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Photothermal techniques have been widely developed to study the thermal properties and to detect

buried defects of samples with flat parallel surfaces. In the last years, there has been a growing

interest in the application of photothermal techniques to samples with non-flat surfaces, as is the

case of rods, tubes, and balls. The aim of the present work is to study the propagation of thermal

waves across wedge samples. We have considered plane illumination (launching plane thermal

waves) as well as Gaussian illumination (producing spherical thermal waves). We focus on the

behavior of the front and rear surface temperatures, which is recorded using lock-in infrared

thermography. This work is aimed at expanding the use of photothermal techniques for the

quantitative characterization of wedge samples, as is the case of gear, blades, screws, and other

hardware tools. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752413]

I. INTRODUCTION

Photothermal techniques are based on the generation

and detection of thermal waves in the sample under study.

Thermal waves are generated in a material after the absorp-

tion of an intensity modulated light beam. These highly

damped thermal waves propagate through the material and

are scattered by buried heterogeneities and by the sample

surfaces. Different photothermal setups have been developed

to detect these thermal waves and therefore to retrieve infor-

mation on the thermal properties and internal structure of the

material: Infrared thermography, photopyroelectric, mirage

effect, photothermal reflectance, etc.1

For decades, research in photothermal techniques has

been restricted to samples with flat parallel surfaces. In the

last years, several studies on the propagation of thermal waves

in samples with cylindrical2–4 and spherical5–7 shape have

been published. These works proposed methods to measure

the radial thermal conductivity and diffusivity of homogene-

ous rods, tubes, and spheres using photothermal techniques.

The aim of the present work is to study the propagation

of thermal waves across wedge samples. The scattering of

thermal waves by a 90� corner has been already studied.8–11

It was found that close to the corner of the sample the am-

plitude of the thermal wave increases while its phase

decreases. In this work, we complete the above mentioned

researches by studying the behavior of thermal waves

across wedges of selected angles. We have studied the

effect of a plane illumination (launching plane thermal

waves) as well as the effect of a Gaussian illumination

(launching spherical thermal waves). We focus on the

behavior of the front and rear surface temperatures, which

is recorded in a non-contact manner by an infrared video

camera. Measuring the front surface temperature is well

suited to analyze the presence of subsurface defects. On the

other hand, from the back surface temperature the thermal

properties of the wedge can be retrieved.

This work is aimed at expanding the use of photothermal

techniques for the quantitative characterization of wedge

samples, representing common shapes of parts used in indus-

trial mechanical devices as gears, axes, blades, screws, and

other hardware tools.

II. THEORY

First, we study the propagation of plane thermal waves

across a wedge of arbitrary angle. Then, we extend the

research to spherical thermal waves.

A. Plane illumination

In this subsection, we study an opaque wedge of angle a
illuminated by a plane light beam whose amplitude is modu-

lated at a frequency f (x ¼ 2pf ). Its cross-section is given in

Fig. 1(a). Adiabatic boundary conditions at the surfaces are

assumed. Let us start by considering a point-like illumination

of power Po, modulated at a frequency f and located at coor-

dinates (xo,0,zo) in a homogeneous and semi-infinite medium

(y< 0). The temperature oscillation at any point (x,y,z) of the

material is given by12

Tðx; y; zÞ ¼ Poð1� RÞ
4pK

e�qr

r
; (1)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xoÞ2 þ y2 þ ðz� zoÞ2

q
, q ¼

ffiffiffiffiffiffiffiffiffiffiffi
ix=D

p
is the

thermal wave vector, D is the thermal diffusivity, K is

the thermal conductivity, and R is the surface reflectivity at

the illumination wavelength. Equation (1) represents a highly

damped spherical thermal wave generated at (xo,0,zo). The

temperature oscillation when the material is illuminated by a

modulated plane source located at the semi-plane y¼ 0 and

x> 0 is obtained by integrating Eq. (1) over that semi-plane

Tðx; y; zÞ ¼ Ioð1� RÞ
4pK

ð1
0

dxo

ð1
�1

e�qr

r
dzo; (2)

where Io is the intensity (W/m2) of the illumination.a)E-mail: agustin.salazar@ehu.es.
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Due to the adiabatic boundary conditions at the sample

surfaces, the real geometry shown in Fig. 1(a) can be analyzed

by considering the configuration shown in Fig. 1(b). Note that

the effect of the wedge walls is accounted for via the introduc-

tion of n ¼ p=a image plane illuminations located at angles

2a, 4a, 6a,…, 2(n� 1)a. It is worth mentioning that this image

method is only valid for wedge angles verifying a ¼ p=n,

with n 2 N.13 For wedge angles different from these, the

method would give rise to an infinite (meaningless) number of

images. Finally, the temperature oscillation at any point of the

wedge is obtained by adding the contribution of the real plane

illumination plus the n� 1 image plane illuminations

Tðx; y; zÞ ¼ Ioð1� RÞ
4pK

Xn�1

p¼0

ð1
0

dxo

ð1
�1

e�qr0

r0
dzo; (3)

where

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x cosð2paÞ þ y sinð2paÞ � xo�2 þ ½�x sinð2paÞ þ y cosð2paÞ�2 þ ðz� zoÞ2

q
: (4)

To obtain Eq. (3), we have used the rotation of the coordi-

nate axes around the z axis.

In the case of a¼ 180�, which represents a semi-infinite

sample (y< 0) whose semi-plane x> 0 is illuminated by a

plane light beam while the semi-plane x< 0 is non illumi-

nated, Eq. (3) reduces to

Tðx; y; zÞ ¼ Ioð1� RÞ
4pK

ð1
0

dxo

�
ð1
�1

e�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xoÞ2þy2þðz�zoÞ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xoÞ2 þ y2 þ ðz� zoÞ2

q dzo: (5)

For a¼ 90�, a right angle corner, Eq. (3) reduces to

Tðx; y; zÞ ¼ Ioð1� RÞ
4pK

ð1
�1

dxo

�
ð1
�1

e�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xoÞ2þy2þðz�zoÞ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xoÞ2 þ y2 þ ðz� zoÞ2

q dzo

¼ Io

2Kq

� �
e�qy; (6)

which represents a plane thermal wave, in agreement with

the prediction of the image method stating that a right corner

is equivalent to semi-infinite sample.

Figure 2 shows the simulation of the front surface tem-

perature of a wedge illuminated by a plane light beam as a

function of the normalized distance (x/l) to the edge of the

wedge, where l ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=pf

p
is the thermal diffusion length.

Figure 2(a) shows the behavior of the natural logarithm of

the amplitude, Ln(T), and Fig. 2(b) that of the phase, w.

Results for wedge angles a¼ 5�, 15�, 45�, 90�, and 180� are

shown. As can be seen, for a¼ 90� both Ln(T) and w have a

flat behavior consistent with the plane thermal wave given

by Eq. (6). For a< 90�, the amplitude of the temperature

increases as approaching the edge of the wedge, while the

phase shows a dip. The smaller the wedge angle a the deeper

the phase dip, until a minimum phase value of 98.5� is

reached for an infinitesimal wedge angle. This result is con-

sistent with the fact that far away from the edge the sample

is thermally thick (w¼�45�), while close to the edge the

sample becomes thermally thin (w¼�90�). The opposite

behavior is found for a¼ 180�: the amplitude of the

FIG. 1. (a) Cross-section of a wedge illuminated by a plane light beam. (b)

Equivalent geometry after applying the image theorem.

FIG. 2. Simulation of the front surface tem-

perature of a wedge illuminated by a plane

light beam as a function of the normalized

distance (x/l) to the edge of the wedge. (a)

Natural logarithm of the amplitude, Ln(T),

and (b) phase, w. Results for wedge angles

a¼ 5�, 15�, 45�, 90�, and 180� are shown.
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temperature decreases as approaching the edge of the illumi-

nation, while the phase shows a peak.

Figure 3 shows the simulation of the rear surface tem-

perature of a wedge illuminated by a plane light beam as a

function of the normalized distance to the edge taken along

the rear surface (d/l). Results for wedge angles a¼ 2.5�, 5�,
10�, 15�, 22.5�, and 45� are shown. For each a, the upper

curve stands for Ln(T), while the lower curve represents w.

As can be seen, as moving away from the edge of the wedge

both Ln(T) and w become parallel straight lines whose

slopes, m, verify m¼�sin(a). This means that the thermal

diffusivity of the wedge can be obtained in a straightforward

way from the slope m0 of Ln(T) and w as a function of the

distance to wedge (d): D ¼ � pf

m02
sin2ðaÞ.

B. Gaussian illumination

Now, we study the same opaque wedge as before but

illuminated by a Gaussian light beam of radius a (at 1/e2 of

the intensity) modulated at a frequency f. The center of the

Gaussian spot is located at (b,0,0). The cross-section of the

wedge is given in Fig. 4(a). Let us start by reminding that the

temperature oscillation of a homogeneous and semi-infinite

medium (y< 0) is given through the Fourier transform14

Tðx; y; zÞ ¼ Ioð1� RÞ
4pK

ð1
�1

ð1
�1

e�i½ðx�bÞdþzg�e�ðd
2þg2Þa2=8

� eby

b
dddg; (7)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ g2 þ q2

p
. By using the image theorem, the

effect of the wedge walls is accounted for via the introduc-

tion of n ¼ p=a image Gaussian spots located at angles 2a,

4a, 6a,…, 2(n� 1)a (see Fig. 4(b)). Accordingly, the temper-

ature oscillation at any point of the wedge is obtained by

adding the contribution of the real Gaussian spot and the

n� 1 image Gaussian spots

Tðx; y; zÞ ¼ Ioð1� RÞ
4pK

Xn�1

p¼0

ð1
�1

ð1
�1

e
�i

nh�
x�bcosð2paÞ

�
cosð2paÞþ

�
y�bsinð2paÞ

�
sinð2paÞ

i
dþzg

o
e�ðd

2þg2Þa2=8

� e
6b

h
�
�

x�bcosð2paÞ
�

sinð2paÞþ
�

y�bsinð2paÞ
�

cosð2paÞ
i

b
dddg: (8)

The sign in the exponential is either positive (þb) for

2pa<p or negative (�b) for 2pa�p. In particular, for n
even Eq. (8) consists of the addition of two terms, the first

one with the summation running from 0 to n/2� 1 with

b> 0 and the second one with the summation running from

n/2 to n� 1 with b< 0. On the other hand, for n odd Eq. (8)

can be written as the addition of two terms, the first one with

the summation going from 0 to (n� 1)/2 with b> 0 and the

second one with the summation going from (nþ 1)/2 to

n� 1 with b< 0.

As a proof of self-consistency, it is worth mentioning

that in the case of a 180� wedge, i.e., a semi-infinite sample,

Eq. (8) reduces to Eq. (7).

For a tightly focused Gaussian beam (a� 0), if we move

the Gaussian spot away from the wedge while recording the

temperature at the center of the spot, constant amplitude and

phase (w¼ 0�) are obtained. As the size of the spot is

increased, an amplitude rise and a dip in phase as approach-

ing the edge of the wedge are observed. This result is similar

to that shown in Fig. 2 but with a much smaller contrast.

Anyway, the case of a 90� wedge deserves some comments.

For a point-like excitation (a¼ 0) or for a plane excitation

(a¼1), the theoretical model predicts a constant amplitude

and phase, i.e., there is not any feature indicating the pres-

ence of that wedge. However, for intermediate beam sizes,

small amplitude rise and phase decrease appear when

FIG. 4. (a) Cross-section of a wedge illuminated by a Gaussian light beam.

(b) Equivalent geometry after applying the image theorem.

FIG. 3. Simulation of the rear surface temperature of a wedge illuminated

by a plane light beam as a function of the normalized distance to the edge

along the rear surface (d/l). For each wedge angle, the upper curve stands

for Ln(T), while the lower curve represents the phase.
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approaching the corner. This result agrees with previously

reported works.8,10

Figure 5 shows the simulation of the rear surface tem-

perature of a wedge illuminated by a Gaussian light beam of

normalized radius a/l¼ 0.1, whose position is changed

along the x axis. The rear surface temperature is computed at

the opposite point with respect to the excitation, i.e., same x
coordinate for both excitation and computing position. The

abscissa in Fig. 5 represents the normalized distance to the

edge taken along the back surface (d/l). Results for wedge

angles a¼ 5�, 10�, 15�, 22.5�, and 45� are shown. For each a
value, the upper curve stands for Ln(T), while the lower

curve represents w. As can be seen, the result is similar to

that found in Fig. 3 for a plane illumination. In fact, Ln(T)

and w have the same slope as for plane illumination, verify-

ing m¼�sin(a). The main difference is that the linear

behavior starts closer to the edge than in the case of plane

illumination.

Finally, Fig. 6 shows the simulation of the front surface

temperature of a wedge as a function to the normalized dis-

tance to the edge (x/l). The wedge is illuminated by a Gaus-

sian light beam, with normalized radius a/l¼ 0.1, and

centered at b/l¼ 1. Continuous lines represent the natural

logarithm of the temperature amplitude multiplied by the

normalized distance to the Gaussian spot center Ln jx�bj
l T

h i
while dotted lines stand for temperature phase w. As can be

observed, far away from the edge both the natural logarithm

and the phase are parallel straight lines whose slope, m, veri-

fies m ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
pf=D

p
. This slope is independent of the wedge

angle. This result is the same as that found in a semi-infinite

slab. However, close to the edge there is an increase of the

natural logarithm and phase, which is more pronounced as

the wedge angle is smaller.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the theoretical predictions, wedges of differ-

ent angles (90�, 20�, 15.4�, 10.2�, 7.2�, and 5.2�) made of

AISI-304 stainless steel have been manufactured. In order to

increase the light absorption and the infrared emissivity, a

thin black paint layer of about 10 lm covered both surfaces

of the wedge. The scheme of the experimental setup for a

plane illumination is given in Fig. 7. The wedge is illumi-

nated by a 50 W diode laser (808 nm) with “top hat” profile.

Modulation of the laser power is accomplished by modulat-

ing the electric current feeding the laser driver. An optical

fiber is used to direct the defocused laser beam onto the

wedge surface. The surface temperature of the wedge is

measured by an infrared video camera (SC7500-BB from

FLIR). A 50 mm lens is used to collect the infrared emission

from the sample surface. The sample is placed at the mini-

mum possible working distance from the lens (about 25 cm).

In this way, each pixel measures the average temperature

over a square of 150 lm side on the wedge surface. The

FIG. 5. Simulation of the rear surface temperature of a wedge illuminated

by a Gaussian light beam of normalized radius a/l¼ 0.1, whose position is

changed along the x axis. The rear surface temperature is computed at the

opposite point with respect to the excitation. The abscissa represents the nor-

malized distance to the edge taken along the back surface (d/l).

FIG. 6. Simulation of the front surface temperature of a wedge as a function

to the normalized distance to the edge (x/l). The wedge is illuminated by a

Gaussian beam, with normalized radius a/l¼ 0.1, and centered at b/l¼ 1.

Continuous lines represent the natural logarithm of the temperature ampli-

tude multiplied by the normalized distance to the Gaussian spot center

Ln jx�bj
l T

h i
while dotted lines stand for temperature phase w.

FIG. 7. Scheme of the infrared thermography setup. Note that there is only

one optical fiber that illuminates the front or the back surface of the wedge.
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lock-in software provided with the camera gives the ampli-

tude and phase of the oscillating temperature. To improve

the signal to noise ratio, we record 4000 images for each

experiment. As the noise level is inversely proportional to

the square root of the total number of images,15 we obtain a

temperature noise level smaller than 1 mK.

Dots in Fig. 8 show the experimental normalized ampli-

tude and phase of the front surface temperature of the

wedges illuminated by the defocused diode laser (diameter

around 5 cm) as a function of the normalized distance (x/l)

to the edge. Each wedge was measured at several modulation

frequencies ranging from 0.12 Hz to 4.1 Hz. For the sake of

clarity, only the results for some wedges and for two fre-

quencies for each wedge are shown in Fig. 8. The continuous

lines correspond to the theoretical predictions obtained from

Eq. (3) and plotted in Fig. 2. As can be observed, they fit

very well the experimental data. It is worth noting that the

measurements corresponding to a¼ 180� are performed in a

semi-infinite slab (far away from the sample edges) which is

partially illuminated by the diode laser. The amplitude and

phase of the temperature are recorded in the illuminated part

of the sample as a function to the distance to the light edge.

Then, we have measured the amplitude and phase of the

temperature at the back surface as a function to the distance

to the wedge edge (d). Measurements have been performed

in all the wedges we have prepared. For each wedge, meas-

urements at frequencies in the range from 0.12 to 7.4 Hz

have been carried out. For the sake of clarity, only some of

the results are shown in Fig. 9. For each couple (a, f), the

upper curve stands for Ln(T), while the lower curve repre-

sents the phase w. As can be seen, close to the edge Ln(T)

and w have a nonlinear behavior. However, as we go away

from the edge both Ln(T) and w become parallel straight

lines with the slopes m0 verifying m0 ¼ �sinðaÞ
ffiffiffiffiffiffiffiffiffiffiffi
pf=D

p
.

Using this expression, the thermal diffusivity of our set of

AISI-304 stainless steel wedges has been obtained. All ther-

mal diffusivity values fall in the range 3.8–4.1 mm2/s, in

agreement with the typical D values of AISI-304 that can be

found in the literature, thus confirming the theoretical

predictions.

FIG. 8. Symbols are the experimental nor-

malized amplitude (a) and phase (b) of the

front surface temperature of a set of AISI-

304 stainless steel wedges illuminated by

a “top hat” laser as a function of the nor-

malized distance (x/l) to the edge. The

continuous lines correspond to the theoret-

ical prediction.

FIG. 9. Experimental measurements of the rear surface temperature of AISI-

304 wedges illuminated by a “top hat” laser as a function of the distance to

the edge taken along the back surface, d. (a) a¼ 20�, f¼ 1.90 Hz, (b)

a¼ 10.2�, f¼ 3.68 Hz, (c) a¼ 5.2�, f¼ 7.36 Hz, and (d) a¼ 5.2�,
f¼ 3.68 Hz. For each pair, the upper curve stands for Ln(T), while the lower

curve represents the phase.

FIG. 10. Experimental results of the front surface temperature of AISI-304

wedges, illuminated by a focused Gaussian laser beam as a function of the

distance to the edge x. The laser spot impinges at a distance b¼ 1.4 mm

from the edge. Measurements are performed at f¼ 70 mHz. Dots represent

Ln½jx� 1:4jT� and crosses the phase.
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For Gaussian illumination, we have used an acousto-

optically modulated solid state laser (532 nm) focused onto

the wedge surface by a spherical lens of 10 cm focal length.

The surface temperature is measured by the same infrared

video camera in lock-in mode. In Fig. 10, we show the IR ter-

mography measurements of the front surface temperature of

the AISI-304 wedges, illuminated by that focused Gaussian

spot as a function of the distance to the edge x. The laser spot

impinges at a distance b¼ 1.4 mm from the edge. Measure-

ments are performed at f¼ 70 mHz in order to have good

enough resolution in the region between the laser spot and the

edge. Dots represent Ln½jx� 1:4jT� and crosses the phase. As

predicted by the theory, when moving away from the edge,

both the natural logarithm and the phase decrease linearly.

However, when approaching the wedge edge the symmetry is

broken in such a way that the phase, and especially the natural

logarithm, shows a drastic increase of its values.

IV. SUMMARY AND CONCLUSIONS

In this work, we have developed a theoretical model to

calculate the surface temperature of homogeneous wedge-

shaped samples when illuminated by both plane and point-

like modulated light beams. The calculations are subjected to

two restrictions: first, adiabatic boundary conditions are

assumed and second, angles a of the wedges must fulfil the

condition a ¼ p=n. This is a strong limitation for large

angles (90�, 60�, 45�, 36�,…), but not for small angles (3.6�,
3.53�, 3.46�,…) The predictions of the calculations have

been validated by the results of infrared thermography

experiments performed on stainless steel wedges of different

angles, both with plane and point-like illumination.

One straightforward application of the method consists

of obtaining the thermal diffusivity of wedge-shaped samples

in an easy way. Furthermore, this study sets the grounds to

further analyze the effect of the presence of defects in

wedges on the surface temperature distribution. In the case

of homogeneous flat samples, the surface temperature is con-

stant (in amplitude and phase) when illuminated by an

extended light beam. The presence of buried defects can be

easily identified as a departure from this flat behavior of the

surface temperature. In wedge samples, or near the corner of

a flat sample, detection of defects is more complicated.

Knowledge of the surface temperature distribution of homo-

geneous, defect-free wedges generated by plane or focused

illumination is the first step in developing methods to assess

the presence of buried defects, as cracks or delaminations

close to the edges of a sample, from infrared thermography

data.
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