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The problem of retrieving a nonhomogeneous thermal conductivity profile from photothermal
radiometry data is addressed from the perspective of a stabilized least square fitting algorithm. We
have implemented an inversion method with several improvements: �a� a renormalization of the
experimental data which removes not only the instrumental factor, but the constants affecting the
amplitude and the phase as well, �b� the introduction of a frequency weighting factor in order to
balance the contribution of high and low frequencies in the inversion algorithm, �c� the simultaneous
fitting of amplitude and phase data, balanced according to their experimental noises, �d� a modified
Tikhonov regularization procedure has been introduced to stabilize the inversion, and �e� the
Morozov discrepancy principle has been used to stop the iterative process automatically, according
to the experimental noise, to avoid “overfitting” of the experimental data. We have tested this
improved method by fitting theoretical data generated from a known conductivity profile. Finally,
we have applied our method to real data obtained in a hardened stainless steel plate. The
reconstructed in-depth thermal conductivity profile exhibits low dispersion, even at the deepest
locations, and is in good anticorrelation with the hardness indentation test. © 2010 American
Institute of Physics. �doi:10.1063/1.3357378�

I. INTRODUCTION

Modulated photothermal radiometry is a well established
tool for the thermophysical characterization and the nonde-
structive evaluation of a wide variety of materials. Since the
pioneering work of Mandelis and co-workers,1 it has been
applied to reconstruct the thermal conductivity depth profile
of case hardened steel pieces from surface temperature data.2

This inverse problem is ill-posed in Hadamard sense, i.e.,
there is not a continuous relationship between errors in the
data and in the thermal conductivity. This means that the
same surface temperature is obtained from quite different
thermal conductivity profiles �within experimental uncer-
tainty�. That is the reason why the reconstructed conductivity
is extremely sensitive to noise. However, the ill-posedness of
the problem can be attenuated by reducing the number of
unknowns. One possibility is to define the shape of the ther-
mal conductivity by a simple function with few
parameters.3–6 The second possibility is to use a multilayered
model to simulate the thermal conductivity depth profile and
use only few layers. The fewer the number of layers, the less
the ill-posedness of the inverse problem is, yet losing spatial
resolution in the reconstruction.7 Under these conditions a
regular least-square fitting procedure is used to retrieve the
few unknowns. However, as the number of layers used in the
model is increased, in order to improve the spatial resolution

of the conductivity depth profile, the problem becomes se-
vere ill-posed and more elaborated inversion procedures
need to be used8 like stabilized least-square fitting,4,5 neural
networks,9,10 and genetic algorithms.11

The aim of this work is to elaborate an inverse algorithm
to obtain a thermal conductivity depth profile in case hard-
ened steel plates combining a high in-depth spatial resolution
and a high accuracy. To do this we propose an inverse algo-
rithm based on an advanced least-square fitting of the surface
temperature including the following improvements: �a� a
new normalization procedure to avoid the effect of the dif-
ferent surface qualities of the hardened and unhardened
samples, since both kind of samples exhibit different absorp-
tion coefficient and infrared emissivity, �b� a weighting fac-
tor to reduce the contribution of the high frequencies and to
increase the one of the low frequencies, �c� the least-square
fitting procedure is applied to the amplitude and phase of the
surface temperature simultaneously, taking into account the
different noise levels of both quantities, �d� a modified
Tikhonov regularization procedure is used to stabilize the
inversion, and �e� the Morozov discrepancy principle is used
as the stopping criterion, i.e., the iterative process is stopped
when the residual reaches the noise level.

First we have checked the ability of this improved in-
verse procedure to reconstruct an exponential thermal con-
ductivity depth profile for which an analytical solution of the
surface temperature exists.12 We have added a uniform white
noise to the calculated surface temperature in order to evalu-a�Electronic mail: agustin.salazar@ehu.es.
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ate its influence on the quality of the thermal conductivity
reconstruction. Finally, we have used photothermal radiomet-
ric measurements performed on several hardened AISI-1018
steel slabs to reconstruct their thermal conductivity depth
profile. This profile is in good qualitative anticorrelation with
the hardness depth profile, which has been obtained from
mechanical indentation tests, confirming the validity of the
proposed inversion procedure.

II. INVERSION PROCEDURE

The material we are dealing with is a flat slab of steel
whose surface has been hardened after a process of carbur-
izing and quenching. As a consequence, the thermal conduc-
tivity is highly reduced at the sample surface, while it re-
mains unchanged inside the slab. The thickness of the
surface hardened layer depends on the duration of the heat
treatment and usually falls in the range between 0.5 and 2
mm. In this region the thermal conductivity increases almost
monotonically as a function of depth �see Fig. 1�a��, the re-
construction of which is the problem at hand. It is worth
mentioning that experimental measurements indicate that the
heat capacity ��c�, where � is density and c specific heat, of
the hardened layer remains constant.13 In this work, the hard-
ened slab is modeled as an opaque and stratified material �see
Fig. 1�b�� made of N parallel layers of thickness lj, thermal
conductivity Kj, and equal heat capacity �c. In our photother-
mal experiment the whole surface of the sample is illumi-
nated by a light beam of intensity Io modulated at a fre-
quency f ��=2�f�. We assume that there is no thermal
resistance between layers and that heat losses are negligible.
The temperature at the illuminated surface can be written in
an elegant way using the quadrupole method14

T =
Io

2

A

C
, �1�

where

�A B

C E
� = �

j=1

N �Aj Bj

Cj Ej
� , �2�

being

Aj = Ej = cosh�qjlj�, Bj =
sinh�qjlj�
�i��cKj

, and �3�

Cj = �i��cKj sinh�qjlj� .

Here qj =�i��c /Kj is the thermal wave vector. As can be
seen, the surface temperature depends on the thermal con-
ductivity and the heat capacity of each layer. It has been
demonstrated numerically that the surface temperature of a
sample with a continuously variable in-depth thermal con-
ductivity is well reproduced by using a small number of
layers �10–20�, provided their thickness is not constant, but
becomes thinner closer to the surface.15 According to the
multilayer model, we assume that the conductivity K�z� of
the hardened slab is a piecewise constant function, with N
layers of constant conductivities Ki as the unknowns. To ex-
tract information about the thermal conductivity profile of
the hardened slab from the experimental temperature we
have used a nonlinear least-squares fitting of the experimen-
tal data, where we have included the following improve-
ments.

A. Weighting factor

In order to carry out the nonlinear least-square fitting we
need to define a norm that measures the differences between
the experimental and calculated values of amplitude and
phase at all frequencies. In the case where experimental data
are taken up to very high frequencies, the regular definition
of the norm would diverge due to the big contribution of
these high frequencies. For this reason we define a new norm
of an arbitrary function F as

	F	 = 

0

� F2�f�
f�� + log2�f��

df , �4�

that stays finite. Here �=log2�fc�, fc being an intermediate
frequency in the whole frequency range of the experiment.
The denominator in Eq. �4� is the weighting factor intro-
duced �a� for penalizing the contribution of high frequencies,
f log2�f�, and �b� for increasing the relevance of low fre-
quencies, f . Note that � is added to overcome the divergence
introduced by the square logarithm at f =1 Hz.

B. Normalization procedure

Any experimental set up used to measure the surface
temperature introduces a frequency dependence of the sys-
tem itself, in the experimental data. In order to remove this
instrumental factor, the amplitude and phase of the hardened
material are always normalized to the data corresponding to
an unhardened sample. However, the hardened and unhard-
ened samples exhibit different surface qualities, i.e., different
absorption coefficient to the illumination and different infra-
red emissivity. For this reason, the normalized amplitude is
affected by an unknown factor and the normalized phase by
an unknown shift. Some authors introduce these quantities as
additional unknowns in the inversion process16 but this
would increase the uncertainty in the parameters we want to
retrieve. In this work we propose a renormalization method
that removes these constants from the data. In the case of the
amplitude this renormalization consists in dividing the am-
plitude values �A� by the norm as defined in Eq. �4�. As far as
the phase is concerned the renormalization consists in sub-
tracting the mean value of all the phase values
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FIG. 1. �a� Scheme of the cross-section of a hardened steel slab showing an
in-depth variable thermal conductivity profile. �b� Simulation of the hard-
ened slab by stratified layers, each one having constant thermal conductivity.
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AN�f� =
A�f�
	A	

, �5a�

�N�f� = ��f� − ��� , �5b�

where

��� =



0

� �

f�� + log2 f�
df



0

� 1

f�� + log2 f�
df

. �6�

Note that the renormalized amplitude and phase are in-
variant under expansion of the amplitude and phase shifts,
i.e., the unknown constants affecting both the normalized
amplitude and the normalized phase have been removed.

C. Simultaneous fitting of amplitude and phase

Among the different inversion procedures proposed in
the literature �neural networks, genetic algorithms, etc� we
have selected the nonlinear least-square fitting of the experi-
mental data implemented by several improvements. The or-
dinary least-square fitting consists in finding the conductivity
parameters of each layer which minimize the residual func-
tion defined as 0

�F2�f�df , where F is the difference between
the experimental and calculated temperatures. It has been
pointed out that the experimental values of the amplitude and
phase of the surface temperature must be fitted simulta-
neously to retrieve a unique thermal conductivity profile.17

Our first attempts did not give meaningful conductivity re-
constructions mainly due to the different noise of amplitude
and phase. Therefore, we decided to minimize a single func-
tion containing the renormalized amplitude and phase, and
including a balance factor of their noises.

We define the noise level as the norm �see Eq. �4�� of the
difference between noisy and noise-free data at each fre-
quency. As the noise-free data are unattainable, we estimate
this difference as the half-value of the thickness of the “data
cloud” ��A for amplitude and �� for phase�. Then the noise-
levels ��A and ��� are given by the norm of two “noise-
vectors” whose n entries �n is the number of frequencies� are
random values between +�A and −�A for amplitude, and +��

and −�� for phase. Accordingly, the residual function to be
minimized is

r�K� = 

0

� �ANthe
�f� − ANexp

�f��2

f�� + log2�f��
df

+ 	2

0

� ��Nthe
�f� − �Nexp

�f��2

f�� + log2�f��
df

= 

−�

� �ANthe
�u� − ANexp

�u��2

� + u2 du

+ 	2

−�

� ��Nthe
�u� − �Nexp

�u��2

� + u2 du , �7�

where u=log�f� and the factor 	=�A /�� is introduced to bal-
ance the noise levels of the two quantities that we are com-

bining for the minimization, i.e., we introduce this factor in
order to reduce the contribution of the quantity that has a
larger error. The noise level of the experiments is then: �
=��A

2 +	2��
2 =�A

�2.

D. Regularization procedure

As we intend to use a large number of layers in order to
reach a high spatial resolution in K reconstruction we need to
deal with a large number of unknowns which turns the in-
verse problem severe ill-posed. Accordingly, the regular
least-square fitting rule will lead to unstable �oscillating� it-
erations related to the existence of an undetermined number
of minima. In order to overcome these instabilities research-
ers have used different approaches: the conjugate gradient
method, the single value decomposition approach, the non-
linear Landweber iteration, among others.8,18 In this work we
have used the Tikhonov´s regularization procedure which
consists in adding a stabilization term to the residual function
r, followed by an iterative Newton-type method of minimi-
zation.

As we are using the quadrupole method for solving the
direct problem, our calculated amplitude and phase are func-
tions of N conductivities, one for each layer. On the other
hand, our data correspond to discrete values of the frequency.
Therefore, the function to be minimized is the discretization
of Eq. �7� including the regularization term and writes

r
�K1, . . . ,KN�

= 
J�K1, . . . ,KN,K1
0, . . . ,KN

0 �

+ �
i=1

M �ANthe
�K1, . . . ,KN,ui� − ANexp

�ui��2

� + ui
2 �ui

+ 	2�
i=1

M ��Nthe
�K1, . . . ,KN,ui� − �NExp

�ui��2

� + ui
2 �ui, �8�

where Kj are the values of the conductivities of each layer
and M the number of frequencies of the experiment. As the
experimental frequencies are usually taken equally spaced in
a logarithmic scale, �ui is constant, and therefore r
 writes in
a simple form very suitable for practical purposes. The sec-
ond and third terms of the right-hand side are the discrete
version of the residual, r, and the first term is the Tikhonov
penalty term,18 being 
�0 the regularization parameter and
Kj

0 with j=1, . . . ,N an initial guess of the conductivities. In
addition to stabilizing the minimization, this term has the
advantage of being able to incorporate prior information
about the problem, e.g., in hardened materials KN

0

=Kunhardened. Here J is the penalty function. The standard
Tikhonov penalty function is J�K1 , . . . ,KN ,K1

0 , . . . ,KN
0 �

=� j=1
N lj�Kj −Kj

0�2. However, in order to reduce the number of
iterations to achieve the minimum, we have used a modifi-
cation of the standard penalty function
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J�K1, . . . ,KN,K1
0, . . . ,KN

0 �

= �
j=1

N−1
1

lj
��Kj+1 − Kj� − �Kj+1

0 − Kj
0��2

+
1

lN
�Kunhardened − KN�2. �9�

Note that with the standard penalty function the conduc-
tivities of the layers are kept close to the initial guess, while
in the modified function, both the derivatives of the conduc-
tivity together with the conductivity of the deepest layer are
kept close to the corresponding initial guess values.

The iterative algorithm that we have used to minimize
the function r
 in Eq. �8� is a Newton-type method which
consists in a variant of the iterative Levenberg–Marquardt
method, suggested by Bakushinskii,19 that allows incorporat-
ing the Tikhonov´s penalty term. Briefly speaking, in each
iteration a reconstruction of the thermal conductivity K�z� is
retrieved by solving a linear system of equations, using con-
tinuously decreasing 
 values according to 
n+1=
n with
� �0,1�. The reduction factor  governs the rate of conver-
gence: the lower the  value, the faster the rate. However,
there is not a general rule to choose its best value since a
very small  value reduces the stabilization introduced by
the Tikhonov´s penalty term. In this work we have used  in
the range from 0.4 to 0.8.

E. Stopping criterion

It should be noted that although the penalty term stabi-
lizes the minimization process it also adds an additional error
to the model. Therefore, the question is the suitable choice of
the regularization parameter 
 that guaranties stability �high

� with the lowest additional error �low 
�. We will make
this selection as a function of the noise level of the experi-
mental data by using the Morozov discrepancy principle.20

We stop the iterations the first time the residual �the second
and third terms in the right hand of Eq. �8�� reaches the noise
level �.

The need for stopping the iterations is the following. In
the iterative process the residual function is reduced while
the reconstructed thermal conductivity approaches the real
value. However, due to the noise of the experimental data,
the effect of keeping on with the iterations is that, although
the value of the residual function still diminishes, the recon-
structed conductivity becomes nonsense. The reason for this
is that the fitting procedure tries to reproduce the experimen-
tal data, which are affected by the noise �overfitting�. Sum-
marizing, for each set of experimental data there is a number
of iterations giving the best K reconstruction. Looking for an
automatic iterative process we need to define a stopping cri-
terion based on the experimental noise, as the Morozov dis-
crepancy principle.

III. NUMERICAL CALCULATIONS

In this section we present some results using synthetic
data in order to show the improvements in the reconstruction
introduced by the method we have developed. We used ana-
lytically calculated values of the amplitude and phase of the

surface temperature as a function of the modulation fre-
quency of a semi-infinite slab whose conductivity decreases
exponentially in depth.12 It is worth mentioning that analyti-
cal solutions are used in order to avoid “inverse crimes,” i.e.,
an excessively optimistic inversions that occurs when the
same numerical methods are employed to synthesize as well
as to invert data in an inverse problem.21 Our theoretical
experiments consist in generating noisy data by adding uni-
form white noise to the calculated amplitudes and phases and
retrieving the �known� conductivity depth profile. In this
way, for these “theoretical experiments,” we can evaluate the
uncertainty in the recovered conductivity.

In order to retrieve a conductivity profile, we need to
determine the number and thicknesses of the layers that will
be used for the reconstruction. We use an exponentially in-
creasing sequence of layer thicknesses. The number of layers
is determined as a function of the uniform white noise we
add in our synthetic data, since the error introduced by our
discrete and finite layer model cannot be larger than the “ex-
perimental” random noise we are simulating. Accordingly,
the lower the experimental noise, the larger the number of
layers used for the reconstruction must be. In practice we
choose the width of the shallower layer as a function of the
random noise. Assuming a certain penetration depth and an
exponential law for the layer thicknesses, the thicknesses of
all layers are determined.

The synthetic data we generate correspond to a discrete
set of frequencies ranging from fmin to fmax, equally spaced
in a logarithmic scale. For the sake of simplicity, we use the
same number of layers and frequencies, the lower frequency
being determined by the hardening penetration depth and the
higher one limited by the error. Note that, given a certain
noise level in a real experiment, this criterion for the choice
of frequencies with synthetic data can also be used to deter-
mine the optimum set of frequencies at which experimental
data should be taken.

Now we show the effect of the frequency weighting in
the quality of the reconstructed conductivity profile. For this
purpose, we have generated synthetic data by adding to the
analytically calculated amplitude and phase uniform white
noise of the same order as the noise in our experimental data
�random noise vectors of amplitude �A= �0.025 for tem-
perature amplitude and ��= �0.5° for the phase�. We have
used frequencies from 5�10−1 up to 104 Hz, the same range
of our experiments. We assume that the heat capacity re-
mains constant, �c=3�106 J m−3 K−1, and we fit the data
down to 1 mm in depth. In Fig. 2 we show, on top, the
exponentially decreasing conductivity profile �solid line�,
given by K�z�=50 exp�−103z� W m−1 K−1, that we have
used to calculate the surface temperature amplitude and
phase, together with the reconstructed conductivities at the
first seven iterations �in symbols�. On the left we show the
reconstruction using frequency weighting while the recon-
struction without frequency weighting is depicted on the
right. The open symbols correspond to the iteration at which
the Morozov criterion stops the iterative process �fifth itera-
tion in both cases�. At the bottom, in dots we show the value
of the residual r at each iteration together with the noise level
� of the experiment, which determines the Morozov stopping
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criterion �solid line�. In crosses, we represent the relative
error in the conductivity at each iteration. In both cases, the
initial guess is a constant conductivity profile corresponding
to the conductivity at z=1 mm.

As can be observed, if no frequency weighting factor is
introduced, the conductivity profile cannot be reconstructed.
The reason for this is that since the temperature data corre-
spond to the surface of the sample, the high frequencies con-
taining information from positions close to the surface domi-
nate the reconstruction. The information coming from deeper
inside the material, contained in the low frequencies, be-
comes completely masked. This is revealed in the fact that
the successive reconstructed conductivities differ from the
initial guess only at the closest layers to the surface �only
down to 0.65 mm at the fifth iteration�. On the opposite, the
reconstruction is very good when we introduce the frequency
weighting factor, which balances the contributions of high
and low frequencies in the fitting process.

The first iteration at which the residual is smaller than
the noise level �continuous horizontal line� gives the final
result in the automatic process. Note that, although the data
to be fitted are the same in both cases, the noise level �
�Morozov criterion� is different because it is calculated ac-
cording to the presence �or absence� of the weighting factor.
However, in order to illustrate the importance and the effect
of the stopping criterion, we show the results of a few more
iterations. In both cases, with and without frequency weight-
ing, the residual diminishes with the number of iterations,
but the error in the thermal conductivity increases at certain
iteration after the Morozov criterion stops the iterative pro-
cess. This corresponds to the above mentioned overfitting.
The conductivity reconstructions corresponding to iterations

7 and successive show an oscillating behavior with no physi-
cal meaning. These oscillations are the result of minimizing
function r
 in Eq. �8� with a Tikhonov term which has been
reduced to such a point that it does not stabilize the process
anymore.

The Morozov criterion guarantees that the retrieved con-
ductivity is meaningful at the price of a reconstructed profile
that does not correspond to the best possible �minimum error
of the conductivity�. However, in a real experiment, the
“true” conductivity profile is unknown and the priority is to
find a meaningful reconstruction.

Next, we show how the noise in the amplitude and phase
data affects the reconstructed conductivity. To do so, we have
proceeded as follows: for the same exponentially decreasing
conductivity profile �solid line in Fig. 3�a�� we start the re-
construction at ten different linear initial guesses. These are
characterized by a common conductivity value at 1 mm
depth �50 /e W m−1 K−1� and surface conductivities of val-
ues 75, 70, 65, 60, 55, 50, 45, 40, 35, and 30 W m−1 K−1.
For each initial guess we fit amplitude and phase synthetic
data generated with two sets of random noise vectors. In Fig.
3�a�, we show the true conductivity �solid line� together with
all the 20 retrieved conductivity profiles �symbols�. Figure
3�b� shows amplitude �dots� and phase �crosses� synthetic
data used for the fittings �solid lines� that we have generated
from the exponentially decreasing conductivity profile by
adding the same white noise as in Fig. 2. These fittings cor-
respond to the linear initial guess with conductivity
65 W m−1 K−1 at the surface, but indistinguishable fittings
were obtained starting at all the different initial guesses. We
have slightly overestimated the Morozov level in order to
prevent oscillations to occur in the reconstructed conductiv-
ity. Figure 4�a� shows the same calculations but starting from
synthetic data generated with the previous noise level di-
vided by 4. As can be observed, as the error in the data
decreases, the dispersion in the reconstructed conductivity is
reduced and the mean value of the conductivities at each
layer approaches the real conductivity. This is a fundamental
characteristic of a good inversion method: the result given by
the method should approach the true profile when the error in
the data tends to zero.

Finally, we show the effect of reducing the frequency
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�A= �0.025 and ��= �0.5°. At the bottom, in crosses, the error in the
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range in which amplitude and phase data are fitted. If we
perform the same calculations as above, with white noise
like in Fig. 3�a� but taking data only up to 102 Hz instead of
104 Hz, we obtain the reconstructions depicted in Fig. 4�b�.
Suppression of high frequencies results in a bigger disper-
sion of the retrieved conductivities, mainly in the shallower
layers. The reason for this is the following: as the true con-
ductivity profile is varying close to the surface, high frequen-
cies contain relevant information in order to reconstruct the
conductivity profile close to the surface.

IV. EXPERIMENTAL RESULTS

Now we will use the method described above to retrieve
the thermal conductivity profile of a semi-infinite AISI 1018
sample, which has been hardened to a nominal case penetra-
tion depth of the order of 1 mm.22 Fig. 5�a� shows the nor-
malized amplitude �dots� and phase �crosses� of the surface
temperature measured with a photothermal radiometry setup,
corresponding to 51 frequencies equally spaced in a logarith-
mic scale. We have used the same number of layers for the
reconstruction. In order to fulfill the one-dimensional heat
propagation, the exciting beam was expanded to a radius of
20 mm, which is much larger than the thermal diffusion
length in the sample at the lowest modulation frequency ��
=�D / ��f��3 mm at 0.5 Hz�.

As the nominal case penetration depth is close to 1 mm,
we have performed several conductivity reconstructions as-
suming different penetrations depths in the range from 0.9 to
1.7 mm. In all reconstructions the same initial guess Kj

0

=Kunhardened has been used. On the other hand, as mentioned

in Sec. II C, the calculation of the noise level � determining
the stopping criterion requires generating two noise vectors
with random entries between ��A for amplitude and �
� for
the phase, and the calculation of their norms. It is worth
noting that this estimation of the noise level should never be
smaller than the real noise, otherwise, the stopping criterion
would never be reached. Of course, the value of the resulting
noise level �, depends on the particular set of random entries
of the noise vectors, and affects the stopping criterion. In
order to incorporate the influence of the particular noise vec-
tor on the dispersion of the reconstruction, we generate five
different noise vectors for each penetration depth, all with
random entries between ��A=0.025 �amplitude� and ���

=0.5° �phase�, given by the data cloud of the experimental
data. In the corresponding 40 reconstructions, the Morozov
level moves as much as 50%; and therefore, its influence
becomes the most relevant source of uncertainty in the re-
constructed profiles.

In Fig. 5�b�, we show the mean conductivity obtained at
each depth together with error bars corresponding to the
standard deviation of the 40 reconstructed conductivities.
Several aspects deserve comment in this figure: �a� the error
in the conductivity is about 4% all along the hardened depth.
The result reveals the relevance of introducing the frequency
weighting which results in a conductivity error which does
not increase as we go deeper inside the material. The reason
for this error to be rather small is that prior information is
available in our problem and we are able to incorporate it in
our penalty term. �b� The reconstructed conductivity is al-
most flat at locations close to the surface �down to 150 �m�.
�c� Moreover, this retrieved conductivity profile is in good
qualitative anticorrelation with the hardness depth profile
�see Fig. 9 in Ref. 22�, in agreement with previously reported
results.13,23 �d� The amplitude and phase fittings barely differ
from one reconstruction to another. As an example, the solid
line in Fig. 5�b� shows the fitted amplitude and phase corre-
sponding to one of the reconstructions. The asymptotic be-
havior we observe in the experimental amplitude and phase
at high frequencies is related to the fact that the conductivity
profile is almost flat close to the surface.

The usefulness of taking data up to very high frequen-
cies deserves some discussion. High frequency data contain
information about shallow locations and, thus, the determi-
nation of the conductivity at these positions is an easier ques-
tion than determining the conductivity of the deeper layers.
As we have shown in Figs. 3�a� and 4�b�, if the true conduc-
tivity is changing close to the surface, the information con-
tained in the high frequencies is relevant to properly recon-
struct the conductivity profile close to the surface. In the case
of hardening, where quasiflat conductivity profiles close to
the surface have been reported in the literature in several
works,17,24 high frequencies are not so important for deter-
mining the shape of the profile close to the surface. More-
over, if high frequency data are noisy, the uncertainty in the
surface conductivity will be high, which makes the high fre-
quency data useless. This is why the effort of taking data at
very high frequencies is only worth in the case that low
experimental noise can be achieved.

"#

"$

%#

%$

&#

&$

$#

$$

# #'" #'& #'( #') !

 
*+

,
-!
.

-!
/

" *,,/*0/

"#

"$

%#

%$

&#

&$

$#

$$

# #'" #'& #'( #') !

" *,,/

 
*+

,
-!
.

-!
/

*1/

FIG. 4. �a� The same as in Fig. 3�a�, but with the noise reduced by a factor
of 4. �b� The same as in Fig. 3�a� but with amplitude and phase data fitted in
a narrower frequency range: 5�10−1–102 Hz.
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FIG. 5. �a� Experimental amplitude �dots� and phase �crosses� data corre-
sponding to a hardened AISI 1018 steel flat semi-infinite sample, together
with the fittings �solid lines�. �b� Thermal conductivity reconstruction from
the data depicted in �a�.
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V. CONCLUSIONS

The problem of retrieving a thermal conductivity profile
from surface temperature data has been successfully solved
by performing the direct temperature calculation using the
quadrupole method and by applying an inversion procedure
based on a stabilized least square fitting method, where we
have introduced several improvements. The effect of these
improvements has been analyzed by retrieving conductivity
profiles from noisy synthetic data generated from a known
conductivity profile. First, we have proceeded to perform a
renormalization of the experimental data in order to elimi-
nate experimental constants affecting both the amplitude and
the phase. Thanks to this renormalization, these constants
that appear as additional unknowns in the problem of retriev-
ing the conductivity profile, are removed. Second, we have
combined the amplitude and phase data for the minimization
and have balanced both according to the noise they exhibit.
This allows us to penalize the magnitude with the bigger
noise i.e., we increase the significance of the magnitude with
less uncertainty in the inversion. Moreover, the introduction
of a frequency weighting factor penalizing the influence of
the high frequencies and increasing that of the low frequen-
cies allows getting a realistic reconstructed profile that we
were unable to obtain without using the frequency weighting
factor. The ill-posed character of the inverse problem re-
quires the use of regularization term in the minimization of
the residual. We have chosen a modification of the Thikonov
penalty term, and have used the Morozov discrepancy prin-
ciple to stop the iterations. We have analyzed the influence of
using this stopping criterion on the quality of the recon-
structed conductivity, by studying the effect of the noise and
the frequency range on the final reconstruction. According to
these conclusions, we have retrieved a thermal conductivity
profile from experimental data obtained from a stainless steel
hardened sample, with a very low dispersion even at deep
locations, and in good qualitative anticorrelation with the
results of a hardening indentation test.
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