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In thermal wave physics the surface temperature of a material depends on the thermal diffusivity and
thermal effusivity of the components. Therefore these thermal properties of buried structures are
expected to be retrieved from the measurement of the surface temperature using photothermal
techniques. Then, from the constitutive equations, thermal conductivity and specific heat of the
inclusions can be calculated. In this paper we demonstrate analytically that when the thermal
properties of the inclusions are very different from those of the matrix they are degenerate. Three
kinds of inclusions have been studied: layers, cylinders, and spheres. If the transport thermal
properties of the inclusion are much higher �much lower� than those of the matrix; only its specific
heat �thermal effusivity� can be retrieved. On the other hand, for a gas inclusion only its thermal
conductivity can be determined. Photothermal measurements performed on three calibrated samples
containing buried cylinders confirm the theoretical conclusions. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1946914�

I. INTRODUCTION

Thermal wave physics is based on the generation and
detection of thermal waves in the sample under study. Ther-
mal waves are generated at the surface of an opaque material
because of the absorption of an intensity-modulated light
beam. As they propagate through the material they are scat-
tered by the inclusions that are buried beneath the surface, in
such a way that the surface temperature depends on their
position, shape, and thermal properties. In order to recon-
struct the geometry and thermal properties of the inclusions
the first step is to solve the so-called forward problem, i.e., to
calculate the surface temperature of the sample provided that
the geometrical and thermal properties are known. This has
been already performed for inclusions with simple shapes:
planes, cylinders, and spheres.1–3 The second step requires to
develop an inverse procedure to retrieve the unknown prop-
erties of the inclusions from the knowledge of the surface
temperature, which can be obtained by using some of the
photothermal techniques: infrared radiometry, mirage effect,
photothermal reflectance, etc.4

Two possibilities are found depending on the number of
unknowns to be retrieved. For an infinite number of un-
knowns the inverse problem is ill posed. This means that the
reconstructed properties are extremely sensitive to the start-
ing experimental data. This is the case, for instance, of depth
profiling in hardened steel, where the thermal properties vary
as a function of depth.5 On the contrary, for a finite number
of unknowns the inverse problem is well posed and therefore
the properties can be reconstructed properly. This is the case
of layered structures, for which we are usually interested in
determining the thermal properties of the layers, their depth

and thickness, and the presence of thermal barriers between
layers.6 It is also the case of fiber-reinforced composites for
which we are looking for the thermal properties of fibers and
for the lack of adherence between fibers and matrix. The
same is valid for particulate-reinforced composites. How-
ever, when the thermal properties of the inclusions �layers,
cylinders, or spheres� are very different from those of the
matrix the complete determination of the thermal properties
of the inclusions cannot be performed.

In homogeneous and isotropic materials there are four
thermal properties: specific heat �c�, thermal conductivity
�K�, thermal diffusivity �D�, and thermal effusivity �e�. How-
ever, only two are linearly independent because of the con-
stitutive equations D=K /�c and e=��cK. The specific heat
is the only thermal property required in static experiments,
i.e., when the temperature is independent of position and
time. The thermal conductivity is the only thermal property
required in steady problems, i.e., when the temperature does
not vary with time. However, the temperature distribution in
time-varying experiments depends on two thermal proper-
ties: D and e. This means that when using transient tech-
niques �as is the case of the photothermal techniques� it is
expected to retrieve both D and e, and from them to calculate
�c and K.

In this paper we demonstrate analytically, for three kinds
of inclusions �layers, cylinders, and spheres�, that a degen-
eracy of the thermal properties appears for three extreme
cases: �1� If the transport thermal properties of the inclusions
are much higher than those of the matrix the temperature
distribution only depends on the specific heat of the inclu-
sions, and therefore this is the only thermal property that can
be retrieved; �2� if the transport thermal properties of the
inclusions are much lower than those of the matrix the tem-a�Electronic mail: wupsahea@bi.ehu.es
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perature distribution only depends on the thermal effusivity
of the inclusions, therefore this is the only thermal property
that can be retrieved; and �3� if the inclusions are gases �very
low K, but high D� the temperature distribution only depends
on the thermal conductivity of the gas, which is the only
thermal property that can be retrieved. Photothermal mea-
surements performed on three calibrated samples containing
buried cylinders confirm the theoretical conclusions.

II. THEORY

A. Layered systems

Let us consider an opaque and stratified material made
of n parallel layers �i=1,n� of thickness li, thermal diffusiv-
ity Di, and thermal effusivity ei that is illuminated by a light
beam of intensity I0 modulated at a frequency f ��=2�f�.
We assume that there is no thermal resistance between layers
and that heat losses are negligible. The temperature at the
illuminated surface can be written in an elegant way using
the quadrupole method:1

T =
I0

2

A

C
, �1�

where

�A B

C E
� = �

j=1

n �Aj Bj

Cj Ej
� , �2�

with

Aj = Ej = cosh�qjlj�, Bj =
sinh�qjlj�

ej
�i�

,

�3�
and Cj = ej

�i� sinh�qjlj� .

Here qj =�i� /Dj is the thermal wave vector.
The effect of a thermal resistance �Rth� between layers j

and j+1 is accounted for by inserting in Eq. �2� the follow-
ing matrix between the two adjacent matrices j and j+1:

�1 Rth

0 1
� . �4�

As can be seen the surface temperature depends on the
thermal diffusivity and effusivity of each layer. Therefore, it
seems that these properties can be determined from the mea-
surement of the surface temperature provided that an appro-
priate fitting procedure is used. However, this is not always
possible.

Let us consider a simple three-layer system where layers
1 and 3 are made of the same matrix material and layer 2 is
an inclusion whose thermal properties are to be determined.
If the thermal properties of this layer are very different from
those of the matrix, a degeneracy appears in such a way that
the surface temperature only depends on one of the thermal
properties. Three cases will be considered.

1. Buried layer of high thermal transport properties

In this case K2, D2, and e2 are much higher than those of
the matrix. Since D2 is very high, q2l2→0 and therefore

exp�±q2l2�	1±q2l2. This is valid for 
q2l2
�0.15, with an
error less than 1%. Taking into account that the effusivity can
be rewritten as e=��cK=�c�D, Eqs. �3� can be simplified as

A2 = E2 	 1, B2 	
l2

K2
	 0, and C2 	 i���cl�2, �5�

which clearly indicates that the only thermal property of the
inclusion layer that influences the surface temperature is the
heat capacity through the factor ��cl�2. Therefore neither K2

nor D2 can be determined from the measurement of T but its
ratio.

2. Buried layer of low thermal transport properties

In this case K2, D2, and e2 are much lower than those of
the matrix. Since D2 is very low, q2l2→� and therefore
exp�−q2l2�	0. This is valid for 
q2l2
�7, with an error less
than 1%. Accordingly, Eqs. �3� can be written as

A2 = E2 	
1

2
exp�q2l2�, B2 	

1

2

exp�q2l2�
e2

�i�
,

�6�

and C2 	
1

2
i�e2 exp�q2l2� .

Substituting these values into Eq. �1� we have

T 	
I0

2

�A1A3 + B1C3�e2
�i� + B1A3i�e2

2 + A1C3

�C1A3 + E1C3�e2
�i� + E1A3i�e2

2 + C1C3

, �7�

showing that the only thermal property of the buried layer
that influences the surface temperature is the thermal effusiv-
ity e2.

3. Buried layer of gas

Now K2, e2, and ��c�2 are very low, but the thermal
diffusivity D2 is high, actually similar to that of metals. Con-
sequently, exp�±q2l2�	1±q2l2, and substituting in Eqs. �3�
we obtain

A2 = E2 	 1, B2 	
l2

K2
, and C2 	 i���cl�2 	 0, �8�

indicating that the only thermal property of the inclusion
layer that influences the surface temperature is the thermal
conductivity through the factor �l /K�2.

B. Buried cylinders

Let us now consider an infinite cylinder of radius a bur-
ied at a depth d beneath the surface of an opaque and semi-
infinite material that is illuminated by a light beam of inten-
sity I0 modulated at a frequency f ��=2�f�. The geometry
of the problem is shown in Fig. 1. We take into consideration
that there could be a lack of adherence between the cylinder
and matrix by introducing a thermal contact resistance Rth

between them. On the other hand, we assume that heat losses
are negligible. In the following, indices M and C stand for
matrix and cylinder, respectively. The surface temperature
can be written as2
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T�r,�� =
I0i

2KMqM
eiqM�d−r cos �� + 2 �

m=−�

�

AmHm�qMr�eim�,

�9�

where Hm are the mth order of the Hankel functions of the
first kind. The first term in Eq. �9� represents the incident
plane thermal wave starting at the sample surface, while the
second one accounts for the scattered waves coming out
from the cylinder. Equation �9� requires the knowledge of the
2m+1 constants Am �m=−� ,�� that can be obtained from
the 2m+1 equations given by the boundary conditions at the
cylinder surface �existence of a thermal resistance and heat
flux continuity�:2

Am

1 − Ym
C/Zm

C

Sm
M − Zm

MYm
C/Zm

C + �
n=−�

�

AnHm+n�2qMd� = −
I0i

2KMqM
eiqMdi−m,

�10�

where

Sm
M =

Jm�qMa�
Hm�qMa�

, Zm
M =

Jm� �qMa�
Hm� �qMa�

,

Ym
C =

Jm�qCa� + KCRthJm� �qCa�
Hm�qMa�

, �11�

and Zm
C =

KC

KM

Jm� �qCa�
Hm� �qMa�

,

Jm� and Hm� being the derivatives of the Bessel and Hankel
functions, respectively.

It is worth noting that the contribution of the cylinder to
the surface temperature only appears in the ratio Ym

C /Zm
C that

according to Eqs. �11� can be written as

Ym
C

Zm
C =

KMHm� �qMa�
Hm�qMa� � Jm�qCa�

KCJm� �qCa�
+ Rth , �12�

where the factor inside the parentheses incorporates the in-
fluence of the geometrical and thermal properties of the bur-
ied cylinder. Now we analyze the value of this factor for the
same three extreme cases studies for layered systems.

1. Buried cylinder of high thermal transport
properties

In this case qCa→0 and KC→�. Using the asymptotic
behavior of the Bessel functions and its derivatives7 we ob-
tain

J0�qCa�
KCJ0��qCa�

	 −
2

i���ca�C

and

Jm�qCa�
KCJm� �qCa�

	
a

KC
m

→ 0, if m � 0. �13�

This approach is valid, within an error less than 1%,
provided 
qCa
�0.28. Equation �13� indicates that only the
factor ��ca�C influences the surface temperature. This means
that neither KC nor DC can be determined.

2. Buried cylinder of low thermal transport properties

In this case qCa→�. Using the asymptotic behavior of
the Bessel functions and its derivatives7 we obtain

Jm�qCa�
KCJm� �qCa�

	
1

�1 − i���feC

, ∀ m , �14�

that is valid, within an error less than 1%, provided 
qCa

�35. Therefore the only thermal property of the cylinder
that influences the surface temperature is the effusivity eC.

3. Buried cylinder of gas

In this case qCa→0 and KC→0. Therefore

J0�qCa�
KCJ0��qCa�

	 −
2

i���ca�C
→ − �

and

Jm�qCa�
KCJm� �qCa�

	
a

KC
m

, if m � 0, �15�

indicating that only the factor �a / K̇C� could be calculated.

C. Buried spheres

Finally, we consider a sphere of radius a buried at a
depth d beneath the surface of an opaque and semi-infinite
material that is illuminated by a light beam of intensity I0

modulated at a frequency f ��=2�f�. The geometry of the
problem is shown in Fig. 2. We take into consideration that
there could be a lack of adherence between sphere and ma-
trix by introducing a thermal contact resistance Rth between
them. On the other hand, we assume that heat losses are
negligible. In the following, indices M and S stand for matrix
and sphere, respectively. The surface temperature can be
written as3

FIG. 1. Geometry of a semi-infinite material containing a buried cylinder.
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T�r,�� =
I0i

2KMqM
eiqM�d−r cos ��

+ 2�
m=0

�

Bmhm�qMr�Pm�cos �� , �16�

where hm are the mth order of the spherical Hankel functions
of the first kind and Pm the Legendre functions. The first
term in Eq. �16� represents the incident plane thermal wave
starting at the sample surface, while the second one accounts
for the scattered waves coming out from the sphere. Equa-
tion �16� requires the knowledge of the m+1 constants Bm

�m=0,�� that can be obtained from the m+1 equations
given by the boundary conditions at the sphere surface �ex-
istence of a thermal resistance and heat flux continuity�:3

Bm

1 − Ym
S /Zm

S

Sm
M − Zm

MYm
S /Zm

S + �
n=0

�

�− 1�nBnQ0,m,0n�2d�

= −
I0i

2KMqM
eiqMd�1 + 2m�i−m, �17�

where

Sm
M =

jm�qMa�
hm�qMa�

, Zm
M =

jm� �qMa�
hm� �qMa�

,

�18�

Ym
S =

jm�qSa� + KSRthjm� �qSa�
hm�qMa�

, Zm
S =

KS

KM

jm� �qSa�
hm� �qMa�

,

jm� and hm� being the derivatives of the spherical Bessel and
Hankel functions, respectively.

As in the case of cylinders, the contribution of the sphere
to the surface temperature only appears in the ratio Ym

S /Zm
S ,

that according to Eqs. �18� can be written as

Ym
S

Zm
S =

KMhm� �qMa�
hm�qMa� � jm�qSa�

KSJm� �qSa�
+ Rth , �19�

where the factor inside the parentheses incorporates the in-
fluence of the geometrical and thermal properties of the bur-
ied sphere. Now we analyze the value of this factor for the
same three extreme cases we are dealing with.

1. Buried sphere of high thermal transport properties

In this case qSa→0 and KS→�. Using the asymptotic
behavior of the spherical Bessel functions and its
derivatives7 we obtain

j0�qSa�
KSj0��qSa�

	 −
3

i���ca�S

and

jm�qSa�
KSjm� �qSa�

	
a

KSm
→ 0, if m � 0. �20�

This approach is valid, within an error less than 1%,
provided 
qSa
�0.28. Equation �20� indicates that only the
factor ��ca�S influences the surface temperature. This means
that neither KS nor DS can be determined.

2. Buried sphere of low thermal transport properties

In this case qSa→� except for very small sphere. Using
the asymptotic behavior of the spherical Bessel functions and
its derivatives7 we obtain

jm�qSa�
KSjm� �qSa�

	
1

�1 + i���feS

, �21�

which is valid within an error less than 1%, provided 
qSa

�35. Therefore the only thermal property of the cylinder
that influences the surface temperature is the effusivity eS.

3. Buried sphere of gas

In this case qSa→0 except for very big sphere. There-
fore

j0�qSa�
KSj0��qSa�

	 −
3

i���ca�S
→ − �

and

jm�qSa�
KSjm� �qSa�

	
a

KSm
, if m � 0, �22�

indicating that the only the factor �a /KC� could be calcu-
lated.

Before finishing this section let us remark that the same
conclusions are valid for an unlimited number of cylinders or
spheres embedded in a matrix slab. Moreover, these conclu-
sions are also valid in flash thermography, where the sample
surface is heated by a short duration laser pulse and the sur-
face temperature is recorded as a function of time. Actually,
to convert Eqs. �1�, �9�, and �16� to be used under pulsed
conditions we proceed as follows.8 As a first step i� is re-
placed by −s, the Laplace variable, and I0 /2 by Q, the energy
density of the light pulse, in the expression of the modulated
temperature T��� to obtain the Laplace transform of the so-
lution T�s�. Then, T�t� can be obtained by the inversion of
the Laplace transform, for instance, using the Stehfest
algorithm.9 During this process the approaches for the three
extreme cases we are dealing with remain unchanged, and
therefore the conclusions, too.

FIG. 2. Geometry of a semi-infinite material containing a buried sphere.
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III. INVERSE PROBLEM

In Sec. II we have obtained expressions for the surface
temperature of a material with buried layers, cylinders, or
spheres, provided the geometrical and thermal properties are
known. However, from a practical point of view, it is more
interesting to solve the inverse problem to extract informa-
tion about the geometrical and thermal properties of both
matrix and inclusions from the measurement of the surface
temperature. To do this we use a nonlinear least-squares fit-
ting procedure. Since in this work we are interested in the
restrictions of the photothermal techniques to retrieve the
thermal properties of the inclusions, we define a residual
function of the thermal properties of the buried object as
follows:

g�K,D� =
1

2�
j=1

N


Ttheory�K,D, f j� − Tmeasured�f j�
2, �23�

where Tmeasured is the experimental value of the surface tem-
perature �amplitude or phase� at a frequency f i and Ttheory is
the theoretical value at that frequency, calculated by means
of the Eqs. �1�, �9�, and �16�. The sum runs over all N modu-
lation frequencies of the experiment.

Now, the determination of the thermal properties of the
inclusion �K ,D� is reduced to finding the set of parameters
that minimizes g. To visualize this function we show in Fig.
3 its contour plot for a matrix material �l=2 mm, K
=3 W m−1 K−1, and D=1 mm2 s−1� that contains a
0.5-mm-thick layer, buried at a depth of 0.2 mm beneath the
surface, with various thermal properties. Tmeasured has been
simulated by adding a 2% random error to the calculated
value of Eq. �1�. In Fig. 3�a� we show the case of a buried
layer whose thermal properties are close to those of the ma-
trix: K=8 W m−1 K−1 and D=3 mm2 s−1. As can be seen a
clear minimum appears, indicating that both K and D could
be retrieved using an appropriate inversion algorithm. In Fig.
3�b� we show the case of a buried layer whose thermal prop-

erties are much higher than those of the matrix: K
=400 W m−1 K−1 and D=100 mm2 s−1. Now there is not a
minimum but a straight line that minimizes the residual func-
tion g. This means that, as predicted in Sec. II A 1, K and D
are degenerate and only the ratio between them �c=K /D
=4�106 J m−3 K−1 could be retrieved. Figure 3�c� shows the
case of a buried layer whose thermal properties are much
lower than those of the matrix: K=0.2 W m−1 K−1 and D
=0.1 mm2 s−1. Now there is not a minimum either, but a
curve �K=632�D� that minimizes the residual function g. As
before, K and D are degenerate and only the ratio e
=K /�D=632 W s−1/2 m−2 K−1 could be retrieved. Finally,
Fig. 3�d� shows the case of a gas layer: K
=0.025 W m−1 K−1 and D=22 mm2 s−1. As can be seen,
there is not a minimum but a horizontal straight line �K
=0.025� that minimizes g. This means that K could be re-
trieved while D remains completely unknown.

To find the minimum of the residual function we have
used the Levenberg–Marquardt method that is a trust-region
modification of the Gauss–Newton algorithm.10,11 This
method combines the advantages of the Gauss–Newton
method �high order of convergence� and the steepest descent
method �large region of convergence�.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The validity of the model developed in previous sections
has been tested experimentally by measuring the surface
temperature of three calibrated samples containing a buried
cylinder. Sample A has been prepared by embedding a
stainless-steel fiber �KM =60 W m−1 K−1, DM =18 mm2 s−1,
and a=250 	m� inside a black epoxy �KM

=0.10 W m−1 K−1, DM =0.12 mm2 s−1, and d-a=110 	m�.
Sample B has been made by drilling a cylindrical air hole in
the same black epoxy �a=250 	m and d-a=110 	m� and
filling this hole with a slight smaller stainless-steel rod. Fi-
nally, sample C has been prepared by drilling an air cylindri-

FIG. 3. Theoretical contour plots of the residual
function g for a for a matrix material �l=2 mm,
K=3 W m−1 K−1, and D=1 mm2 s−1� that contains a
0.5-mm-thick layer, buried at a depth of 0.2 mm
beneath the surface, with various thermal properties:
�a� K=8 W m−1 K−1 and D=3 mm2 s−1, �b� K=400
W m−1 K−1 and D=100 mm2 s−1, �c� K=0.2
W m−1 K−1 and D=0.1 mm2 s−1, and �d� K=0.025
W m−1 K−1 and D=22 mm2 s−1.
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cal hole in a carbon matrix �rigid graphite with purity of
99.95%, KM =150 W m−1 K−1, DM =95 mm2 s−1, a=250 	m,
and d-a=160 	m�.

The surface temperature of these three samples has been
measured using an infrared radiometry microscope whose
scheme and performance have been described in detail
elsewhere.12 A multimode Nd:yttrium aluminum garnet
�YAG� laser �1.06 	m� modulated by a mechanical chopper
has been used to heat the sample surface. Its beam has been
defocused to a diameter of 2 cm to guarantee that plane ther-
mal waves are generated at the sample surface. The emitted
infrared radiation from the sample surface has been collected
by a gold-mirrored catadioptric microscope objective and fo-
cused with a ZnSe lens onto a liquid-nitrogen-cooled
HgCdTe detector. The detector signal is preamplified before
being sent to a lock-in amplifier, whose amplitude and phase
are recorded. Modulation frequencies have been selected ac-
cording to the thermal properties of the samples: low fre-
quencies for black epoxy �f =0.4–10 Hz� and medium fre-
quencies for graphite �f =20–3000 Hz�. According to the
size of the infrared detector and the optical magnification of
the system, the surface temperature is collected from a

square spot of 25 	m/side. Spatial scans have been per-
formed by keeping fixed the heating beam while moving the
sample with a micrometer translator. Frequency scans have
been performed at two positions: just above the center of the
cylinder �that corresponds to the highest or lowest tempera-
ture of the spatial scans� and far away from the cylinder �in
the region where the surface temperature is not affected by
the subsurface cylinder�.

The surface temperature is normalized with respect to
the temperature at a point far away from the cylinder. In Fig.
4 we show the frequency dependence of the normalized tem-
perature amplitude Tn just over the center of the cylinder for
the three calibrated samples. As expected the temperature in
the graphite sample is higher than 1.0 �the matrix is a better
conductor than the cylinder� while the temperature is less
than 1.0 in the epoxy samples �the matrix is a worse conduc-
tor than the cylinder�.2 In Fig. 5 the experimental contour
plots of the residual function g �Eq. �23�� of the surface
temperature for the three calibrated samples are shown. Fig-
ure 5�a� corresponds to sample A, where no closed contours
are found, but a long valley that minimizes g. Therefore, as
predicted in Sec. II B 1, K and D of the steel fibers are de-
generate and only their ratio, the heat capacity, �c=K /D
=3.3�106 J m−3 K−1, can be measured.

Sample B is similar to sample A but between the steel
rod and the epoxy matrix there is not a perfect thermal con-
tact. We test the ability of the photothermal radiometry to
retrieve the heat capacity and the thermal contact resistance.
Figure 5�c� shows the contour plots of the residual function g
of the temperature amplitude, where a minimum can be seen.
However, the needlelike shape of the closed contours indi-
cates a certain degree of degeneracy in the retrieval of the �c,
but a better resolution of Rth. Using the Levenberg–
Marquardt method and starting from three different points
�dots, squares, and crosses� we obtain Rth=2.6
�10−4 m2 K W−1 and �c=2.3�106 J m−3 K−1. Note that
this last value is far from the real one �c=3.3

FIG. 4. Frequency dependence of the normalized temperature amplitude Tn

just above the center of the cylinder for three calibrated samples: sample A
�triangles�, sample B �crosses�, and sample C �squares�.

FIG. 5. Experimental contour plots of the residual func-
tion g for the three calibrated samples. �a� sample A, �b�
sample C, �c� sample B for the amplitude, and �d�
sample B for the phase.
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�106 J m−3 K−1. This uncertainty is related to sensibility of
Eq. �23� to the noise level of the experimental data. Figure
5�d� is the same as Fig. 5�c� but for the temperature phase.
Now a clearer minimum than in the case of the amplitude
appears. Using the Levenberg–Marquardt method and start-
ing from three different points we obtain Rth=2.5
�10−4 m2 K W−1 and �c=3.4�106 J m−3 K−1. Note that us-
ing phase data we retrieve a similar Rth value, but we obtain
the actual value of �c. This means that phase data are less
affected by degeneracy than amplitude data and therefore
they will be preferred for inversion procedure.

The contour plots of the residual function of the tem-
perature amplitude for sample C are shown in Fig. 5�b�.
There is neither closed contours nor a minimum of the re-
sidual function along a horizontal straight line as it was pre-
dicted in Sec. II B 3 �see Fig. 3�d��. This is due to the fact
that the surface temperature is almost insensitive to changes
in the thermal conductivity of the gas cylinder �that is much
lower than the thermal conductivity of the matrix� and there-
fore even small experimental noise destroys the convergence
of the residual function. Accordingly, neither K nor D can be
determined.

Photothermal techniques are used to measure the thermal
properties of a wide variety of materials. Moreover, they can
also be used to retrieve the thermal properties of subsurface
structures, as is the case of delaminations, inclusions, voids,
fibers, hardened steel, etc. When an infinite number of un-
knowns are to be obtained �ill-posed problem� inversion pro-
cedures are highly sensitive to the experimental noise, and
unknowns are retrieved with poor accuracy. In this work we
have demonstrated that even in well-posed problems, in
which the number of unknowns is finite and therefore one
expects to calculate them with high accuracy, there are some

limitations imposed by the degeneracy of the thermal param-
eters. This degeneracy appears when the difference in ther-
mal properties between matrix and inclusions is very high.
Although they could be expected to be of minor practical
interest, these extreme configurations are usually found both
in nature �delaminations, voids, porosity, etc.� and in new
composite materials �carbon fiber reinforced polymers, par-
ticulate reinforced composites, etc.� that are designed to im-
prove mechanical and thermal properties.
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