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We analyze the ability of the Tikhonov regularization to retrieve different shapes of in-depth thermal
conductivity profiles, usually encountered in hardened materials, from surface temperature data.
Exponential, oscillating, and sigmoidal profiles are studied. By performing theoretical experiments
with added white noises, the influence of the order of the Tikhonov functional and of the parameters
that need to be tuned to carry out the inversion are investigated. The analysis shows that the
Tikhonov regularization is very well suited to reconstruct smooth profiles but fails when the
conductivity exhibits steep slopes. We check a natural alternative regularization, the total variation
functional, which gives much better results for sigmoidal profiles. Accordingly, a strategy to deal
with real data is proposed in which we introduce this total variation regularization. This
regularization is applied to the inversion of real data corresponding to a case hardened AISI1018
steel plate, giving much better anticorrelation of the retrieved conductivity with microindentation
test data than the Tikhonov regularization. The results suggest that this is a promising way to
improve the reliability of local inversion methods. © 2010 American Institute of Physics.
�doi:10.1063/1.3475498�

I. INTRODUCTION

Over the last decades, a great deal of effort has been
devoted to develop nondestructive tests to evaluate the hard-
ness profile of case hardened steels. Photothermal radiom-
etry, which is a well known tool for the measurement of
thermal properties of matter, has emerged as a promising
technique in this area, since several works have assessed an
anticorrelation between hardness and thermal conductivity of
the hardened steels.1–4 Under this approach, the reconstruc-
tion of the hardness profile turns into the reconstruction of
the thermal conductivity profile. However, the inverse prob-
lem of reconstructing thermal conductivity profiles of case
hardened steels from infrared radiometry data suffers from
ill-posedness, i.e., rather different thermal conductivity pro-
files give quite similar surface temperature, amplitude, and
phase spectra, within experimental uncertainty. For this rea-
son, the reconstructed profiles are extremely sensitive to
noise in the data.

The ill-posed character of the inverse problem increases
with the number of unknowns. Accordingly, a possible ap-
proach consists in reducing the number of unknowns by as-
suming a predetermined functional form of the conductivity
profile, depending on few parameters.1,5–7 Of course this re-
stricts the shape of the retrievable conductivity profile to that
of the selected function. In this way, more sophisticated ver-
sions of this approach have been developed, in which the
parameters defining the function are recalculated for the in-
creasing depths corresponding to decreasing frequencies.8

On the other hand, the number of unknowns can also be

reduced by assuming a multilayer model for the thermal con-
ductivity profile and using only a few layers for the recon-
struction. The drawback of this solution is related to the lack
of spatial resolution of the reconstruction.

The approaches described in the previous paragraph con-
sist in avoiding the ill-posedness of the problem by assuming
very significant qualitative and quantitative a priori knowl-
edge about the shape of the conductivity profile, at the price
of reducing the information one can attain from the photo-
thermal data. However, in the case where spatial resolution is
to be obtained without restrictions on the functional form of
the conductivity profile, the full ill-posedness of the problem
needs to be faced. From a mathematical point of view this
means that the solution is not unique and/or is not stable
�small perturbations in the data cause substantial changes in
the solution�. In general, finding the solution consists in ob-
taining the model parameters which minimize the residual
function �a function of the squared differences between ex-
perimental and calculated data�. However, if the inverse
problem is ill-posed and nonlinear, it may exhibit several
minima, global, and/or local. The minimization process suf-
fers from instability and regularization procedures need to be
applied. The methods developed to find the solution �mini-
mum of the residual� can be classified into two categories:
global methods and local methods. Global methods like ge-
netic algorithms,9 neural networks,10,11 or more recently, par-
ticle swarm optimization,12 look for global minima by trying
over wide ranges of parameter values, while local methods
start from a certain set of parameter values and modify them
in an controlled way until the minimum of the residual is
reached. In general, if some information about the properties
of the function to be minimized is known, local methods area�Electronic mail: arantza.mendioroz@ehu.es.
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preferable because of the big amount of evaluations of the
goal function that the global models need to deal with. More-
over, local methods reach the parameters which minimize the
residual more accurately than global methods do.

Among local methods, the Tikhonov regularization pro-
cedure has been successfully applied to the reconstruction of
thermal conductivity depth-profiles of case hardened
steels.4,13 In this problem, although a global minimum �the
solution� exists, it is not stable. The method consists in add-
ing a stabilization term to the residual. This term contains a
regularization functional multiplied by a regularization pa-
rameter, which determines the size of the whole regulariza-
tion term. The choice of this regularization parameter can be
made in different ways. One possibility is using the L-curve
method;14 however, a certain ambiguity appears in the choice
of the right regularization parameter associated to the loca-
tion of the L-corner, since several values might look like
possible right regularization parameters. A second possibility
consists in using an iterative method in which the regulariza-
tion parameter is reduced at each iteration, and stopping the
process at the first iteration where the residual is of the order
of the experimental noise �Morozov discrepancy principle�.15

Unlike in the L-shape method, here the noise level is re-
quired as prior information. It is worth mentioning that es-
tablishing the stopping criterion as a function of the noise in
the experimental data avoids overfitting of the data �fitting
the noise rather than the underlying function�. The Tikhonov
regularization procedure has given quite good results in the
reconstruction of conductivity depth-profiles, qualitatively
anticorrelated with the results of microindentation tests.4,13

However, the conductivity profiles are systematically
smoother than the microhardness profiles, especially in the
deeper regions, showing an apparent penetration deeper than
the actual case depth.4,13

In this work we analyze the accuracy of the Tikhonov
regularization procedure to retrieve thermal conductivity
profiles depending on the functional form, the smoothness
and the depth of the characteristic conductivity variation, as
well as on the noise of the experimental data. In particular,
we will reconstruct shapes that are often encountered in
hardened materials: exponential, oscillating, and sigmoidal
profiles.3,8,13 First, for each conductivity profile we generate
synthetic amplitude and phase data which are calculated by
applying the thermal quadrupole method with a high number
of layers. Then we add white noise to simulate experimental
data. Systematic errors are only considered in the case they
result in a homogeneous factor in amplitude and a shift in
phase. We will examine the influence of the order of the
Tikhonov regularization function and of the associated initial
guess on the quality of the final reconstruction. The results
will show that the Tikhonov regularization gives excellent
results for smooth profiles but starts failing when retrieving
steep profiles. We propose to use a total variation regulariza-
tion functional when the results of Tikhonov regularization
give failure signs. We suggest a full strategy for addressing
the case of a real problem and we apply it to real data. The
good agreement between the reconstruction and microhard-
ness test data is very promising regarding the development of
reliable local inversion methods.

II. THE TIKHONOV REGULARIZATION PROCEDURE

The problem we are dealing with consists in retrieving
the thermal conductivity profile of hardened materials from
infrared thermography data, when the sample is illuminated
with a flat light beam, modulated at frequency f . In case
hardened steels, the hardening process reduces the conduc-
tivity at the surface if compared with the conductivity of the
unhardened material. The hardening penetration is typically
of 0.5–2 mm, and deeper inside the material the thermal
properties remain unchanged. In other systems, like cured
dental resins, the photopolymerization process leads to a
higher thermal conductivity in the cured than in the raw
resin,16 so we will study thermal conductivity profiles of
both, increasing and decreasing values in depth. According
to previous experimental results,3 in this paper we assume
that the heat capacity ��c� is constant along the hardened
region.

In order to solve the direct problem �calculation of the
surface temperature amplitude and phase as a function of the
modulation frequency� for a certain profile we apply the ther-
mal quadrupole method.17 In this approach, the continuously
varying thermal conductivity is approximated by a layered
and opaque structure, made on N parallel layers of thick-
nesses lj, thermal conductivities Kj, and equal heat capacity
�c. This method allows fast and reliable calculation of the
surface temperature amplitude and phase. For the direct cal-
culation of the temperature we have used 4000 layers, guar-
anteeing that the surface temperature data as a function of the
modulation frequency are exact.4 Both amplitude and phase
are sampled in M =60 frequencies equally spaced in a loga-
rithmic scale in the range 0.1–104 Hz. The calculated am-
plitude and phase are finally normalized to the values of an
unhardened sample. Then we add white noise by adding to
the calculated amplitudes and phases two “noise vectors”
whose M entries are random values between +�A and −�A for
amplitude, and +�� and −�� for phase. In the cases where we
want to simulate typical experimental noise for this kind of
measurements, we set +�A=0.025 to represent �2.5% noise
in normalized amplitude, and +��=0.5° in normalized phase.
Then we invert the data using a very different number of
layers, N, than in the direct problem. Although for the sake
of simplicity we usually make M =N, to maintain generality,
we will retain, both M and N along the text. Using different
schemes for solving the direct and inverse problems is man-
datory to avoid inverse crimes, i.e., an excessively optimistic
accuracy of the reconstruction.18

In a previous work, we presented some improvements
that we introduced in the Tikhonov regularization procedure
to retrieve thermal conductivity profiles of case hardened
steels from infrared thermography data.4 These improve-
ments include a renormalization of the data, a frequency
weighting, and the simultaneous fitting of the amplitude and
phase data contained in a single function. Our model also
deals with systematic errors usually encountered in experi-
mental data, leading to a factor in amplitude and a shift in
phase. We remove these constants from the experimental and
calculated data by performing a renormalization in the fol-
lowing way: according to the frequency weighting, we cal-

064905-2 Apiñaniz et al. J. Appl. Phys. 108, 064905 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



culate the norm of all the amplitude values �A� and the mean
of all the phase values ���.4 Then, each amplitude is divided
by the norm of the amplitudes and the mean of all phases is
subtracted to all the phase values.

All these improvements can be condensed in a residual
function r of the conductivity functions K that writes as
follows:4

r�K��
0

� �ANthe
�f� − ANexp

�f��2
f�� + log2�f��

df

+ �2�
0

� ��Nthe
�f� − �Nexp

�f��2
f�� + log2�f��

df

= �
−�

� �ANthe
�u� − ANexp

�u��2

� + u2 du

+ �2�
−�

� ��Nthe
�u� − �Nexp

�u��2

� + u2 du , �1�

where f represents the frequency, ANthe and AN exp are the
calculated and measured renormalized amplitudes, respec-
tively, �Nthe and �N exp are the calculated and measured
renormalized phases, respectively, � is a constant added to
overcome the divergence introduced by the square logarithm
at f =l Hz, u=log�f�, and the factor � is introduced to bal-
ance the noise levels of the two quantities, amplitude and
phase, that we are combining for the minimization.4 In our
problem, the frequency �f� and the conductivity �K� do not
correspond to continuous functions, but to discrete values of
the experimental frequencies and of the conductivities of all
the layers, respectively, so the expression of r�K� needs to be
discretized. Moreover, a regularization term needs to be in-
troduced in order to stabilize the minimization process. We
will use the Tikhonov regularization term. Taking all this into
account, the final form of the function r	�K� to be minimized
is:4

r	�K1, . . . ,KN� = 	J�K1, . . . ,KN,K1
0, . . . ,KN

0 � + �
i=1

M �ANtheoc
�K1, . . . ,KN,ui� − ANexp

�ui��2

� + ui
2 
ui

+ �2�
i=1

M ��Ntheo
�K1, . . . ,KN,ui� − �NExp

�ui��2

� + ui
2 
ui. �2�

The second and third terms of the right-hand side are the
discrete version of the residual, r, usually called the discrep-
ancy term, and the first term is the Tikhonov penalty term,19

being J the Tikhonov penalty functional, 	�0 the regular-
ization parameter, and Kj

0 with j=1, . . . ,N an initial guess of
the conductivities of all the layers. Note that, for frequencies
equally spaced in a logarithmic scale 
ui is the same for i
=1. . .M, which simplifies the calculations.

The Tikhonov penalty term contains two contributions:
the regularization parameter, 	, determines the size of the
penalty term, and the Tikhonov penalty functional J, which,
together with the initial guess Kj

0 �j=1, . . . ,N�, penalizes any
conductivity profile different from the one described by the
full penalty term.

Regarding the Tikhonov penalty functional, several or-
ders of this functional can be used to stabilize the minimiza-
tion process. The so-called “zero order” or standard
Tikhonov penalty term,

J�K1, . . . ,KN,K1
0, . . . ,KN

0 � = �
j=1

N

lj�Kj − Kj
0�2, �3�

penalizes conductivity profiles very different from the initial
guess, Kj

0 �j=1, . . . ,N�. The “first order” Tikhonov penalty
functional with a Dirichlet boundary condition on the deep-
est layer,

J�K1, . . . ,KN,K1
0, . . . ,KN

0 �

= �
j=1

N−1
1

lj
��Kj+1 − Kj� − �Kj+1

0 − Kj
0��2

+
1

lN
�Kunhardened − KN�2, �4�

penalizes conductivity profiles with derivatives which are
different from the derivative of the initial guess; in addition
the conductivity of the deepest layer must be close to the
conductivity of the unhardened material. Higher order
Tikhonov penalty terms look for the similarity between the
successive derivatives of the retrieved and initial conductiv-
ity profiles. This indicates that: �a� the Tikhonov penalty term
allows introducing prior information about the problem and
�b� the higher the order of the function, the smoother the
retrieved conductivity profile will be. The availability of
prior information and the possibility of introducing it in the
minimization procedure are crucial for retrieving meaningful
conductivity profiles. From a physical point of view, the rea-
son for this is that, since thermal waves are heavily damped,
information from deep inside the material barely reaches the
surface, where data are taken, so some information about the
conductivity deep inside the material is needed.

Regarding the regularization parameter, as mentioned in
the previous section, instead of keeping it constant during the
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minimization, we have implemented a Newton-type iterative
algorithm, suggested by Bakushinskii,20 allowing to intro-
duce the regularization term. In this algorithm, we reduce the
regularization parameter at each iteration and we apply the
Morozov discrepancy principle, stopping the process when
the residual is of the order of the noise level of the experi-
ment. Briefly speaking, in each iteration a reconstruction of
the thermal conductivity Kj �j=1, . . . ,N�, is retrieved by
solving a linear system of equations, using continuously de-
creasing 	 values, according to 	n+1=�	n with �� �0,1�.
The initial value of 	 needs to be high enough so that the
whole stabilization term is, at least, of the same order of
magnitude as the initial residual. The reduction factor � gov-
erns the rate of convergence: the lower the � value, the faster
the rate. However, a too small � value might reduce the
stabilization introduced by the Tikhonov’s penalty term too
fast. In this work we have set �=0.5.

III. NUMERICAL CALCULATIONS AND DISCUSSION

In this section we present the results of conductivity pro-
files obtained using the method described above. As men-
tioned in the previous section, we have generated amplitude
and phase data using 4000 layers in the direct problem and
have set +�A=0.025° and +��=0.5° in the noise vectors cor-
responding to the amplitude and phase, respectively, to simu-
late the typical experimental noise level in infrared thermog-
raphy data. We analyze the ability of the method to retrieve
conductivity profiles of three different shapes �exponential,
oscillating and sigmoidal�, characterized with different
depths and smoothness of their characteristic variation. For
this purpose, we have used both, zero order and first order
Tikhonov functions. Concerning the initial value of the regu-
larization parameter, we start by setting its standard value
�	0� of the same order of magnitude as the initial discrep-
ancy term. If this standard value does not lead to conver-
gence, we increase the value of the initial regularization pa-
rameter by multiplying 	0 by successive increasing factors
until convergence is reached. As will be shown below, this
optimum factor depends on the choice of the initial guess.
Finally, we study the effect of the noise in the data on the
quality of the final reconstruction. In order to give the result-
ing final reconstruction for a certain noise level, we let the
position of the unhardened layer to be located at different
depths, namely, 0.8, 1, 1.2, 1.4, 1.6, and 1.8 mm. In all the
simulations the conductivity of the unhardened material is
50 Wm−1 K−1. We add different random noise vectors, all
having entries between the same extreme values, ��A for the
amplitude, and ��� for the phase. Then we start from three
different initial guesses: constant 50 Wm−1 K−1 conductiv-
ity, decreasing linear profile with a conductivity of
75 Wm−1 K−1 at the surface, and increasing linear profile
with a conductivity of 25 Wm−1 K−1 at the surface. Note
that, although the value of the conductivity is known deep
inside the material, the precise depth at which the case hard-
ening has no longer penetrated is unknown. From all the
reconstructions we calculate the mean conductivity value for
each depth and we assign the corresponding error bar.

A. Exponential profiles

The first profile we have analyzed is the exponential one.
We have studied steep and smooth, both increasing and de-
creasing exponential profiles. First, we have checked the in-
fluence of the order of the Tikhonov functional. For this type
of profile zero and first order Tikhonov functionals lead to
very similar reconstructions, although the first order func-
tional yields slightly better results. The influence of the ini-
tial value of the regularization parameter is also small. Actu-
ally, variations in this parameter of several orders of
magnitude have very slight influence on the final result. As
an example, in Fig. 1�a� we show synthetic amplitude �dots�
and phase �circles� data with added white noise similar to the
experimental noise together with the fittings �solid lines� cor-
responding to the conductivity profile depicted by a thick
line in Fig. 2�b�. Here, in Fig. 2�b�, two true conductivity
profiles with different exponential factors are shown together
with the reconstructed profiles �dots for the steepest profile
and circles for the smoothest one� including the uncertainty
bars. As can be observed, the reconstructions are excellent.
The uncertainty in the reconstructions increases with increas-
ing depth and corresponds to about 1% at the surface and
about 2% at 1 mm depth. Similar results were obtained for
exponential profiles of decreasing conductivity with depth. It
is worth noting that increasing the amplitude of the noise
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FIG. 1. �a� Amplitude �dots� and phase �circles� data with added white noise
corresponding to the conductivity profile depicted by a thick line in Fig.
1�b�, together with the fittings �solid lines� and �b� real �lines� and recon-
structed �symbols� exponential conductivity profiles obtained from calcu-
lated data with added white noise similar to our experimental noise. The
symbols represent the mean value of the conductivity retrieved at each depth
from different initial guesses, noise vectors and bulk conductivity depths
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vectors does not significantly affect the retrieved profiles,
indicating that the Tikhonov regularization procedure is very
well suited for the reconstruction of exponential profiles.
This is also the reason why the initial value of the regular-
ization parameter is not very relevant to reach convergence.

B. Oscillating profiles

Similar calculations have been performed in the case of
a conductivity showing an oscillating behavior, like the solid
line shown in Fig. 2. In this case, it is worth mentioning the
relationship between the choice of the initial guess and the
value of the initial regularization parameter. Their influence
in oscillating profiles is much more pronounced than in ex-
ponentials. We have checked that, unless the initial regular-
ization parameter is sufficiently high, convergence cannot be
reached. Of course, the best choice of the initial regulariza-
tion parameter is the lowest possible, since higher values
lead to long iteration processes. For an initial guess consist-
ing in a linearly increasing conductivity, from 25 Wm−1 K−1

at the surface to 50 Wm−1 K−1 in bulk, an initial regulariza-
tion parameter of 100	0 was high enough. However, if we
start from a flat �50 Wm−1 K−1� or decreasing
�75 Wm−1 K−1 at the surface to 50 Wm−1 K−1 in bulk� con-
ductivity profiles, the initial regularization parameter must be
increased by two orders of magnitude in order to reach con-
vergence. The reason for this is that, for an initial guess very
different from the true profile, the first iterations of the re-
construction might bring the system to meaningless negative
conductivities. However, increasing the size of the initial pe-
nalization enlarges the convergence domain, i.e., it increases
the possible choices of the initial guess leading to the global
minimum. This shows that the method is able to bring the
system to convergence when it is forced with a not so real-
istic initial guess.

Regarding the order of the Tikhonov functionals, we
have found that zero order Tikhonov regularization leads to
reconstructed conductivities with oscillating artifacts. For
this reason, we have performed all the inversions using first

order Tikhonov regularization. As an example of oscillating
profile, in Fig. 2 we show a pipelike K profile together with
its reconstruction. In this case the initial guess is an increas-
ing linear profile with 25 Wm−1 K−1 conductivity at the sur-
face and 50 Wm−1 K−1 conductivity in bulk, and the initial
regularization parameter is 100	0. As can be seen in the
figure, the reconstruction is quite good at positions close to
the surface but there is a significant discrepancy between the
true and reconstructed conductivities in depth. Actually, the
reconstructed profile is much smoother than the real one,
meaning that the steep behavior close to the bulk is barely
reproducible.

C. Sigmoidal profiles

Very often, the thermal conductivity profiles of hetero-
geneous samples, as is the case of hardened steels and cured
dental resins, show quasisigmoidal shapes.3,4,16 For this rea-
son, it is especially interesting to analyze the accuracy of the
Tikhonov method to retrieve this kind of profiles. We have
retrieved sigmoidal conductivity profiles with different
slopes and located at different depths, both with increasing
and decreasing conductivity with depth. Again, in all cases,
the zero order Tikhonov functional leads to more artificially
oscillating reconstructions than the first order functional, so
we will only show profiles obtained using the first order
functional.

In Fig. 3�a� we show single reconstructions of sigmoidal
decreasing conductivity profiles all with the same �steep�
slope but located at different depths. All the calculations
were performed by inverting synthetic amplitude and phase
data corresponding to the profiles shown in solid lines with
added white noise similar to the experimental noise. As can
be seen, for this steep function, the reconstructed conductivi-
ties underestimate the slopes of the profiles, the differences
between real and reconstructed slopes being larger as the
depth of the “step” increases. In order to quantify the quality
of the reconstruction, we have first compared the angle of the
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files obtained from calculated data with added white noise similar to our
experimental noise. The inflexion points of the real profiles are located at
0.2, 0.3, 0.4, and 0.5 mm beneath the surface. The symbols represent single
reconstructions obtained with flat initial conductivity �50 Wm−1 K−1� and
bulk conductivity at 1 mm. �b� Angle of the reconstructed �symbols� and
true �line� profiles with the vertical at the position of the inflexion point, as
a function of the position of the inflexion point of the real profiles, �c�
position of the inflexion point for reconstructed �symbols� and real �line�
profiles, as a function of the position of the inflexion point �of the real
profiles�.
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curves with the vertical at the position of the inflexion point
�Fig. 3�b�� for both, reconstructed �symbols� and real �line�
profiles, as a function of the depth of the inflexion point. It
can be observed that the angle is dramatically underesti-
mated, especially as the depth of the inflexion point in-
creases. Then, we have compared the position of the inflex-
ion point �Fig. 3�c�� for both, reconstructed �symbols� and
real �line� profiles, as a function of the position of the inflex-
ion point of the real profiles. As can be seen, unlike the
angle, the position of the inflexion point is quite well repro-
duced, although slightly underestimated. This indicates that,
despite the severe underestimation of the slope, the method
quite accurately determines the position of the inflexion
point, which can be used to roughly locate the case penetra-
tion depth.

We have reduced the white noise added to the synthetic
data in order to evaluate its influence on the retrieved angle
and inflexion point. We have found that, in the worse condi-
tions we have studied, i.e., for a real sigmoidal profile with
its inflexion point located 0.5 mm beneath the surface and
with a slope like the one shown Fig. 3�a�, the noise needs to
be reduced down to three orders of magnitude in order to
retrieve the right angle. Two consequences can be derived
from this result: first, in a real case the Tikhonov regulariza-
tion does not give optimum results when the sigmoidal pro-
file is steep. Second, the method converges to the exact result
when the noise is reduced, which is a desirable property of
an inversion procedure.

In Fig. 4 we show, in circles, the reconstructed conduc-
tivities corresponding to three real increasing conductivity
profiles �lines�. In Figs. 4�a� and 4�b� we show profiles with
the same �steep� slope but with their inflexion points located
at 0.2 mm and 0.5 mm beneath the surface, respectively, and
in Fig. 4�c� we show a smoother slope, with its inflexion
point located 0.5 mm beneath the surface. All these recon-
structions were performed using first order Tikhonov regu-
larization term. The tests performed in order to determine the
optimum initial regularization parameter gave similar results
as in the case of the oscillating profile: for values smaller
than 100	0, no convergence could be reached so 100	0 was
found to be the best initial regularization parameter. As can
be observed, if we look at the mean conductivities �rather
than at single reconstructions as in Fig. 3�a�� we also observe
that for the steep slopes depicted in Figs. 4�a� and 4�b�, the
deeper the transition, the bigger the underestimation of the
slope. Moreover, in these increasing profiles the mean con-
ductivities retain the spurious oscillations in flat regions that
we observed in the single reconstructions of decreasing pro-
files. However, the result of calculating the mean conductiv-
ity attenuates the oscillations but increases the error bar in
flat �real� regions. If we compare Figs. 4�b� and 4�c�, repre-
senting two profiles with their inflexion points located at the
same position but with different slopes, it is quite evident
that the reconstruction of the smoother profile is more accu-
rate. As illustrated in this figure, the method is more suitable
to reconstruct smooth than steep profiles. We would like to
emphasize that, even when using the first order Tikhonov
function, all the reconstructed profiles still exhibit some spu-
rious oscillations in the �real� flat regions, an artifact that we

cannot avoid with this method. All these results indicate that,
in general the reconstructed sigmoidal conductivity profiles
using the Tikhonov regularization procedure underestimate
the slopes of the profiles.

Once the Tikhonov regularization has proven to give
oversmoothed sigmoidal conductivity reconstructions, the
question is now how to proceed in a real case, where the true
conductivity is unknown. A first hint that the Tikhonov func-
tion is not working fully properly is the appearance of the
oscillations mentioned above. The method is not suitable to
reproduce the flat sections in sigmoidal profiles. Actually,
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FIG. 4. Real �lines� and reconstructed �symbols� sigmoidal conductivity
profiles retrieved by using the Tikhonov regularization �circles� and the TV
regularization �dots�, obtained from calculated data with added white noise
similar to our experimental noise. The symbols represent the mean value of
the conductivity retrieved at each depth from different initial guesses, �a�
steep profile, with inflexion point located at 0.2 mm, �b� steep profile, with
inflexion point located at 0.5 mm, and �c� smooth profile, with inflexion
point located at 0.5 mm
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other regularization functionals are much better suited to re-
construct profiles with sparse flat sections, like the total
variation �TV� regularization21

TV�K1, . . . ,KN,Kunhardened� = �
j=1

N−1

�Kj+1 − Kj� + �Kunhardened

− KN� , �5�

where we have added a Dirichlet boundary condition on the
deepest layer. If compared to the first order Tikhonov func-
tional �Eq. �4��, it could be described as a functional with a
pre-established flat initial guess. Moreover, since the addends
correspond to the absolute values of the differences between
the conductivities of adjacent layers, the functional repre-
sents the “TV” of the conductivity profile. According to the
previous discussion, in cases where the Tikhonov regulariza-
tion gives quasisigmoidal, oscillating reconstructions, we
propose to perform an alternative minimization by using a
regularization TV functional, in the following way: as the
TV functional is not linear, for each linearization of the dis-
crepancy term we approximate the TV functional by means
of fix point iterations that lead to quadratic regularization
terms as the following:

TV� = �
j=1

N−1
�Kj+1 − Kj�2

� + �Kj+1
� − Kj

��
+

�Kunhardened − KN�2

� + �Kunhardened − KN
� �

, �6�

where � is a small constant �10−5 for instance� added to avoid
divergence in sparse blocks and the asterisk in the denomi-
nator represents the conductivities corresponding to previous
fix point iteration. This is the reason why this approximation
can be interpreted as a weighted/lagged Tikhonov functional.
Note that, when the conductivities retrieved in successive fix
point iterations are not very different from each other, this
term is a good approximation of the TV regularization.

We have checked the TV regularization for the three real
sigmoidal profiles represented in lines in Fig. 4. The corre-
sponding results are depicted in dots in Fig. 4: in all three
cases the oscillations disappear and the slope of the recon-
structed profile is much closer to the slope of the real profile,
meaning that the reconstructions using the TV functional is
more accurate than the reconstruction with Tikhonov func-
tional for this kind of profiles. The reason for such different
reconstructions when using the Tikhonov and TV regulariza-
tion is the following: when a penalty is introduced to stabi-
lize the minimization the penalty term restricts the kind of
functions the search will be made through. In the case of the
first order Tikhonov functional, steplike functions �having
infinite slope� are avoided since they lead the penalty term to
diverge, so the search is performed among smooth functions,
as stated before. On the contrary, the TV regularization
searches through functions whose TV is finite, �bounded
variation �BV� functions� without restrictions on the values
of their derivatives; steplike functions are among BV func-
tions and have zero slope in the flat regions, as the “associ-
ated” initial guess, so steepest reconstructions are retrieved
with this regularization. Note also that the error bars corre-
sponding to the TV reconstructions are wider in the region
where the conductivity is changing than in the flat regions.

The reason for this is that, since the method searches among
steplike functions, small variations in the location of the step
lead to a big uncertainty in the value of the conductivity. As
in the reconstructions we are performing we let the position
of the unhardened material to be located at different depths,
the final reconstruction �the mean of all reconstructions per-
formed� is smoother than the individual reconstructions and
exhibits a larger uncertainty in the region close to the inflex-
ion point.

All the discussion above leads us to revisit the results
obtained previously with real data. After the previous analy-
sis we can conclude that the reconstructed profile shown in
Fig. 5 of Ref. 4, corresponding to a case hardened AISI 1018
steel plate, is very likely smoother than the real one. This is
in agreement with the results of microindentation tests per-
formed in the same sample,22 showing a steeper profile. Ac-
cordingly, we have applied this TV regularization to the in-
version of the experimental data. In Fig. 5 we present the
microindentation results together with the reconstructions us-
ing the Tikhonov regularization and the TV regularization.
As can be observed, the reconstruction using Tikhonov is
smoother than the microindentation profile, and the one us-
ing TV is closer to the microindentation test, although
slightly steeper. Even if this last reconstruction does not fully
reproduce the shape of the microindentation test, it certainly
represents an improvement with respect to the results of pre-
vious methods used to reconstruct case hardening conductiv-
ity profiles. Finally we would like to stress that the method
we have presented assumes random errors in experimental
data and also deals with of systematic errors in the case they
result in a factor affecting the amplitudes and a shift in the
phase. However, the presence of other systematic errors is
the main difficulty in the application of these methods to real
problems, and leads to excessively optimistic assumed accu-
racy of the reconstructions. For instance, the presence of
three-dimensional heat propagation due to lateral diffusion
�at low frequencies� can significantly alter the surface tem-
perature amplitude and phase in such a way that reconstruc-
tions obtained by working with a ID model can be com-
pletely distorted.23
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IV. CONCLUSIONS

We have analyzed the suitability of the Tikhonov regu-
larization method to reconstruct thermal conductivity depth-
profiles with shapes similar to those found in real heteroge-
neous sample, as is the case of hardened steels and cured
dental resins. We have analyzed the influence of the order of
the Tikhonov function, of the initial value of the regulariza-
tion parameter, of the initial guess, and of the experimental
noise on the final reconstruction. From this study we can
conclude that this type of regularization gives very good re-
sults when the profile to be reconstructed is smooth, like
exponential profiles, but it fails when the profile is steep,
especially if the step is located deep inside the material.
Moreover, we have observed spurious oscillations appearing
in the reconstructed conductivities, corresponding to regions
of flat conductivity on the real profiles, indicating that the
Tikhonov regularization is not the optimum choice in these
cases. We have studied the TV regularization as a natural
alternative when the reconstructed conductivity presents
quasiflat oscillating regions. The application of TV regular-
ization in these cases gives much better results than
Tikhonov regularization. According to the results we propose
the following procedure for a real case, where the conduc-
tivity is unknown: perform the inversion using the Tikhonov
regularization, check for oscillating behaviors both close to
the surface and deep inside the material and, if oscillations
occur, perform a second inversion by regularizing with a TV
functional. Unlike other methods, only minor a priori infor-
mation about the conductivity profile is used in order to im-
prove the fidelity of the reconstructed profiles, namely: the
noise level of the experimental data, the conductivity of the
unhardened material and an assumption about nuances of the
conductivity profile: smoothness which makes us choose the
Tikhonov regularization first, and lack of oscillations, in
shallow and deep locations, which brings us to try TV regu-
larization. The application of this method to real experimen-
tal data of a case hardened steel plate has given a very good
quantitative anticorrelation with the indentation test results.
We expect that the development of this method will contrib-

ute to increase the reliability of local inversion methods.
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