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Abstract In this study, the thermal quadrupoles method is extended to semitrans-
parent layered solids. Using this method, the surface temperature of semitransparent
multilayered materials is calculated as a function of the optical and thermal properties
of each layer. This result eventually leads to determination of the thermal diffusivity,
thermal resistance, and/or optical absorption coefficient of layered materials using
photothermal techniques. The thermal quadrupoles method is applied to determine
the thermal contact resistance in glass stacks.

Keywords Absorption coefficient · Photothermal radiometry · Thermal diffusivity ·
Thermal quadrupoles

1 Introduction

The thermal quadrupoles method is a simple and compact method that allows calcu-
lation of the surface temperature of multilayered opaque materials if the fluxes at the
surfaces are known [1]. The relation between temperature and heat flux at both surfaces
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of each layer is expressed in a matrix form that contains the thermal and geometrical
properties of the layer. The sample surface temperatures are obtained as a function
of the thermal parameters of each layer by computing the product of matrices repre-
sentative of each layer and, eventually, the corresponding transfer matrices between
layers. This method has been successfully applied to characterize opaque materials
with in-depth varying thermal conductivities, like case hardened steels [2–4].

The aim of this study is to extend the thermal quadrupoles method to calculate the
surface temperature of layered semitransparent materials. It is intended to be applied
to materials with in-depth varying thermal and optical properties, as is the case of par-
tially cured resins [5,6], functionally graded materials [7], and multilayered optical
systems [8]. As an experimental application, we have retrieved the thermal contact
resistance in glass stacks using photothermal radiometry (PTR).

2 Theory

We consider a semitransparent multilayered sample illuminated by a plane light beam
(Fig. 1), modulated at a frequency f (ω = 2π f ). Each layer is characterized by its ther-
mal conductivity (Ki ), thermal diffusivity (Di ), optical absorption coefficient (αi ),
and thickness (Li ). We first relate the temperature and heat flux at the front and back
surfaces of layer i . The one-dimensional heat diffusion equation for each layer is
expressed as

d2Ti

dz2 − q2
i Ti = − Qi

Ki
(1)

where qi = √
iω/Di is the thermal wave vector and Qi = Ii

2 αi e−αi (z−zi ) is the
heat source. Ii is the incident light intensity reaching layer i , which is given by Ii =
I1e−(α1 L1+α2 L2+···+αi−1 Li−1) in the absence of internal reflections. The solution of
Eq. 1 is usually expressed in terms of exponential functions [9]. However, hyperbolic
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Fig. 1 Diagram of a semitransparent multilayered slab
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functions are more convenient when dealing with the thermal quadrupoles method:

Ti (z) = Ai sinh [qi (z − zi )] + Bi cosh [qi (z − zi )] + Ci e
−αi (z−zi ), (2a)

ϕi (z) = −Ki
dTi

dz
= −Ki qi {Ai cosh [qi (z − zi )] + Bi sinh [qi (z − zi )]}

+Ki Ciαi e
−αi (z−zi ), (2b)

where ϕ is the heat flux.
Applying Eq. 2 at the front (zi ) and rear (zi+1) surfaces of layer i , a matrix relation

between temperature and heat flux at both surfaces can be obtained:

(
Ti (zi )

ϕi (zi )

)
=

(
ai bi

ci di

) (
Ti (zi+1) − Xi

ϕi (zi+1) − Yi

)
, (3)

where

ai = di = cosh (qi Li ) , bi = sinh (qi Li )

Ki qi
, ci = Ki qi sinh (qi Li ) ,

Xi = Ci

[
αi

qi
sinh (qi Li ) − cosh (qi Li ) + e−αi Li

]

and Yi = Ci Ki
[
qi sinh (qi Li ) − αi cosh (qi Li ) + αi e−αi Li

]
.

Equation 3 generalizes the equation of an opaque layer (αi → ∞) for which
Xi = Yi = 0 [1].

Equation 3 can be rewritten as

Hi = Mi (Oi − Pi ) (4)

where Hi is the input matrix, Oi is the output matrix, Mi is the thermal matrix, and Pi

is the optical matrix. To obtain a single matrix equation relating the temperature and
heat flux at the front (z = z1 = 0) and rear (z = zN+1 = L) surfaces of the whole
multilayered sample, we need to know the relationship between the temperature and
heat flux at each intermediate boundary. Two possibilities are considered:

(a) If there is perfect thermal contact between the layers, the temperature and heat flux
continuity can be applied: Ti (zi+1) = Ti+1(zi+1) and ϕi (zi+1) = ϕi+1(zi+1),
and therefore Oi = Hi+1. By applying this equation to each layer, we obtain

H1 = Z N ON −
N∑

p=1

Z p Pp, (5)

where Z p = ∏p
i=1 Mi , H1 =

(
T1(0)

ϕ1(0)

)
, and ON =

(
TN (L)

ϕN (L)

)
. If heat

losses are negligible, ϕ1(0) = ϕN (L) = 0.
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(b) A thermal resistance Ri,i+1 is introduced to account for the lack of adher-
ence between layers i and i + 1. This means that the heat flux continuity still
holds but there is a jump in temperature given by Ti (zi+1) = Ti+1(zi+1) +
Ri,i+1ϕi+1(zi+1), and therefore Oi = Wi ,i+1 Hi ,i+1, where Wi,i+1 =(

1 Ri,i+1
0 1

)
. This means that the matrix equation relating temperature and heat

flux at the front (z = 0) and rear (z = L) surfaces is similar to Eq. 5:

H1 = Z ′
N ON −

N∑
p=1

Z ′
p Pp (6)

with Z ′
p = M1W1,2 M2W2,3 M3 . . . Mp−1Wp−1,p Mp.

3 Applications and Discussion

In order to compare experimental results with theoretical predictions, data need to
be normalized so that the frequency dependence of the experimental apparatus is
removed. In this study, we use self-normalization (rear-to-front surface signal ratio)
because it is more convenient than normalization with a reference sample. We have
applied the thermal quadrupoles method to characterize the thermal contact resistance
between layers. Experiments have been performed using a phothermal radiometry
(PTR) setup described in Ref. [10]. In Fig. 2, we show by symbols the self-normalized
PTR signal corresponding to a two-layer sample made of two neutral density filters of
the same thickness, L = 1.04 mm and properties as follows: D = 0.54 mm2 ·s−1, α =
2100 m−1. In order to vary the thermal contact resistance, we have placed a plastic
layer with a centered hole of 2 cm diameter between the two glasses. The thicknesses
of the films were: 0 (no plastic film), 25μm, 50μm, and 75 μm. Two clips were
used to press the system. The continuous lines correspond to the simultaneous fit of

Fig. 2 Modulated PTR
measurements of the
self-normalized temperature as a
function of

√
f for a filter stack

made of two equal neutral
density filters (L = 1.04 mm)
with a holed plastic film as a
barrier. The thickness of the
plastic film is varied: 0 (no
plastic), 25μm, 50μm, and
75μm. The arrows indicate
increasing thicknesses of the
plastic films. Continuous lines
are the fits with Eq. 6
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ln (Tn) and Ψ (Tn) to Eq. 5 with the thermal resistance R as the fitting parameter. As can
be seen, the quality of the fit is good, and the resulting thermal resistances are: (1.05×
10−4, 7.6×10−4, 1.6×10−3, and 2.3×10−3) K ·m2 ·W−1. According to the expres-
sion R = L/Kair, where Kair = 0.026 W · m−1 · K−1, these thermal resistances
correspond to air layers of thickness 2.7μm (no plastic film), 20μm, 41μm, and
60μm, which are slightly below the geometrical values. This underestimation could
be due to a real reduction of the air layer since the clamping decreases the plastic film
thickness. Another source of error is that the multiple reflections of the incident light
are not included in the model. On the other hand, the neutral filters are completely
opaque to wavelengths above 5μm. In order to avoid the effects of the transparency
of the sample to IR wavelengths, a spectral IR filter (5μm to 12μm) has been placed
in front of the detector.

In conclusion, we have extended the thermal quadrupoles method to semitransparent
multilayered structures. As a practical application, the ability of the method to assess
thermal resistances has been validated experimentally by evaluating the air thickness
between two glasses from PTR data. The good agreement between the retrieved air
gap thicknesses and the actual distance between glasses confirms the validity of the
model. These results open the possibility of applying the thermal quadrupoles method
to retrieve in-depth varying optical and thermal properties of heterogeneous samples
like dental resins or functionally graded materials.
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