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In lock-in �modulated� thermography the lateral thermal diffusivity can be obtained from the slope
of the linear relation between the phase of the surface temperature and the distance to the heating
spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the
thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper,
we present a complete theoretical model to calculate the surface temperature of filaments heated by
a focused and modulated laser beam. All heat losses have been included: conduction to the gas,
convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the
gas has been identified as the most disturbing effect preventing from the direct use of the slope
method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope
method combining amplitude and phase can be used to obtain the accurate diffusivity value.
Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On
the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity,
which verifies the in-parallel thermal resistor model. As an application, the slope method has been
used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal
properties. © 2010 American Institute of Physics. �doi:10.1063/1.3309328�

I. INTRODUCTION

Lock-in thermography consists in illuminating the
sample by an intensity modulated light beam and detecting
the oscillating component of the temperature rise by means
of an infrared �IR� video camera connected to a lock-in
module.1 Lock-in thermography has been broadly used to
measure the thermal diffusivity �D� of a wide variety of ma-
terials. In a typical setup, a modulated laser beam is focused
onto the sample surface while the IR camera records the
surface temperature. Under ideal conditions �absence of heat
losses and absence of diffraction effects�, for a given modu-
lation frequency �f�, both the natural logarithm of the ampli-

tude of the oscillating temperature, Ln�T̃�,2 and its phase ���
depend linearly on the radial distance to the heating spot,
with the same slope given by m=−��f /D, from which the
thermal diffusivity can be obtained �the so-called slope
method�.3,4 This simple method has been successfully ap-
plied to good thermal conductors. However, it fails when
dealing with poor thermal conductors �e.g., polymers, com-
posites, biological samples, etc.�. Actually, at medium and
high frequencies the diffraction of the IR radiation crossing
the lens of the camera increases the slope m leading to an
overestimation of the thermal diffusivity.5 On the other hand,
at low frequencies the effect of heat losses increases the
slope m producing also an overestimation of D. This effect is
especially disturbing for thin films or thin filaments. For in-
stance, the thermal diffusivity of a 25 �m thick polyimide

film was found to be 1.12 mm2 /s, which is very much
higher than the typical values of polymers
�0.1–0.2 mm2 /s�.6 In the same way, thermal diffusivity val-
ues of human hair in the range 2–4 mm2 /s, an anomalously
high value for a biological sample, have been reported.7

Recently, a complete model has been developed to in-
clude the effect of heat losses in the surface temperature of
thin plates.8,9 According to this model, heat conduction to the
surrounding gas has been identified as the main mechanism
responsible for the inaccuracy of the slope method. It has
been demonstrated that by keeping the sample in vacuum
while using low frequencies to avoid diffraction, the slope
method combining amplitude and phase allows to retrieve
the accurate value of the thermal diffusivity of thin plates.

In this paper, we present an extension of those previous
works to filaments. First, we develop the theoretical model
proposed by Barkyoumb and Land10 to calculate the surface
temperature of filaments by including all heat losses �con-
duction to the gas, convection, and radiation�. Monofila-
ments as well as coated wires have been studied. As in the
case of thin plates, conduction to the gas has been identified
as the most disturbing effect preventing from the direct use
of the slope method to measure the thermal diffusivity. Con-
sequently, by keeping the sample in vacuum the slope
method can be used to obtain the accurate D value. Measure-
ments performed in a wide variety of filaments confirm the
validity of the conclusion. On the other hand, in the case of
coated wires, the effective thermal diffusivity given by the
slope method verifies the in-parallel thermal resistor model.
Accordingly, the slope method has been used to retrieve the
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thermal conductivity of thin tubes by filling them with a
liquid of known thermal properties, as water.

II. THEORY

In this section we calculate the oscillating temperature of
an opaque filament illuminated by a laser beam modulated at
a frequency f ��=2�f�. The laser beam is focused by a
cylindrical lens to obtain a line shape with a Gaussian profile
of radius b �at 1 /e2�, perpendicular to the filament. The
power linear density of the laser is Po �W/m�. The geometry
of the problem is shown in Fig. 1�a�. Heat losses by conduc-
tion and convection to the surrounding gas and by radiation
are taken into account. The temperature is obtained by solv-
ing the heat diffusion equation in the filament and in the
surrounding gas which in cylindrical coordinates writes
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where D is the thermal diffusivity and i=g �gas�,s �sample�.
Due to the modulated excitation the temperature can be writ-

ten as T�r ,z ,� , t�= T̃�r ,z ,��ei�t. Accordingly, Eq. �1� re-
duces to
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where q=�i� /D is the thermal wave vector. This equation
can be solved by using the Fourier transform
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Likewise, Eq. �2� can be expressed in terms of its Fou-
rier transform
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where �i
2=qi

2+�2. By using the separation of variables
method, i.e., t�r ,� ,��=R�r ,��	���, Eq. �4� reduces to the
following two equations
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Equation �5a� is the modified Bessel’s differential equa-
tion, whose solutions are the modified Bessel functions:11

In��ir� and Kn��ir�. On the other hand, the solution of Eq.
�5b� is the exponential function ein�, with n�Z.

A. Monofilament

In the case of a homogenous filament of radius a �see
Fig. 1�b��, the oscillating temperature in the filament and in
the surrounding gas can be written as
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Note that in T̃g only Kn appears since T̃g goes to zero as

r increases. On the other hand, in T̃s only In appears since T̃s

must be finite at r=0. An and Bn are constants to be deter-
mined to satisfy the boundary conditions, i.e., temperature
and heat flux continuity at the filament surface
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where K is thermal conductivity and h is the heat transfer
coefficient which accounts for heat losses by convection and
radiation. The last term in Eq. �7b� is the intensity distribu-
tion of the linear Gaussian laser beam at the filament surface.
By substituting Eqs. �6� into Eqs. �7� the constants An and Bn

are determined and the filament and gas temperatures are
obtained
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FIG. 1. �a� Diagram of a filament illuminated by a line laser beam. �a� Cross
section of a monofilament and �b� of a coated wire.
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where H=h /Ks�s, G=Kg�g /Ks�s, and In� and Kn� are the derivatives of In and Kn, respectively. To obtain Eqs. �8� we have used
the Fourier transform of the intensity distribution of the illumination ��Po /4��e−�2b2/8� together with the Fourier expansion of
the function
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At the surface of the filament �r=a� the temperature reduces to
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When the filament radius is much smaller than the ther-
mal diffusion length ��=�D /�f� only the term n=0 contrib-
utes to the temperature. Moreover, using the limiting forms
of the Bessel functions for small arguments �see Eqs. 9.6.7 to
9.6.9 in Ref. 11�, the following approximations hold: Io�z�
�1, Io��z��z /2, Ko�z��−Ln�z�, and Ko��z��−1 /z. Accord-
ingly, the surface temperature for thermally thin filaments,
which are the most interesting ones from a practical point of
view, does not depend on �, and writes
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Analytical solutions of Eq. �10� are found for two special
cases

�a� In the absence of heat losses �G=H=0� and using a
tightly focused laser beam �b→0� the temperature at
surface of the thin filament is given by

T̃s�a,z� �
Po

2�Ksqsa
e−qs�z�, �11�

which represents a plane thermal wave propagating
along the z axis. Under these conditions, both the natu-

ral logarithm of the amplitude, Ln�T̃�, and the phase, �,
of the surface temperature are parallel straight lines
when represented as a function of z, with a slope m


=mLn�T̃�=−��f /Ds�0.5.
�b� If heat conduction to the gas is neglected �G=0� and

using a tightly focused laser beam �b→0� the tempera-
ture at surface of the thin filament is given by

T̃s�a,z� �
Po

2�Ksqs�a
e−qs��z�, �12�

where qs�
2=qs

2+ �2h /Ksa�. This result is similar to that
found for thin slabs6 and filaments.12 According to Eq.

�12�, Ln�T̃� and 
 are linear functions of z, but with
different slopes. However, their product satisfies m


�mLn�T̃�=−�f /Ds, which is the generalization of the
slope method.

To evaluate the effect of heat losses by conduction to the
surrounding gas Eq. �10� must be used, since there is no
simple analytical expression.

B. Two-layer cylinder

In the case of a coated cylinder with an inner layer of
radius a1 and an outer layer of radius a2 �see Fig. 1�c�� sur-
rounded by gas, the oscillating temperature in each layer and
in the surrounding gas can be written as
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Here subscripts 1 and 2 refer to layers 1 and 2, respec-

tively. Note that in T̃2 both Kn and In must be included.
Constants An, Bn, Cn, and Dn are determined from the fol-
lowing boundary conditions
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An analytical solution can be found for the surface tem-
perature of the coated cylinder under the following assump-
tions: �a� the cylinder is thermally thin, �b� the conduction to
the air is neglected �G=0�, and �c� the laser beam is tightly
focused �b→0�

T̃2�a2,z� �
Po

2�K�q��a2
e−q���z�, �15�

where q��
2= �i� /D��+ �2h /K�a2�, K� =K1v1+K2v2, D�

=K� / ��c�ef f, and ��c�ef f = �K1 /D1�v1+ �K2 /D2�v2. Here v1

= �a1
2 /a2

2� and v2= �a2
2−a1

2� /a2
2 are the volume fraction of lay-

ers 1 and 2, respectively.
By comparing Eq. �15� with Eq. �12� it can be concluded

that the two-layer filament behaves as a monofilament with
effective thermal conductivity �K�� and thermal diffusivity
�D��, which follow the in-parallel thermal resistor model.13

In the particular case of a thin tube the inner core is
empty, i.e., K1=0, and Eq. �15� reduces to

T̃2�a2,z� �
Po

2�K2q2�a�
e−q2��z�, �16�

where q2�
2= �i� /D2�+ �2h /K2a�� and a�= �a2

2−a1
2� /a2. By

comparing this expression with Eq. �12� it can be stated that
the surface temperature of a thin tube behaves as of that a
solid one of the same thermal properties but with an equiva-
lent radius a�.

III. NUMERICAL CALCULATIONS

We focus our interest on poor thermal conductive fila-
ments since their thermal diffusivity is more difficult to mea-
sure accurately, as explained in the introduction. According
to Eq. �10� we have simulated the lateral dependence of

Ln�T̃� and � for a polymeric monofilament of 60 �m of
diameter. Its thermal properties are Ds=0.15 mm2 /s and
Ks=0.2 Wm−1 K−1, while the thermal properties of the sur-
rounding air are Dg=22 mm2 /s and Kg=0.026 Wm−1 K−1.
Calculations have been performed with realistic experimen-
tal data: an exciting beam radius of b=50 �m, and a low
modulation frequency of f =0.1 Hz, in order to avoid the
influence of diffraction of the IR radiation. The continuous

lines in Fig. 2 show the lateral behavior of Ln�T̃� and � in
the absence of heat losses �G=H=0�. As can be seen, far

away from the heating spot, both are parallel straight lines
from whose slope m the thermal diffusivity can be obtained
m�=mLn�T�=−��f /Ds�0.5, in agreement with Eq. �11�. The
dashed lines in Fig. 2 are the simulations for the filament
kept in vacuum �G=0�. In these conditions, only heat losses
by radiation take place. Simulations have been performed
with hrad=6 Wm−2 K−1, which is the highest value of h at
room temperature, according to the Stefan–Boltzmann law.9

In this case, the parallelism between Ln�T̃� and � has disap-
peared but there is a compensation of the slopes, in such a
way that their product satisfies m��mLn�T̃�=−�f /Ds, in
agreement with Eq. �12�, indicating that the thermal diffusiv-
ity of the filament can be obtained in an easy way using the
slope method. Finally, the dotted lines in Fig. 2 correspond to
the filament surrounded by air. In these conditions, the three
heat loss mechanisms are present. Simulations have been
performed with hrad+conv=25 Wm−2 K−1, an appropriate
value for vertical and slender filaments.9,14 Anyway, it is
worth mentioning that a h change in the range
10–50 Wm−2 K−1, slightly affects the surface temperature.
As can be seen, with the filament in air the linearity of both

Ln�T̃� and � is drastically lost.
Summarizing we can conclude that heat loss by conduc-

tion to the surrounding gas is the most disturbing mechanism
preventing from using the slope method to retrieve the ther-
mal diffusivity of thin filaments. However, by keeping the
filament in vacuum the slope method can be used accurately.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to verify the last conclusion we have used a
lock-in thermography setup to measure the temperature pro-
file of thin filaments heated by a focused and modulated laser
beam. Filaments with very different diffusivity values, from
polymers to metals, have been studied. Measurements have
been performed at room temperature with the sample sur-
rounded by air and with the sample enclosed in a vacuum
chamber. An acousto-optically modulated laser beam �CO-
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FIG. 2. Simulations of the lateral dependence of Ln�T̃� and � of a polymeric
monofilament of 60 �m of diameter according to Eq. �10�. Continuous
lines: Absence of heat losses �G=H=0�. Dashed lines: The filament is kept
in vacuum �G=0�. Dotted lines: The filament is surrounded by air. Data:
Ds=0.15 mm2 /s, Ks=0.2 Wm−1 K−1, Dg=22 mm2 /s, Kg

=0.026 Wm−1 K−1, b=50 �m, and f =0.1 Hz.
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HERENT, model Verdi, �=532 nm� focused onto the
sample surface by a cylindrical lens of 10 cm focal length
has been used to heat the filament. The IR radiation from the
sample surface is captured by an IR camera �CEDIP, model
JADE J550M, 3.6–5.0 �m� provided with a lens of 50 mm
focal length. This lens has a minimum working distance of
23.5 cm, which gives a spatial resolution of 137 �m, i.e.,
each pixel measures the average temperature over a square
on the sample of 137 �m in side. The lock-in software pro-
vided with the camera gives the amplitude and phase of the
oscillating temperature. To improve the signal to noise ratio
we record 4000 images for each experiment. As the noise
level is inversely proportional to the square root of the total
number of images �see p. 32 in Ref. 1�, we obtain a tempera-
ture noise level as low as 1 mK. Measurements were carried
out by heating one hemicylinder of the filament and record-
ing the IR emission from the other hemicylinder. A silicon
window placed in front of the camera lens was used to pre-
vent the laser beam from reaching the camera lens.

To increase at the same time the absorption to the excit-
ing light and the IR emissivity, some filaments �metals, trans-
parent polymers, etc.� were covered by a 100 nm thick
graphite layer. However, the obtained thermal diffusivity was
the same as without the graphite layer in all cases. More
relevant is the effect of the light reflected between the fila-
ment and the focusing lens which acts as a second heating
source, illuminating almost uniformly the whole length of
the filament.15 The effect of this parasitic �modulated� light is
to rise the wings of both amplitude and phase of the surface
temperature, leading to an overestimation of the thermal dif-
fusivity. To overcome this issue we have painted a small
black dot on the filament in order to reduce the reflected
light.

Figure 3 shows the experimental values of the natural
logarithm of the amplitude �dots� and phase �crosses� of the
surface temperature of two monofilaments: �a� a human hair
of 60 �m of diameter measured at f =0.12 Hz and �b� a
stainless steel �AISI-302� wire of 25 �m of diameter mea-
sured at f =0.48 Hz. Measurements were performed in air
and in vacuum. Regarding the measurements performed in

vacuum Ln�T̃� and � are not parallel as predicted by the
theory, due to heat losses by radiation. By using the product

of their slopes the thermal diffusivity of each filament is
obtained: Dhair=0.14 mm2 /s and DAISI-302=3.6 mm2 /s. Re-
garding the measurements performed in air the linearity of

both Ln�T̃� and � is lost and, therefore, the slope method
cannot be applied to retrieve the thermal diffusivity of the
filaments, even in the case of the alloy wire. The continuous
lines are the calculated values of the amplitude and phase of
the surface temperature using Eq. �10� with b=50 �m. The
agreement between experiments and simulations is excellent
indicating the validity of the predictions of the theoretical
model. In Table I, we summarize our measurements of the
thermal diffusivity of several filaments using the slope
method, with the sample kept in vacuum. The agreement
with the literature values is very good, except in the case of
polyether-ether-ketone �PEEK� fibers. As the retrieved value
is independent of the fiber diameter the discrepancy is not
due to heat losses. We think, instead, that this high value of
the thermal diffusivity is related to the 45% crystallinity de-
gree of these fibers, that has been demonstrated to enhance
the thermal diffusivity of polymers.19,20

To verify the ability of the slope method to retrieve the
effective thermal diffusivity of tubes and coated filaments we
have taken data on a commercial hypodermic needle with an
outer diameter of 0.414 mm and an inner diameter of 0.256
mm. We obtained a thermal diffusivity of 3.5 mm2 /s, a typi-
cal value of stainless steel. Then we covered some needles
with different thicknesses of commercially available spray
paint �matt black�, in order to obtain increasing volume frac-
tions of the coating layer: 0.14, 0.24, 0.46, 0.63, and 0.83.
The results of the effective thermal diffusivity with the
samples kept in vacuum are shown by dots in Fig. 4. The
continuous line is the theoretical value of the in-parallel ther-
mal resistor model, using Dneedle=3.5 mm2 /s, Kneedle

=15 Wm−1 K−1, Dpaint=0.2 mm2 /s, and Kpaint

=0.3 Wm−1 K−1, which are the typical values of spray paint.
The agreement between the experimental values and the pre-
diction supports the conclusion that the slope method can be
used to measure the effective thermal diffusivity of coated
filaments.

Lock-in thermography, as all transient experiments, are
powerful tools to measure thermal diffusivity. However, they
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FIG. 3. Experimental values of the natural logarithm of the amplitude �dots�
and phase �crosses� of the surface temperature of two monofilaments: �a� a
human hair of 60 �m of diameter measured at f =0.12 Hz and �b� a stain-
less steel �AISI-302� wire of 25 �m of diameter measured at f =0.48 Hz.
Measurements were performed in air and in vacuum. The solid lines are the
best fittings of the data according to Eq. �10� with b=50 �m, h=25, Dhair

=0.14 mm2 /s, and DAISI-302=3.6 mm2 /s.

TABLE I. Thermal diffusivity of filaments. Measurements performed in
vacuum. The uncertainty is 5%.

Material
Diameter

��m�
D �this work�

�mm2 /s�
D �literaturea�

�mm2 /s�

Cu 50 120 116
Ni 125 19 22
Ti 125 8.8 9.0
AISI-302 125 3.8 3.7–4.0
AISI-302 25 3.6 3.7–4.0
AISI-302 10 3.6 3.7–4.0
Carbon fiber T650/35 7 6.4 8.8
Carbon fiber P100 10 310 325
PEEK 150 0.54 0.19
PEEK 34 0.52 0.19
Human hair 60 0.14 ¯

aReferences 16–18.
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are unable to measure thermal conductivity, unless a refer-
ence is used. As a further application of the slope method, we
have measured the effective thermal diffusivity of a hypoder-
mic needle filled with water in order obtain the thermal con-
ductivity of the needle. As a first steep, the thermal diffusiv-
ity of the empty needle was measured. Then, the effective
thermal diffusivity of the needle filled with water was mea-
sured and the thermal conductivity of the needle was re-
trieved. Two hypodermic needles of different outer and inner
radii were used: �a� a2=0.207 and a1=0.105 mm and �b�
a2=0.157 and a1=0.065 mm. The lateral scans of Ln�T̃� and
� for the thicker needle are shown in Fig. 5. The thermal
diffusivity of both empty needles is the same, 3.6 mm2 /s,
while the effective thermal diffusivities of the needles filled
with water were 2.6 and 2.8 mm2 /s. By using the expression
of the effective thermal diffusivity of a coated cylinder and
using the thermal properties of water �Dwater=0.144 mm2 /s
and Kwater=0.60 Wm−1 K−1�, the thermal conductivity of the
needle was obtained: Kneedle=14 Wm−1 K−1, with an uncer-

tainty of 10%. This value is close to the typical value of the
thermal conductivity of stainless steel. On the other hand, it
is worth noting that the uncertainty depends on the thickness
of the tube wall. The thinner the wall the more accurate the
retrieved thermal conductivity is.

V. SUMMARY AND CONCLUSIONS

In this work, we have calculated the surface temperature
of both solid and coated filaments illuminated by a modu-
lated and tightly focused laser beam. Heat losses by radia-
tion, convection, and conduction to the surrounding gas have
been taken into account. Calculations show that, as in thin
plates, conduction to the surrounding gas is the mechanism
responsible for the lost of linearity observed in the phase �

and in the natural logarithm Ln�T̃� of the surface temperature
when the sample is placed in air. The calculations also dem-
onstrate that when suppressing the surrounding gas �only ra-

diative heat losses are present�, � and Ln�T̃� keep a linear
behavior as a function of the distance to the heating spot. In

this case, the slopes of � and Ln�T̃� are modified with respect
to their values in the absence of heat losses, but their product
only depends on the diffusivity of the material. Accordingly,
we conclude that accurate measurements of the thermal dif-
fusivity can be obtained by placing the samples in a vacuum
chamber. Moreover, we have demonstrated analytically that
the effective diffusivity of coated filaments agrees with the
in-parallel thermal resistor model.

All these conclusions have been validated by performing
lock-in thermography measurements at low frequencies in a
wide set of single and coated filaments, as well as in hollow
and filled thin tubes. From the data obtained by placing the
samples in a vacuum chamber, we have obtained accurate
values of the thermal diffusivity of filaments �from
0.14 mm2 /s in a human hair to 310 mm2 /s in a carbon
fiber� of several diameters, some of them as thin as 7 �m of
diameter. Moreover, the excellent agreement between the full
calculations of the temperature and the experimental data
taken in air confirm that the conduction to the air is the
mechanism responsible for the bending of the surface tem-
perature amplitude and phase. On the other hand, using stain-
less steel hypodermic needles covered with different thick-
nesses of black paint, we have experimentally confirmed that
the effective thermal diffusivity of a coated filament behaves
according to the in-parallel thermal resistor model. Finally,
we have obtained the thermal conductivity of the uncoated
needles by filling them with water.
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FIG. 4. Effective thermal diffusivity of a painted hypodermic needle as a
function of the paint volume fraction. Dots are the experimental data and the
continuous line is the calculated thermal diffusivity using the in-parallel
thermal resistor model, using Dneedle=3.5 mm2 /s, Kneedle=15 Wm−1 K−1,
Dpaint=0.2 mm2 /s, and Kpaint=0.3 Wm−1 K−1.
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FIG. 5. Lateral dependence of Ln�T̃� and � for a hypodermic needle with an
outer diameter of 0.414 mm and an inner diameter of 0.210 mm. Measure-
ments were performed for an empty needle �dots� and for the needle filled
with water �crosses�.
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