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Abstract
In this paper we address a common misconception concerning the thermal
behaviour of matter, namely that the front surface of a very thin plate, uniformly
illuminated by a constant light beam, reaches a higher temperature than the front
surface of a very thick slab made out of the same material. We present analytical
solutions for the temperature rise above the ambient of thin and thick samples,
after a heating lamp is switched on. It is shown that the temperature rise at the
illuminated surface of the thick sample is twice that of the thin plate. However,
the temperature rise of the thin plate is much faster (minutes) than the heating
of the thick one (hours). This explains why our intuition, which learns from
what happens at the very beginning of the process, leads us to the feeling that
the front surface of a thin plate will get warmer than the illuminated surface of
a thick slab, i.e. the above-mentioned misconception.

1. Introduction

Let us start with the following question: If a light beam of constant intensity illuminates
uniformly the surface of a thin plate or of a thick slab of an opaque material, which one will
get warmer? Most physics students (and even physics teachers before thinking twice) would
answer that the surface of a thin plate would reach a higher temperature. This is what intuition
tells us. However, what really happens is the opposite; the front surface of a thick slab will
become warmer. Actually, the temperature rise of a very thick slab is twice that of a very thin
plate. The reason for this is that thermal equilibrium is reached between the inwards light
flux and the outwards heat losses by conduction and convection to the surrounding air, as well
as by radiation. As the thinner plate has two surfaces from which heat can be lost, the final
temperature rise will be smaller. Then, what is the origin of the above misconception? The
reason is that reaching thermal equilibrium takes a long time (hours) while our intuition draws
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Figure 1. Diagram of an opaque plate uniformly illuminated by a light beam.

its conclusions from what happens during the very first seconds, at most minutes, rather than
hours.

The intended reader of this paper is an undergraduate student in physics who has already
passed through first courses of classical thermodynamics and who is familiar with the use of
the Laplace transform to solve differential equations.

The aim of this work is to show, using undergraduate physics and mathematics, that the
temperature of the illuminated surface of a thin plate increases much faster than that of a
very thick slab, although the final temperature is higher for the latter. We present analytical
solutions of the temperature evolution of both a very thick slab and a very thin plate, after
switching on a light lamp. In addition, we show the results of experiments performed using
the equipment available in our educational laboratories, confirming the theoretical predictions.
This paper is intended to serve the pedagogical purpose of using a puzzle question to attract
the attention of physics students to heat propagation. Moreover, the experimental verification
can easily be implemented as a clarifying laboratory demonstration for university students.

2. Theoretical model

Figure 1 shows the diagram for an opaque plate of thickness L uniformly illuminated by a
light beam. The intensity of this light beam is zero for t < 0 and is Io for t > 0 (i.e. a Heaviside
function). To obtain the time evolution of this sample we need to solve the one-dimensional
diffusion equation. In the absence of heat sources the equation is written as [1]

∂2T

∂x2
− 1

D

∂T

∂t
= 0, (1)

where D = K/(ρc) is the thermal diffusivity, K is the thermal conductivity, ρ is the density
and c is the specific heat. Throughout this work T represents the temperature rise above the
ambient. In transient problems it is useful to work in the Laplace space [2]. In this way, the
Laplace transform of the diffusion equation is

d2T̄

dx2
− q2T̄ = 0, (2)

where q2 = s/D, s being the Laplace variable, and T̄ is the Laplace transform of the temperature

T̄ (x, s) =
∫ ∞

0
e−stT (x, t) dt . (3)
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Equation (2) is a very well known differential equation in physics, whose general solution
is written as

T̄ (x, s) = A eqx + B e−qx, (4)

where A and B are constants to be obtained from the boundary conditions, which in our
problem are the heat fluxes at the front and rear surfaces:

�(x = 0) = −K
dT

dx

∣∣∣∣
x=0

= −hf T (x = 0) +

{
0 for t < 0
Io for t > 0

(5a)

�(x = L) = −K
dT

dx

∣∣∣∣
x=L

= hrT (x = L), (5b)

where hT accounts, in a phenomenological way, for heat losses by convection and radiation, hf

and hr being the heat transfer coefficients at the front and rear surfaces, respectively. Heat losses
by conduction to the surrounding gas are negligible due to the very low thermal conductivity
of the air and do not need to be included in the boundary conditions. The Laplace transforms
of equations (5) are

�̄(x = 0) = −K
dT̄

dx

∣∣∣∣
x=0

= −hf T̄ (x = 0) +
Io

s
(6a)

�̄(x = L) = −K
dT̄

dx

∣∣∣∣
x=L

= hr T̄ (x = L), (6b)

where Io/s is the Laplace transform of the illumination (a Heaviside function) [3]. By
substituting equation (4) into equations (6) the Laplace transform of the temperature at any
point of the plate is obtained:

T̄ (x, s) = Io

s

1

Kq

(1 + Hr) eqL e−qx + (1 − Hr) e−qL eqx

(1 + Hf )(1 + Hr) eqL − (1 − Hf )(1 − Hr) e−qL
, (7)

where Hf = hf

Kq
and Hr = hr

Kq
. By applying the inverse Laplace transform to this last

equation the time evolution of the slab temperature can be obtained. Unfortunately there is no
analytical solution for it, so a numerical inversion must be performed, using, for instance, the
Stehfest algorithm [4, 5]. According to the pedagogical aim of this paper we look for analytical
solutions corresponding to the two extreme cases of practical interest for the problem we are
dealing with: the surface temperature of (a) a very thick slab and (b) a very thin plate.

2.1. A very thick sample

If the sample is thick (e−qL ≈ 0), the Laplace transform of the temperature at both surfaces,
where the temperature is usually sensed, is obtained from equation (7) and reduces to

T̄ (x = 0, s) ≈ Io

s

1

Kq

1

(1 + Hf )
= Io

e

1

s
(√

s + hf

e

) , (8a)

T̄ (x = L, s) ≈ 0, (8b)

where e = √
ρcK = K/

√
D is the thermal effusivity [6, 7]. Their inverse Laplace transform

gives1

1 This inverse Laplace transform does not appear in usual tables, but it can be obtained using Mathematica.
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T (x = 0, t) ≈ Io

hf

[
1 − e(hf /e)2t Erfc

(
hf

√
t

e

)]
, (9a)

T (x = L, t) ≈ 0, (9b)

where Erfc is the complementary error function. Equation (9a) indicates that the asymptotic
value of the front surface temperature, Io/hf , depends on the intensity of the light and on the
coefficient of heat losses by convection and radiation. On the other hand, the time evolution of
the surface temperature is governed by the ratio hf /e. Regarding the rear surface temperature,
it remains close to zero.

2.2. A very thin sample

If the sample is thin (e±qL ≈ 1 ± qL), the Laplace transform of temperature at both surfaces
is obtained from equation (7) and is written as

T̄ (x = 0) ≈ T̄ (x = L) ≈ Io

s

1

Kq

1

Hf + Hr + qL
= Io

ρcL

1

s
(√

s + hf +hr

ρcL

) . (10)

Their inverse Laplace transform gives1

T (x = 0, t) ≈ T (x = L, t) ≈ Io

hf + hr

(
1 − e− hf +hr

ρcL
t
)
, (11)

indicating that temperature is the same at both surfaces. In particular, their asymptotic value,
Io/(hf + hr), depends on the intensity of the light and on the coefficient of heat losses by
convection and radiation at the front and at the rear surfaces. On the other hand, the time
evolution of the surface temperature is governed by the ratio (hf + hr)/(ρcL).

2.3. Discussion

By comparing equations (9a) and (11) it is clear that the asymptotic temperature at the front
surface of a thick sample is higher than the corresponding value of a thin plate of the same
material. In fact, for a sample surrounded by air hf ≈ hr and therefore the final front surface
temperature of a very thick sample is actually twice the temperature of the thin sample:
Tthick(x = 0) ≈ 2Tthin(x = 0). On the other hand, using the large argument expansion of the
complementary error function Erfc(z) ≈ e−z2

/(z
√

π) (see equation (7.1.23) in [3]) analytical
expressions of the temperature of a thick sample and of a thin sample in the long time limit
are obtained, respectively:

Tthick(x = 0, t → ∞) ≈ Io

hf

[
1 − e

hf

√
πt

]
(12a)

Tthin(x = 0, t → ∞) ≈ Tthin(x = L, t → ∞) ≈ Io

hf + hr

, (12b)

indicating that the thin sample has already reached the asymptotic final value while the surface
temperature of the thick one is still rising.

In figure 2 we show the front surface temperature rise as a function of time for two
samples made of the same bad thermal conductor (a typical polymer) D = 0.1 mm2 s−1, K =
0.3 W m−1 K−1, hf = hr = 10 W m−2 K−1, illuminated with the same light intensity Io =
100 W m−2, but having different thicknesses: L = 1 mm (plot of equation (9a)) and L =
50 cm (plot of equation (11)). As expected, (a) the asymptotic temperature for the thick
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Figure 2. Calculated temperature rise of the illuminated surface as a function of time for two
samples made of the same polymer, D = 0.1 mm2 s−1, K = 0.3 W m−1 K−1, hf = hr =
10 W m−2 K−1, illuminated with the same light intensity Io = 100 W m−2, but having different
thicknesses: L = 1 mm and L = 50 cm.

sample is twice the corresponding value of the thin sample, but (b) the temperature rise of
the thin plate is much faster than that of the thicker one. In fact, during the first minutes the
temperature of the thin plate remains higher than that of the thicker one. It takes about an hour
for the thick slab to beat the thin sheet and even many days to reach the asymptotic value. This
result can explain the origin of our misconception, since who in the real world (i.e. outside the
lab) waits so long to get the right conclusion?

It is worth mentioning the origin of the value of the heat transfer coefficient, h =
10 W m−2 K−1, that we have used. For a small temperature rise above the ambient
(Tamb ≈ 300 K) the radiative heat transfer is hrad ≈ 4εσTamb

3, where ε is the surface emissivity
and σ is the Stefan–Boltzmann constant [8]. Therefore, for a black sample with an emissivity
close to 1, hrad ≈ 6 W m−2 K−1. On the other hand, for a vertical plate surrounded by air at room
temperature and at room pressure, the convective transfer coefficient is hconv ≈ 1.5(�T/b)0.25,
where �T is the temperature difference between the sample surface and the surrounding air
and b is the plate height [9]. For instance, by taking �T = 10 K and b = 20 cm, then hconv ≈
4 W m−2 K−1. Accordingly, a realistic value of the combined heat transfer coefficient is h =
hconv + hrad ≈ 10 W m−2 K−1.

Finally, the validity of equations (9) and (11) deserves some comments. From numerical
calculations, by comparing the general solution given by the Laplace transform of equation (7)
and the approximation for thin samples given by equation (11), we have found the following
condition for the sample thickness to verify the very thin approximation:

Lthin � 0.02
λK

h
, (13)

where λ is the error (%) in the asymptotic temperature and h = hf = hr. Note that this
expression is independent of D. In contrast, we have not found a simple expression for the
validity of the very thick approximation given by equation (9). However, as an approximate
rule of thumb, we can say that equation (9) is valid if the thickness of the sample is at least
500 times the value given by equation (12): Lthick � 500Lthin. For instance, for the polymer
used in figure 2, assuming h = 10 W m−2 K−1 and accepting an error λ = 2%, the thickness
of a thin sample should be smaller than 1 mm and, for a thick sample, should be larger than
50 cm. In the case of a very good thermal conductor like copper (K = 400 W m−1 K−1), the
limits would be Lthin � 1.5 m and Lthick � 750 m respectively. This indicates that for good
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Figure 3. Calculated temperature rise of the front surface as a function of time for two copper
samples, D = 120 mm2 s−1, K = 400 W m−1 K−1, hf = hr = 10 W m−2 K−1, illuminated with the
same light intensity Io = 100 W m−2, but having different thicknesses: L = 1 mm and L = 50 cm.

thermal conductors (metals, alloys, some ceramics, etc) the thick condition is very difficult to
fulfil. In figure 3 we show the front surface temperature rise for two copper samples (D =
120 mm2 s−1, K = 400 W m−1 K−1, hf = hr = 10 W m−2 K−1) of the same thicknesses as that of
the polymer shown in figure 2, illuminated with the same light intensity Io = 100 W m−2. For
this material even the sample of L = 50 cm is thin, and therefore the final temperature at the
front surface is the same in both cases according to equation (11). However, the temperature
rise of the thinner sample is very much faster than that of the thicker one. As can be seen, the
1 mm thick plate reaches the final temperature when the temperature of the 50 cm slab starts
rising.

Anyway, it is worth mentioning that the question we raised in the introduction only
refers to the front surface temperature, which is the one directly accessible. If we considered
the temperature of the whole sample the answer would be different. A thin sample reaches
a uniform temperature, while the temperature of a thick slab varies in depth: it reaches a
higher temperature than the thin plate at the front surface, decreases exponentially as we go
deeper inside the material and is zero (ambient) at the rear surface. Accordingly, the average
temperature of a thick sample is lower than the temperature of a thin plate.

3. Experimental results and conclusion

To validate the results of the previous section we have prepared two black plasticine samples
of about 10 cm × 10 cm. Their thicknesses are L ≈ 1 mm and L ≈ 10 cm. The thicker one
has been surrounded by a thick thermally isolating layer in order to reduce lateral heat losses
as much as possible. We used a Xe lamp of 150 W as a light source. Its beam was defocused
by means of a spherical lens of 10 cm focal length to illuminate the whole sample surface.
We used an infrared video camera to measure the sample surface temperature as a function of
time. In figure 4 we show the temperature rise of the two plasticine samples as a function of
time after the Xe lamp is switched on. As theoretically predicted the temperature of the thin
plasticine plate rises faster than that of the thick one, and remains warmer for almost 1 h. After
some hours the temperature of the thick sample clearly rises above the thin plate’s temperature,
although the asymptotic value is not reached even after 9 h. As predicted theoretically, some
days would be needed to achieve thermal equilibrium in a thick sample.
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Figure 4. Experimental temperature history of the front surface of two plasticine samples of very
different thicknesses illuminated by a Xe lamp.

Note that in figure 4 the asymptotic value of the 1 mm thick plasticine plate is not
completely flat. This is due to the fact that the lamp driver heats the laboratory, and therefore
this small slope in the asymptotic value of the thin plate accounts for the rise of the ambient
temperature.

We have demonstrated theoretically and verified experimentally that the front surface
of a thick sample reaches a higher equilibrium temperature than a thin one when they are
illuminated by a lamp of constant intensity. Our intuition leads us to draw the opposite and
wrong conclusion because the temperature rise of the thin sheet is very much faster than that of
the thick one, and only after some hours the real asymptotic value is reached. The experiments
we have performed can easily be implemented as automated student demonstrations, which
might clarify the concept of heat losses. We expect this paper to be useful for physics lecturers
to attract the attention of physics students on heat propagation.
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