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A theoretical model to calculate the time evolution of the surface temperature of an opaque sample
containing buried cylinders or spheres, after the absorption of a short light pulse, has been
developed. To do this we first calculate the temperature of the material when it is illuminated by a
modulated light beam. Then, based on the analogy between the Helmholtz equation and the Laplace
transform of the heat diffusion equation we obtain the Laplace transform of the solution. Finally,
using the inverse Laplace transform we find the time evolution of the surface temperature heated by
a short light pulse. Measurements performed by an infrared camera on a calibrated sample confirm
the validity of the model. © 2005 American Institute of Physics. �DOI: 10.1063/1.2132097�
I. INTRODUCTION

Active infrared thermography has been used for the ther-
mal characterization and nondestructive evaluation of a wide
variety of materials.1 In this nondestructive testing technique
some energy is given to the specimen to be inspected in
order to obtain significant temperature differences at the
sample surface, in the presence of subsurface anomalies.
Various methods have been developed according to the way
the sample is heated. One of the most popular is pulsed ther-
mography, where the sample is heated briefly by a light pulse
and the subsequent surface temperature evolution is recorded
as a function of time by means of an infrared camera. By
solving the heat diffusion equation with the appropriate
boundary conditions the surface temperature of a material
containing one-dimensional buried defects �multilayered sys-
tems, delaminations, cracks, etc.� has been calculated.2 Then,
inversion procedures have been developed to determine
depth, thickness, and thermal properties of the defects.

In this work we calculate the temperature evolution of an
opaque material containing parallel buried cylinders or
spheres after being heated by a short light pulse. Recently,
the frequency-dependent temperature T�r ,�� of such a ma-
terial when heated by a modulated light beam of frequency
f��=2�f� has been published.3,4 The method used is based
on the multiple scattering of the thermal waves, that are gen-
erated at the sample surface, by the subsurface structures.
Here we present a model to convert the modulated solutions
T�r ,�� into pulsed solutions T�r , t�. Based on the analogy
between the Helmholtz equation and the Laplace transform
of the heat diffusion equation we obtain the Laplace trans-
form of the solution. Then, using the inverse Laplace trans-
form we find the time evolution of the surface temperature
heated by a short light pulse. Measurements performed by an
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infrared camera on a calibrated sample with a subsurface
cylinder made of different materials �air, water, and steel�
confirm the validity of the model. This work confirms the
ability of pulsed thermography as a quantitative method to
study fiber-reinforced composites as well as particulate-
reinforced composites.

II. THEORY

In this section we first calculate the surface temperature
of an opaque material with subsurface cylinders or spheres
when its surface is illuminated by a periodic light beam.
Then, starting from these modulated solutions we calculate
the surface temperature evolution after being heated by a
short duration light pulse.

A. Buried cylinders

Let us consider an infinite cylinder of radius a, whose
center is buried at a depth d beneath the surface of an opaque
and semi-infinite material that is illuminated by a modulated
light beam of intensity I0 and frequency f��=2�f�. The ge-
ometry of the problem is shown in Fig. 1�a�. We take into
consideration the lack of adherence between cylinder and
matrix by introducing a thermal contact resistance Rth be-
tween them. In the following indices M and C stand for

FIG. 1. Geometry of a semi-infinite material containing a buried cylinder �a�

or sphere �b�.
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matrix and cylinder, respectively. Assuming that heat losses
are negligible, the surface temperature can be written as3

T�r,�,�� =
I0�1 − R�i
2KMqM

eiqM�d−r cos ��

+ 2 �
m=−�

�

AmHm�qMr�eim�, �1�

where q=�i� /D is the thermal wave vector, R is the optical
reflection coefficient of the surface, D is the thermal diffu-
sivity, K is the thermal conductivity, and Hm is the mth order
of the Hankel functions of the first kind. The first term in Eq.
�1� represents the incident plane thermal wave starting at the
sample surface, while the second one accounts for the scat-
tered waves coming out from the cylinder. Equation �1� re-
quires the knowledge of the 2m+1 constants Am�m=−� ,��
that can be obtained from the 2m+1 equations given by the
boundary conditions at the cylinder surface �existence of a
thermal resistance and heat flux continuity�:3

Am

1 − Ym
C/Zm

C

Sm
M − Zm

MYm
C/Zm

C + �
n=−�

�

AnHm+n�2qMd�

= −
I0�1 − R�i
2KMqM

eiqMdi−m, �2�

where

Sm
M =

Jm�qMa�
Hm�qMa�

, Zm
M =

Jm� �qMa�
Hm� �qMa�

,

Ym
C =

Jm�qCa� + KCRthJm� �qCa�
Hm�qMa�

, and Zm
C =

KC

KM

Jm� �qCa�
Hm� �qMa�

,

�3�

being

Jm� �qa� = �dJm�qr�
dr

�
r=a

and Hm� �qa� = �dHm�qr�
dr

�
r=a

the derivatives of the Bessel and Hankel functions, respec-
tively.

Similar expressions have been found for the surface tem-
perature of an opaque plate containing an unlimited number
of parallel cylinders of different radii buried at different
depths.3

B. Buried spheres

Now we consider a sphere of radius a buried at a depth
d beneath the surface, under the same material and heat
transport conditions as in Sec. II A. The geometry of the
problem is shown in Fig. 1�b�. Index S stands for the sphere.

4
The surface temperature can be written as
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T�r,�,�� =
I0�1 − R�i
2KMqM

eiqM�d−r cos ��

+ 2�
m=0

�

Bmhm�qMr�Pm�cos �� , �4�

where hm is the mth order of the spherical Hankel functions
of the first kind and Pm is the Legendre functions. The sec-
ond term in Eq. �4� represents the scattered waves coming
out from the sphere. Equation �4� requires the knowledge of
the m+1 constants Bm�m=0,�� that can be obtained from
the m+1 equations given by the boundary conditions at the
sphere surface �existence of a thermal resistance and heat
flux continuity�:4

Bm

1 − Ym
S /Zm

S

Sm
M − Zm

MYm
S /Zm

S + �
n=0

�

�− 1�nBnQ0,m,0n�2d�

= −
I0�1 − R�i
2KMqM

eiqMd�1 + 2m�i−m, �5�

where

Sm
M =

jm�qMa�
hm�qMa�

, Zm
M =

jm� �qMa�
hm� �qMa�

,

Ym
S =

jm�qSa� + KSRthJm� �qSa�
hm�qMa�

,

and

Zm
S =

KS

KM

jm� �qSa�
hm� �qMa�

, �6�

being

jm� �qa� = �djm�qr�
dr

�
r=a

and hm� �qa� = �dhm�qr�
dr

�
r=a

the derivatives of the spherical Bessel and Hankel functions,
respectively.

Generalization to the case of a set of buried spheres can
be found in Ref. 4.

C. From modulated to pulsed illumination

The solutions in the frequency domain T�r ,�� can be
smoothly converted into solutions of the Laplace domain

T̄�r , p� by replacing i� by −p, and I0 /2 by P̄�p�, the Laplace
transform of the power distribution of the light pulse. For
instance, in the case of a Dirac pulse whose power distribu-

tion writes P�t�=Q0��t� its Laplace transform is P̄�p�=Q0,
where Q0 is the energy per unit area delivered by the pulse.
In the case of an exponential power distribution of the type
P�t�=Q0�t /�2�exp�−�t /���, that represents properly the shape

of a laser pulse, the Laplace transform is P̄�p�=Q0 / �1
+ p��2.5

Then, using the inverse Laplace transform the time-
dependent solution T�r , t� is obtained. To do this we use the
Stehfest algorithm,6 a numerical method that provides an ap-

proximate value of the required solution:

 AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



103502-3 Garrido et al. J. Appl. Phys. 98, 103502 �2005�
T�r,t� �
ln�2�

t
�
j=1

N

VjT̄	r, j
ln�2�

t

 , �7�

where the quantity j ln�2� / t substitutes for the Laplace vari-
able p. The coefficients Vj are given by

Vj = �− 1�N/2+j �
k=��j+1�/2�

Min�j,N/2�
kN/2�2k�!

�N/2 − k�!�k − 1�!�j − k�!�2k − j�!
,

�8�

where N is even and k is computed using integer arithmetic.

For “smooth” T̄�r , p� functions the Stehfest algorithm gives
very accurate results.7 In principle, the larger the value of N,
the more accurate the numerically inverted solution. How-
ever, N is limited by truncation errors. A characteristic of the
Vj coefficients is that their absolute values tend to increase as
N does. Thus, the use of large N values causes subtraction of
one large number from another, with resulting loss of accu-
racy. Computation with various values of N is used to check
whether the same result is obtained. In our calculations N
values between 10 and 18 give good convergence, provided
high-precision arithmetic is used.

III. NUMERICAL CALCULATIONS

We have calculated the time evolution of the surface
temperature above room temperature of an epoxy matrix
�KM =0.10 W m−1 K−1, DM =0.13 mm2 s−1, and Q
=104 J /m2� containing a subsurface cylinder of radius a
=0.5 mm buried at a depth d−a=0.3 mm, after receiving a
Dirac pulse. Lateral scans at different times after the heating
pulse are shown in Fig. 2. Two cases are considered: a ther-
mal isolating cylinder �air: KC=0.026 W m−1 K−1 and DC

=22 mm2 s−1� and a good thermal conducting cylinder
�graphite: KC=150 W m−1 K−1 and DC=95 mm2 s−1�. As can
be seen the presence of the isolating �good conducting� cyl-

FIG. 2. Theoretical lateral scans of the surface temperature of an epoxy
matrix containing a cylinder of radius a=0.5 mm buried at a depth d−a
=0.3 mm. �a� Air cylinder and �b� graphite cylinder.
inder produces an increase �decrease� of the temperature
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above the cylinder with respect to the regions that are free of
buried cylinders. This is explained by the fact that heat ac-
cumulates above the air cylinder, while the graphite cylinder
acts as a heat sink. On the other hand, for short times after
the Dirac pulse, the propagating heat has not reached the
buried cylinder and therefore the surface temperature is flat.
Then as the time goes by the thermal contrast between the
region above the cylinder and the region far from it in-
creases, until it reaches a maximum, that for these thermal
and geometrical parameters is about 1 s after the heating
pulse. At the same time, heat propagates laterally and the
temperature rise affects regions that are far from the buried
cylinder.

The time evolution of the surface temperature just over
the center of the buried cylinder is shown in a logarithmic
scale in Fig. 3. The same matrix and the same geometry as
before are used. Four cylinders are considered in order to
study the influence of the material they are made of. Air,
water �KC=0.60 W m−1 K−1 and DC=0.144 mm2 s−1�, graph-
ite, and AISI-304 stainless steel �KC=14.0 W m−1 K−1 and
DC=4.0 mm2 s−1�. The straight line, whose slope is −0.5,
represents the temperature history of a point that is not af-
fected by the subsurface cylinder. With respect to this refer-
ence line worse thermal conductors such as air produce a
temperature rise, while better thermal conductors such as
graphite, steel, or even water produce a temperature de-
crease. Note that the thermal contrast is higher for steel than
for graphite, although this last one is a better thermal con-
ductor. Both are much better thermal conductors than the
epoxy matrix. In such a case, it has been demonstrated that K
and D are degenerate and only their ratio K /D, the heat
capacity of the cylinder, influences the surface temperature.8

As this ratio is higher for steel than for graphite the first one
produces a higher thermal contrast.

The influence of the cylinder radius is analyzed in Fig. 4.
Air cylinders of various radii buried at a constant depth d
−a=0.3 mm in the same epoxy matrix as before are consid-
ered. As can be seen, the time at which the temperature sepa-
rates from the straight line of slope −0.5, that corresponds to
the absence of subsurface cylinder, is governed by the depth
d−a, while the cylinder radius a controls the shape of the

FIG. 3. Calculations of the surface temperature decay after the heating pulse
just over the center of a buried cylinder of radius a=0.5 mm buried at a
depth d−a=0.3 mm in an epoxy matrix. Cylinders made of four different
materials are considered. The straight line corresponds to a point far away
from the cylinder.
curve. As the cylinder radius goes to infinity the result con-
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verges to a horizontal straight line, that is, the expected be-
havior corresponding to a plate that is 0.3 mm thick.2

Finally, the influence of the thermal resistance between
cylinder and matrix is analyzed in Fig. 5. Calculations are
performed for the same matrix as before with a subsurface
cylinder of graphite of radius a=0.5 mm buried at a depth
d−a=0.3 mm. As can be seen, thermal resistances lower
than 10−4 m2 K W−1 cannot be distinguished from the perfect
thermal contact. As the thermal resistance increases the ther-
mal contrast with respect to the straight line of slope −0.5
diminishes. For higher thermal resistances the thermal con-
trast is positive for short times but it becomes negative for
longer times. This behavior can be explained as follows. A
thermal resistance can be understood as a very thin air layer
between matrix and inclusion. For short times after the heat-
ing pulse the propagating heat reaches this air layer and
therefore a temperature rise is produced. As time is further
increased the heat reaches the graphite that acts as a heat sink
and consequently the temperature diminishes.

Calculations performed in the same epoxy matrix with a
subsurface sphere show similar results as those presented for
a subsurface cylinder, and therefore they are not shown here.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The validity of the theory has been tested experimentally
by measuring the surface temperature of a calibrated sample
that has been prepared by drilling a hole in a black epoxy
matrix �KC=0.10 W m−1 K−1, DC=0.13 mm2 s−1, and a
=2.5 mm�. The cylindrical hole is not completely parallel to
the surface, in such a way that the depth on one side is d
−a=550 �m and on the other side is d−a=450 �m. The

FIG. 4. Calculations of the surface temperature decay just over the center of
a buried air cylinder in an epoxy matrix. The depth d−a=0.3 mm is kept
fixed while varying the radius.

FIG. 6. Measurements of the temperature contrast �	T�, normalized to the re

of radius a=2.5 mm buried at a depth d−a=0.5 mm. Four different times after t
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sample has been illuminated by two flash lamps �6 kJ each�
and the surface temperature has been recorded by an infrared
camera �Thermacam SC 2000 from FLIR systems, with a
320�240 pixel sensor� at a rate of 50 frames/s. Successive
measurements have been performed with the cylindrical hole
filled with air, distilled water, and two AISI-304 steel rods,
whose diameters are 4.50 and 4.95 mm, that in the following
will be referred as steel�a� and steel�b�, respectively. When
introducing a solid rod whose diameter is smaller than the
diameter of the cylindrical hole, a thermal resistance appears
between matrix and rod, whose value is defined as Rth

=e /Kair, where e is the thickness of the air layer between
matrix and rod. Therefore, in the case of a steel rod of
4.95 mm in diameter inside a cylindrical hole of 5 mm in
diameter the equivalent thermal resistance is Rth

�10−3 m2 K/W, while for the rod of 4.50 mm in diameter
the thermal resistance is Rth�10−2 m2 K/W. It is worth not-
ing that the thickness of the air layer is not uniform all
around the circumference and therefore the above values
should be considered as effective thermal resistances. On the
other hand, as the surface temperature is more sensitive to
the upper part of the cylinder we could conclude that only
the thermal resistance at the top of the cylinder should be
taken into account.

Temperature maps of the epoxy surface with the air cyl-
inder at four different times after the heating pulse are shown
in Fig. 6. To better visualize the effect of the buried cylinder
on the surface temperature, we present the temperature con-
trast �	T�, i.e., the temperature rise with respect to a region
far from the cylinder. As expected, the air cylinder produces

FIG. 5. Calculations of the surface temperature decay just over the center of
a buried graphite cylinder of radius a=0.5 mm buried at a depth d−a
=0.3 mm in an epoxy matrix. Various thermal resistances are considered.
The straight line corresponds to a point far away from the cylinder.

without buried cylinder, for a black epoxy sample containing an air cylinder
gion

he light pulse are shown.
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a temperature increase above the buried cylinder. On the
other hand, the vertical temperature gradient above the cyl-
inder that can be seen in each thermogram is a consequence
of the lack of parallelism of the cylindrical hole with respect
to the sample surface, indicating that the hole is closer to the
surface at the top than at the bottom of the thermogram.

To obtain quantitative information we study the central
region of the sample where the hole depth d−a is about
0.5 mm. The time evolution of the surface temperature just
above the center of the buried cylinder is shown in Fig. 7.
Each experimental curve is the average of the temperature of
10 close pixels. The circles represent the experimental data
while the continuous lines are the theoretical calculations
using Eq. �1�. For these calculations we have used the geo-
metrical and thermal parameters given above. The agreement
between the experimental data and theoretical curves is very
good for the four cylinders, except for times longer than 5 s.
In our opinion this is due to the influence of heat losses,
mainly due to convection effects, that have not been taken
into account in the model. The straight line with slope −0.5
�both circles and solid line� corresponds to a point far away
from the cylinder. Here the influence of heat losses at large
times can also be seen.

Lateral scans of the temperature contrast �	T�, 2 and 4 s
after the light flash, are shown in Fig. 8. The dots stand for
air, circles for water, � for steel�a�, and 
 for steel�b�. The
continuous lines are the theoretical calculations using Eq.
�1�. Again a very good agreement can be appreciated.

As a conclusion we can say that a general expression for
the time-dependent temperature of an opaque sample with
buried parallel cylinders or spheres after a flash pulse has

FIG. 7. Temperature decay after the flash light just above the center of a
subsurface cylindrical hole of radius a=2.5 mm buried at a depth d−a
=0.5 mm in a black epoxy matrix. The hole is filled with air, water, and two
steel rods. The straight line corresponds to a point far away from the buried
cylinder. Measurements �circles� and theory �continuous lines�.
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been presented. This model is interesting because it simu-
lates the internal structure of fiber- and particulate-reinforced
composites. Measurements of the temperature decay using
an infrared camera on a black epoxy sample containing a
subsurface cylinder filled with air, water, or steel confirm the
validity of the model.

ACKNOWLEDGMENTS

This work has been supported by the MCyT �MAT2002-
04153-C02-01� and by Gobierno Vasco �INTEK-
CN02GR03�. The use of the computational resources of the
SGIker UPV/EHU is also acknowledged. One of the authors
�F.G.� acknowledges a predoctoral fellowship from Univer-
sidad del País Vasco.

1X. Maldague, Theory and Practice of Infrared Technology for Nondestruc-
tive Testing �Wiley, New York, 2001�.

2X. Maldague, Nondestructive Evaluation of Materials by Infrared Ther-
mography �Springer-Verlag, London, 1993�.

3J. M. Terrón, A. Salazar, and A. Sánchez-Lavega, J. Appl. Phys. 91, 1087
�2002�.

4F. Garrido and A. Salazar, J. Appl. Phys. 95, 140 �2004�.
5Equations �1�–�6� are valid for harmonic solutions of the form T�r , t�
=T�r�e−i�t. If solutions with positive time exponential �T�r , t�=T�r�e+i�t�
are used, then Eqs. �1�–�6� are still valid provided the wave vector q is
changed by iq. In this case, the substitution to convert the modulated
solution to the Laplace transform is i�= p.

6H. Stehfest, Commun. ACM 13, 47 �1970�.
7J. C. Krapez, J. Appl. Phys. 87, 4514 �2000�.
8A. Salazar, F. Garrido, A. Oleaga, and R. Celorrio, J. Appl. Phys. 98,

FIG. 8. Lateral scans of the surface temperature contrast 2 and 4 s after the
light flash for the same conditions of Fig. 7. The experimental results are
shown for the cylindrical hole filled with air ���, water ���, steel�a� ���,
and steel�b� �
�. Theory �continuous lines�.
013513 �2005�.

 AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


