking children consolidate graphemes following a learning sequence independent of phonological development. In addition, letter knowledge in early childhood, in correspondence with the grapheme learning sequence, is a good precursor of later reading performance. Therefore, educational strategies in the teaching of the Spanish alphabet optimise early reading performance when they incorporate letter names, phonemes, and the learning sequence of graphemes in learning. As a result, this study may represent the beginning of a new line of research in the learning of the Spanish alphabet focused on graphemes because of the importance of the grapheme learning sequence for reading attainment.

Limitations and lines of future research

One limitation of our study is that the perceptual characteristics of graphemes and their relation with the cognitive capacity of the studied subjects were not expressly considered, which should be the object of future research.

Another limitation of this research is the lack of assessment of the single letters “h”, “k”, and “w”. In addition, assessing letter knowledge should be performed in smaller age intervals than those considered here to more precisely delimit the learning sequence of graphemes in Spanish.

Finally, to perform a comparative study under the same age criterion, our research requires an analysis of the grapheme repertoire at earlier and later ages. This analysis would facilitate a more comprehensive comparison of our results with the models developed by Bosch (1983, 2004) and Camargo (2006). In addition, future research should investigate the methodological approach and contextual factors that influence grapheme learning in Spanish and the predictive value of letter knowledge as a precursor of reading performance over time through longitudinal tracking.

References

